Strong Essential Submodules And Strong Uniform Modules

Nada Khalid Abdullah

Department of Mathematics, College of Education for Pure Science, University of Tikrit, Tikrit, Iraq

Abstract

A non-zero submodule K of an R-module M is called essential if $K \cap L \neq (0)$ for each non-zero submodule L of M. And an R-module M is called uniform if each non-zero submodule of M is an essential. In this paper we give generalization of essential submodule and uniform module that are strong essential submodule and strong uniform module. A non-zero submodule N of M is called strong essential if $N \cap P \neq (0)$ for each non-zero strongly prime submodule P of M. And an R-module M is called strong uniform if each non-zero submodule of M is a strong essential.

Keywords: Prime submodules , Strongly prime submodules, Essential submodules, Semi-Essential submodules, Uniform module .

Introduction

Let R be a commutative ring with unity and let M be unitary R-module. In this work we assume that every submodule of M contained in strongly prime submodule of M . A non-zero submodule K of M is called essential if $K \cap L \neq (0)$ for e ach non-zero submodule L of M, [9]. And a proper submodule P of M is called prime if for each $m \in M$ and $r \in R$ whenever $rm \in P$, then either $m \in P$ or $r \in [P:M]$, [10] . Abdullah , N. K. (2005) gave in her thesis [1] generalization of essential submodule, she name it semi-essential submodule that is a non-zero submodule N of M is semi-essential if $N \cap P \neq (0)$ for each non-zero prime submodule P of M . A proper submodule B of M is called semi-prime if for each m \in M and r \in R with r^kx \in B, k \in Z⁺, then rx ∈ B , [11] . Ahmed , M. A. (2009) generalize essential submodule to weak essential submodule that is a non-zero submodule W of M is weak essential if $W \cap B \neq (0)$ for each non-zero semi-prime submodule B of M, [6] . A proper submodule P of M is called strongly prime if $I_x^p y \subseteq P$ for x, $y \in M$ implies that either $x \in P$ or $y \in P$, whenever $I_x^p = \{ r \in$ $R: rM \subseteq P + Rx$ }, [11] . A non-zero submodule N of M is called strong essential if $N \cap P \neq (0)$, for each non-zero strongly prime submodule P of M.

An R-module M is called uniform if each non-zero submodule of M is an essential, [5, P.85]. [1] generalize uniform module to semi-uniform module that is an R-module M is called semi-uniform if for each non-zero submodule of M is semi-essential. [6] generalize uniform module to weak uniform module that is an R-module M is called weak uniform if for each non-zero submodule of M is weak essential. In this work we present a strong uniform module concept as a generalization of semi-uniform module, that is a module M is called a strong uniform if each non-zero submodule of it is strong essential. Also we generalize some characterizations and properties of semi-essential submodules to strong essential submodules and semi-uniform modules to strong uniform modules .

S₁: Strong Essential Submodules

In this section we introduce strong essential submodules and give a characterization for strong

essential submodules. Also, we generalize some properties of semi-essential submodules to strong essential submodules . And we study the relation between prime submodule and strongly prime submodule. Recall that a proper submodule B of M is called prime if for each $x \in M$ and $r \in R$ whenever rm \in B, then either x \in B or r \in [B:M], where [B:M] ={r $\in \mathbb{R}$: rM $\subset \mathbb{B}$, [10]. A proper submodule B of M is called semi-prime if for each $x \in M$ and $r \in R$ with $r^{k}x \in B, k \in Z^{+}$, then $rx \in B$, [11]. It s clear that each strongly prime submodule is a prime submodule, but the converse is not always correct . For example; let $p \in \text{spec}$ (R). Then (p,p) is a prime submodule of an R-module R×R, but It s not strongly prime submodule, because $I_{(1,0)}^{(p,p)}(1,0) \subseteq P(1,0) \subseteq (1,0)$, and $(1,0) \notin (p,p)$.

