The bulk modulus of β-type Titanium Alloys for Hip and Bone Replacement
DOI:
https://doi.org/10.25130/tjps.v28i1.1266Keywords:
Bulk modulousβ-titanium alloys, biomaterial, hip, bone replacementAbstract
Although aluminum (Al) and vanadium (V) have been shown to be cytotoxic, titanium and its Ti-6AI4V alloy have been utilised extensively as implant materials for many years. This is due to new titanium alloys consisting of non-cytotoxic substances like molybdenum (Mo), tantalum (Ta), niobium (Nb), zirconium (Zr), or tin (Sn) have advanced when treated as a cubic β-phase alloy, which has led to the investigation of Al and V free titanium alloys. When configured as a cubic β-phase alloy, they exhibit abnormal corrosion resistance as well as decreased elasticity moduli that are comparable to the substance of the bone they are repairing.
This work uses synchrotron x-ray diffraction to calculate the unit cell volume of beta-phase gum metal
(Ti–23Nb–0.7 Ta–2Zr–1.2O-TNTZ-O system) at pressures 50, 45, 24, and 40 GPa respectively. The Murnaghan, Viet and Birch-Murnaghan equation of state has been applied using the bulk modulus measurement it was about 88.7GP . Additionally, applying the same technique, the bulk moduli of Ti-7.5Mo-1O, Ti-7.2Mo, and Ti2448 have been determined to be 116.1, 50.2, and 116.2 GPa, respectively. The Ti-7.2Mo system has a below-average bulk modulus when compared to all other alloys. For biomedical applications like hip and human bone replacement, which will be the subject of the study, it would be most appropriate to change the (Ti-xMo-xNb-xTa) alloy and investigate its mechanical properties.
Downloads
Published
How to Cite
License
Copyright (c) 2023 Tikrit Journal of Pure Science
This work is licensed under a Creative Commons Attribution 4.0 International License.
Tikrit Journal of Pure Science is licensed under the Creative Commons Attribution 4.0 International License, which allows users to copy, create extracts, abstracts, and new works from the article, alter and revise the article, and make commercial use of the article (including reuse and/or resale of the article by commercial entities), provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made, and the licensor is not represented as endorsing the use made of the work. The authors hold the copyright for their published work on the Tikrit J. Pure Sci. website, while Tikrit J. Pure Sci. is responsible for appreciate citation of their work, which is released under CC-BY-4.0, enabling the unrestricted use, distribution, and reproduction of an article in any medium, provided that the original work is properly cited.