Comparative Numerical Solution of Fractional Spline with Continuity Equations
DOI:
https://doi.org/10.25130/tjps.v28i2.1344Keywords:
Spline polynomial, Caputo fractional derivative, Taylor’s expansion, fractional polynomial, fractional derivative, stability analysis.Abstract
In this paper, constructed a fractional polynomial spline to compute the solution of FDEs; the spline interpolation with fractional polynomial coefficients must be constructed using the Caputo fractional derivative. For the provided spline function, error bounds were studied and a stability analysis was completed. To consider the numerical explanation for the provided method and compared, three examples were studied. The fractional spline function, which interpolates data, appears to be useful and accurate in solving unique problems, according to the research.
Downloads
Published
How to Cite
License
Copyright (c) 2023 Tikrit Journal of Pure Science
This work is licensed under a Creative Commons Attribution 4.0 International License.
Tikrit Journal of Pure Science is licensed under the Creative Commons Attribution 4.0 International License, which allows users to copy, create extracts, abstracts, and new works from the article, alter and revise the article, and make commercial use of the article (including reuse and/or resale of the article by commercial entities), provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made, and the licensor is not represented as endorsing the use made of the work. The authors hold the copyright for their published work on the Tikrit J. Pure Sci. website, while Tikrit J. Pure Sci. is responsible for appreciate citation of their work, which is released under CC-BY-4.0, enabling the unrestricted use, distribution, and reproduction of an article in any medium, provided that the original work is properly cited.