(1-1) : Definition

A non-zero submodule N of M is called strong essential if $N \cap P \neq (0)$ for each non-zero strongly prime submodule P of M.

(1-2) : Examples and Remarks

 $\begin{array}{l} 1/ \mbox{ Let } M=Q \bigoplus {\begin{subarray}{c} @ @ @ @ Q } \end{subarray} Q \end{subarray} and \end{subarray} let N=xQ , where $x=(1,1)$. The only strongly prime submodules of M are $pQ \end{subarray} \mathbb{Q}(0)$ and $(0) \end{subarray} \mathbb{Q}pQ$, where p is a prime number . Then $N \end{subarray} (pQ \end{subarray} \mathbb{Q}(0)) \neq (0) and $N \end{subarray} (0) \end{subarray} \$

2/ Every essential submodules are strong essential submodule . But the converse is not true in general , as we see in the following example .

3/ Let $M = Q \bigoplus_{\square} Q$. If N = Qx, where $x = (1, \frac{1}{2})$, the only strongly prime submodules of M are of the form $pQ \bigoplus (0)$ and $(0) \bigoplus pQ$, where p is a prime number. Then $N \cap (pQ \bigoplus_{\square} (0)) \neq (0)$ and $N \cap ((0) \bigoplus_{\square} pQ) \neq (0)$, hence N is a strong essential submodule of M. But it s not an essential submodule of M, because $N \cap yZ = (0)$, where y = (0,1).

4/ On the other hand , every strong essential submodule is semi-essential submodule . But the converse is not true in general , as we see in the following example

5/ Let $M = R \times R$. If N = Rx, where x = (1,0), the only prime submodule of M is of the form R(p,p), where p is a prime number .Thus N is a semiessential submodule of M, because $N \cap R(p,p) \neq (0)$. But N is not strong essential submodule of M, because $N \cap R(0,p) = (0)$, whenever R(0,p) is strongly prime submodule of M.

Under some conditions we can get strong essential submodules from semi-essential submodules .

Recall that an integral domain R with quotient field K , and a torsion free R-module M . A prime submodule P of M is called strongly prime if for each $y \in K$ and $x \in M_T$, $yx \in P$ gives $x \in P$ or $y \in (P: M)$, whenever $T = R/\{0\}$, [7].

(1-3): Proposition

Let R be an integral domain with quotient field K , and let M be a torsion free R-module . If N is a non-zero submodule of M , then N is a strong essential submodule of M if and only if N is a semi-essential submodule of M .

The following proposition is a characterization of strong essential submodules . Compare with [9] .

(1-4) : Proposition

Let M be an R-module , a non-zero submodule N of M is a strong essential if and only if for each non-zero strongly prime submodule P of M , there exists $x \in P$ and $r \in R$ such that $0 \neq rx \in N$.

Proof : Suppose that for each non-zero strongly prime submodule P of M, there exists $x \in P$ and $r \in R$ such that $0 \neq rx \in N$. Not that $rx \in P$, therefore $0 \neq rx \in N \cap P$. Thus $N \cap P \neq (0)$, implies that N is a strong essential submodule of M.

Conversely ; suppose N is a strong essential submodule of M. Then $N \cap P \neq (0)$ for each non-zero strongly prime submodule P of M, thus there exists $0 \neq x \in N \cap P$. This implies that $x \in N$ and hence $0 \neq 1$. $x \in N$.

(1-5) : Remark

Let M be an R-module and let N_1 and N_2 are submodules of M such that N_1 is a submodule of N_2 . If N_1 is a strong essential submodule of M, then N_2 is strong essential submodule of M.

Proof : Suppose that $N_2 \cap P = (0)$ for some strongly prime submodule P of M . Since N_1 is a submodule of N_2 , thus $N_1 \cap P = (0)$. But N_1 is a strong essential submodule of M , therefore P = (0). Hence N_2 is a strong essential submodule of M.

