IMPROVING PARALLEL SOLUTIONS FOR METHOD OF LINES TO 1-D HEAT EQUATION BY USING FIVE POINT FINITE DIFFERENE
DOI:
https://doi.org/10.25130/tjps.v23i6.684Abstract
The aim of the study is to explain the numerical solutions of the one dimensional (1-D) of heat by using method of lines (MOLs). In the (MOLs) the derivative is firstly transformed to equivalent 5 point central finite differences methods (FDM) that is also transformed to the ordinary differential equations (ODEs). The produced (ODEs) systems are solved by the well-known techniques method of ODEs such as the 4th Runge - Kutta method and Runge - Kutta Fehlberg. And since of the conversion of the second derivative to the equivalent of the 5 points FDM which led to an increase in the size of the system equations ODEs, and thus increased we have improved the performance of these (MOLs) techniques by introduce parallel processing to speed up the solution of the produced ODE systems. The developed parallel technique, are suitable for running on MIMD (Multiple Instruction Stream, Multiple Data Stream) computers.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Tikrit Journal of Pure Science
This work is licensed under a Creative Commons Attribution 4.0 International License.
Tikrit Journal of Pure Science is licensed under the Creative Commons Attribution 4.0 International License, which allows users to copy, create extracts, abstracts, and new works from the article, alter and revise the article, and make commercial use of the article (including reuse and/or resale of the article by commercial entities), provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made, and the licensor is not represented as endorsing the use made of the work. The authors hold the copyright for their published work on the Tikrit J. Pure Sci. website, while Tikrit J. Pure Sci. is responsible for appreciate citation of their work, which is released under CC-BY-4.0, enabling the unrestricted use, distribution, and reproduction of an article in any medium, provided that the original work is properly cited.