A Theoretical Study to Calculate the Radiation Stopping Power for Electrons in Human Tissues
DOI:
https://doi.org/10.25130/tjps.v29i3.1593Keywords:
Radiation Stopping Power, Human Tissue, Berger-Seltzer, Approximate Function, Data FittingAbstract
In this research, the radiation stopping power of electrons in some human tissues (adipose tissues, blood, bone compact, bone cortical, brain, eye lens, lung, skin, and testicles) was studied within the energy range from (10 MeV) to (1000 MeV). The study of the energy loss of charged particles through matter is of great importance in medical physics in general and radiotherapy in particular in order to determine the radiation dose in the case of medical tests or treatment and the effect of this dose in the cells adjacent to the target cells and possible damage to the tissues adjacent to the affected tissues. Calculations have been performed using the modified Berger-Seltzer equation (where a new formula was found to calculate the approximate function as a function of the energy of the incident electron using the data matching method and using the Curve Expert program). The radiation stopping power of each of the components of the tissue was found separately, and then the stopping power of the tissue was found using the Bragg rule for compounds. All calculations were performed using the MATLAB program. Comparing the results obtained with the value of the universal code E-Star, it was found that they matched well and that the error rate was less than (1 %).
Downloads
Published
How to Cite
License
Copyright (c) 2024 THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE http://creativecommons.org/licenses/by/4.0/
This work is licensed under a Creative Commons Attribution 4.0 International License.
Tikrit Journal of Pure Science is licensed under the Creative Commons Attribution 4.0 International License, which allows users to copy, create extracts, abstracts, and new works from the article, alter and revise the article, and make commercial use of the article (including reuse and/or resale of the article by commercial entities), provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made, and the licensor is not represented as endorsing the use made of the work. The authors hold the copyright for their published work on the Tikrit J. Pure Sci. website, while Tikrit J. Pure Sci. is responsible for appreciate citation of their work, which is released under CC-BY-4.0, enabling the unrestricted use, distribution, and reproduction of an article in any medium, provided that the original work is properly cited.