(1-6) : Proposition

Let M be an R-module and let $N_1 \mbox{ and } N_2$ are submodules of M . Then

1/ If $N_1 {\cap} N_2$ is a strong essential submodule of M , then both N_1 and N_2 are strong essential submodules of M .

2/ If N_1 is an a essential submodule of M and N_2 is a a strong essential submodule of M, then $N_1 \cap N_2$ is also strong essential submodule of M.

Proof: 1/Follows immediately from remark (1-5).

2/ Let P be a strongly prime submodule of M. Since N_2 is a strong essential submodule of M, thus $N_2 \cap P \neq$ (0). And since N_1 an essential submodule of M, then

 $N_1 \cap (N_2 \cap P) \neq (0)$, so $(N_1 \cap N_2) \cap P \neq (0)$. Which implies that $N_1 \cap N_2$ is a strong essential submodule of M.

(1-7) : Corollary

Let M be an R-module and let N_1 and N_2 are submodules of M, such that either $N_1 \subseteq N_2$ or $N_2 \subseteq N_1$. Then $N_1 \cap N_2$ is a strong essential submodule of M if and only if N_1 and N_2 are strong essential submodules of M.

S2: Strong Essential Homomorphisms

This section is devoted to study strong essential homomorphisms, we start this section by the following definition.

(2-1) : Definition

Let M_1 and M_2 are two R-modules . An R-homomorphism $f:M_1\to M_2$ is called strong essential homomorphism if $f(M_1)$ is a a strong essential submodule of M_2 .

(2-2) : Remark

Let M be an R-module and let N be a submodule of M, Then N is a a strong essential submodule of M if and only if the inclusion homomorphism $i: N \to M$ is strong essential homomorphism.

Before we give the following proposition we need the following result .

(2-3) : Lemma

Let M_1 and M_2 are two R-modules and let $f : M_1 \rightarrow M_2$ be an epimorphism . Assume P is a submodule of M_1 such that ker $f \subseteq P$, Then P is a strongly prime submodule of M_1 if and only if f(P) is a strongly prime submodule of M_2 .

Proof : Let P be a strongly prime submodule of M_1 , and let $I_{x_1}^{f(P)} x_2 \subseteq f(P)$, where $x_1, x_2 \in M_2$. It s mean that $(f(P)+Rx_1: M_2) x_2 \subseteq f(P)$. There exists m_1 , $m_2 \in M_1$ such that $f(m_1) = x_1$ and $f(m_2) = x_2$. Implies that $(f(P) + R f(m_1):M_2) f(m_2) \subseteq f(P)$, and there exists $r \in R$ and $y \in P$ such that $(f(y) + rf(m_1)) f(m_2) = f(y)$, implies $(f(y)+f(rm_1))$ $f(m_2)=f(y),$ SO $f(y{+}rm_1)f(m_2){=}f(y)$ and $f((y{+}rm_1)m_2)$ - f(y) = 0 . which is implies $(y+rm_1)m_2 - y \in \text{ker } f$. Since ker $f \subseteq$ P, hence $(y+rm_1)m_2 - y \in P$. And since $y \in P$, thus (P) $(+ Rm_1)m_2 \subseteq P$, it s mean that $I_{m_1}^P m_2 \subseteq P$. And since P is a strongly prime submodule of M₁, then either $m_1 \in P$ or $m_2 \in P$. If $m_1 \in P$, implies $x_1 = f(m_1) \in P$, and if $m_2 \in P$ implies $x_2=f(m_2)\in P$. Therefore f(P) is a strongly prime submodule of M₂.

