An Intelligent Gestational Diabetes Mellitus Recognition System Using Machine Learning Algorithms
DOI:
https://doi.org/10.25130/tjps.v28i1.1269Keywords:
Artificial Intelligence, Machine Learning, Clustering, Classification, Gestational Diabetes.Abstract
Diabetes mellitus is also called gestational diabetes when a woman has high blood sugar while she is pregnant. It can show up at any time during pregnancy and cause problems for the mother and baby during or after the pregnancy. If the risks are found and dealt with as soon as possible, there is a chance that they can be reduced. The healthcare system is one of the many parts of our daily lives that are being rethought thanks to the creation of intelligent systems by machine learning algorithms. In this article, a hybrid prediction model is suggested as a way to find out if a woman has gestational diabetes. In the recommended model, the amount of data is reduce by using the K-means clustering method. Predictions are made using a number of classification methods, such as decision tree, random forests, SVM, KNN, logistic regression, and naive bayes. The results show that accuracy goes up when clustering and classification are used together.
Downloads
Published
How to Cite
License
Copyright (c) 2023 Tikrit Journal of Pure Science
This work is licensed under a Creative Commons Attribution 4.0 International License.
Tikrit Journal of Pure Science is licensed under the Creative Commons Attribution 4.0 International License, which allows users to copy, create extracts, abstracts, and new works from the article, alter and revise the article, and make commercial use of the article (including reuse and/or resale of the article by commercial entities), provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made, and the licensor is not represented as endorsing the use made of the work. The authors hold the copyright for their published work on the Tikrit J. Pure Sci. website, while Tikrit J. Pure Sci. is responsible for appreciate citation of their work, which is released under CC-BY-4.0, enabling the unrestricted use, distribution, and reproduction of an article in any medium, provided that the original work is properly cited.