Conversely; suppose f(P) is a strongly prime submodule of M_2 and $I_{m_1}^P m_2 \subseteq P$, where $m_1, m_2 \in M_1$. It \pm mean that $(P + Rm_1)m_2 \subseteq P$, hence $f((P + Rm_1)m_2) \subseteq f(P)$, and $f(P + Rm_1)f(m_2) \subseteq f(P)$. There exists $x_1, x_2 \in M_2$ such that $x_1 = f(m_1)$ and $x_2 = f(m_2)$. Hence $(f(P) + Rx_1) x_2 \subseteq f(P)$, so $I_{x_1}^{f(P)} x_2 \subseteq f(P)$. Since f(P) is a strongly prime submodule of M_2 , hence either $x_1 \in f(P)$ or $x_2 \in f(P)$. If $x_1 \in f(P)$, implies $f(m_1) \in f(P)$ and $f^{-1}(f(m_1)) \in f^{-1}(f(P))$, thus $m_1 \in P$. And if $x_2 \in f(P)$ implies $f(m_2) \in f(P)$ so $m_2 \in P$. Therefore P is a strongly prime submodule of M_1 . (2-4): Proposition Let M_1 and M_2 are two R-modules, and let $f : M_1 \rightarrow M_2$ be an epimorphism . Then

1/ If N_1 is a strong essential submodule of M_1 , then $f(N_1)$ is a strong essential submodule of M_2 .

2/ If N₂ is a strong essential submodule of M₂, such that ker $f \subseteq P_1$ for each strongly prime submodule P₁ of M₁. Then $f^{-1}(N_2)$ is a strong essential submodule of M₁.

Proof: 1/ Let P_2 be a strongly prime submodule of M_2 , then $f^1(P_2)$ is strongly prime submodule of M_1 (lemma (2-3)). N_1 is a strong essential submodule of M_1 , thus $N_1 \cap f^1(P_2) \neq (0)$, and hence $f(N_1) \cap P_2 \neq (0)$. Therefore $f(N_1)$ is a strong essential submodule of M_2 .

2/ Let $f^1(N_2) \cap P_1 = (0)$, where P_1 is a strongly prime submodule of M_1 . Since ker $f \subseteq P_1$, then $f(P_1)$ is a strongly prime submodule of M_2 (lemma (2-3)). This implies that $N_2 \cap f(P_1)=(0)$. Since N_2 is a strong essential submodule of M_2 , then $f(P_1)=(0)$. Thus P_1 \subseteq ker $f \subseteq f^1(N_2)$, and hence $f^1(N_2) \cap P_1 = (0)$, this implies that $P_1 = (0)$. Therefore $f^1(N_2)$ is a strong essential submodule of M_1 .

Before we give the following theorem , we need the following lemma .

(2-5): Lemma

Let M_1 and M_2 are two R-modules , and let P_2 be a strongly prime submodule of M_2 such that $Hom_R(M_1, P_2) \subseteq Hom_R(M_1, M_2)$. Then $Hom_R(M_1, P_2)$ is a strongly prime submodule of $Hom_R(M_1, M_2)$.

Proof: Let $f_1, f_2 \in \text{Hom}_R(M_1, M_2)$ such that $I_{f_1}^{\text{Hom}R(M_1,P_2)} f_2 \subseteq \text{Hom}_R(M_1,P_2)$. Then for each $x_1 \in M_1$, we get $I_{f_1(x)}^{P_2}f_2(x) \subseteq P_2$. Since P_2 is a strongly prime submodule of M_2 , then either $f_1(x) \in P_2$ or $f_2(x) \in P_2$. If $f_1(x) \in P_2$ implies that $f_1 \in \text{Hom}_R(M_1, P_2)$, and if $f_2(x) \in P_2$ implies that $f_2 \in \text{Hom}_R(M_1, P_2)$. Therefore $\text{Hom}_R(M_1, P_2)$ is a strongly prime submodule of $\text{Hom}_R(M_1, M_2)$.

(2-6): Theorem

Let M_1 and M_2 are two R-modules and let $Hom_R(M_1,N_2)$ be a proper submodule of $Hom_R(M_1,M_2)$ for each submodule N_2 of M_2 . If $Hom_R(M_1,N_2)$ is strong essential submodule of M_2 , then N_2 is strong essential submodule of M_2 .

Proof: Let P_2 be a non-zero strongly prime submodule of M_2 , then by lemma (2-5), we get Hom $_R(M_1, P_2)$ is strongly prime submodule of Hom $_R(M_1, M_2)$. Since Hom $_R(M_1, N_2)$ is strong essential submodule of Hom $_R(M_1, M_2)$, then by proposition (1-4), there exists $0 \neq f \in$ Hom $_R(M_1, P_2)$, and $0 \neq r \in R$ such that $0 \neq rf \in$ Hom $_R(M_1, N_2)$, that is $rf(m) \in N_2$ for each $m \in M_1$. So for each non-zero strongly prime submodule P_2 of M_2 , we find $f(m) \in P_2$ for each $m \in$ M_1 . And $r \in R$ with $0 \neq rf(m) \in N_2$.

(2-7): Corollary

Let M be an R-module and let N be a submodule of M. If $Hom_R(M, N)$ is a strong essential submodule of $Hom_R(M, M)$, then N is a strong essential submodule of M.

S₃: Strong Essential Submodules In Multiplication Modules

Recall that an R-module M is called a multiplication R-module if every submodule N of M is of the form EM for some ideal E of a ring R, [4]. In this section we gives a condition under which a submodule N of a faithful multiplication R-module M becomes strong essential submodule.

Recall that an R-module M is called a faithful if annM = 0, [4]. Recall that if R is an integral domain and K is a quotient field, then the prime ideal B of R is called strongly prime ideal if each x, $y \in K$, and x, $y \in B$, then either $x \in B$ or $y \in B$.

Now, we start this section by the following definition. (3-1) : Definition

A non-zero ideal I of a ring R is called strong essential ideal if $I \cap B \neq (0)$ for each non-zero strongly prime ideal B of R, [8].

Before we give the following proposition, we need the following well-know lemma, which appear in [7, Prop. (2-10)].

(3-2): Lemma

Let R be an integral domain and let M be a faithful multiplication R-module. Then B is a strongly prime ideal of R if and only if BM is a strongly prime submodule of M.

(3-3): Proposition

Let R be an integral domain and let M be a faithful multiplication R-module. N is a submodule of M such that N = IM for some ideal I of R. Then N is a strong essential submodule of M if and only if I is a strong essential ideal of R.

Proof : Let N be a strong essential submodule of M and let $I \cap B=(0)$ where B is a non-zero strongly prime ideal of R. Since M is a multiplication R-module, then $(I \cap B)M=IM \cap BM=(0)$. By lemma (3-2) BM is strongly prime submodule of M, since IM=N is a strong essential submodule of M, thus BM=(0). And since M is a faithful R-module , then B=(0). Therefore I is strong essential ideal of R.

Conversely; let $N \cap P = (0)$ where P is a non-zero strongly prime submodule of M. Since M is a multiplication R-module, then there exists a strongly prime ideal B of R such that P = BM (lemma (3-2)). Hence $N \cap P = IM \cap BM = (I \cap B)M = (0)$. But M is a faithful R-module, thus $I \cap B = (0)$. And since I is a strong essential ideal of R, hence B = (0), whence BM = P = (0). Therefore N is strong essential submodule of M.

Also , we can put another condition to get a strong essential submodule IM of

a multiplication R-module M from strong essential ideal I of R, by the following proposition.

Before we give the following propositions, we need the following well-know lemma which appear in [13, Prop. (1-14)(1)].

(3-4) : Lemma

Let M be a multiplication R-module with $\operatorname{ann}_R M \subseteq B$ and $BM \neq M$ for each strongly prime ideal B of R. If B is a strongly prime ideal of R , then BM is strongly prime submodule of M .

(3-5) : Proposition

Let M be a faithful multiplication R-module with $\operatorname{ann}_R M \subseteq B$ and $BM \neq M$ for each strongly prime ideal B of R. If I is a strong essential ideal of R, then IM is a strong essential submodule of M.

Proof: Let $IM \cap P=(0)$ where P is a non-zero strongly prime submodule of M. Since M is a multiplication R-module, then there exists a strongly prime ideal B of R such that P = BM (lemma (3-4)). Hence $IM \cap P = IM \cap BM = (I \cap B)M = (0)$. Since $ann_RM \subseteq B$, then $I \cap B = (0)$. And since I is a strong essential ideal of R, hence B=(0), whence BM=P=(0). Therefore IM is strong essential submodule of M.

(3-6) : Corollary

Let M be a faithful multiplication R-module with $\operatorname{ann}_R M \subseteq B$ and $BM \neq M$ for each strongly prime ideal B of R, If I is an ideal of R . Then I is a strong essential ideal of R if and only if IM is a strong essential submodule of M.

By [1, prop.(2-1-1)] and prop.(1-3), we can get the following result.

(3-7) : Proposition

Let R be an integral domain with quotient field K , and let M be a torsion free faithful multiplication R-module. If N is a submodule of M such that N = IM for some ideal I of R . Then N is a strong essential submodule of M if and only if I is a strong essential ideal of R .

(3-8) : Lemma [13, Th. (1-12)]

Let M be a multiplication R-module , and let P be a submodule of M . Then P is a strongly prime submodule of M if and only if (P:M) is strongly prime ideal of R .

(3-9) : Proposition

Let R be an integral domain, and M is a faithful multiplication R-module. N is a submodule of M. Then N is a strong essential submodule of M if and only if (N:(x)) is a strong essential ideal of R, for each $x \in M$.

Proof : Let N be a strong essential submodule of M. By prop.(3-3) (N:M) is a strong essential ideal of R. But for each $x \in M$, (N:M) \subseteq (N:(x)). Since M is a multiplication R-module, thus (N:M)M \subseteq (N:(x))M , [4]. This implies that (N:(x))M is strong essential submodule of M (remark (1-5)). Hence (N:(x)) is strong essential ideal of R, (prop,(3-3)).

Conversely ; let (N:(x)) is strong essential ideal of R, for each $x \in M$, and let B be a non-zero strongly prime ideal of R. Hence $(N:(x)) \cap B \neq (0)$, by lemma (3-2) we get BM is strongly prime submodule of M, Since M is a multiplication R-module, then $(N:(x))M \cap BM \neq (0)$. Thus $N \cap BM \neq (0)$ that is N is a strong essential submodule of M.

By the same way we can prove the following proposition .

(3-10): Proposition

Let M be a faithful multiplication R-module with $\operatorname{ann}_R M \subseteq B$ and $BM \neq M$ for each strongly prime ideal B of R. If N is a submodule of M. Then N is a strong essential submodule of M if and only if (N:(x)) is strong essential ideal of R, for each $x \in M$.

From propositions (3-3) and (3-9) , we have the following theorem .

(3-11) : Theorem

Let R be an integral domain and let M be a faithful multiplication R-module. If N is a submodule of M such that N = IM for some ideal I of R. Then the following statements are equivalent.

 $1/\,N$ is a strong essential submodule of M .

2/ I is a strong essential ideal of R.

3/ (N:(x)) is a strong essential ideal of R , for each $x{\in}M$.

Proof : (1) \Rightarrow (2) By prop. (3-3).

 $(2) \Rightarrow (3)$ Let I be a strong essential ideal of R, since M is a faithful multiplication R-module, then I = (IM:M), [7]. But (IM:M) \subseteq (IM:(x)) for each x \in M, and (IM:M) is strong essential ideal of R, also we consider (IM:(x)) is strong essential ideal of R (remark (1-5)). Thus (N:(x)) is strong essential ideal of R.

 $(3) \Rightarrow (1)$ By prop. (3-9).

From propositions (3-5) and (3-10), we have the following theorem .

(3-12) : Theorem

Let M be a faithful multiplication R-module with $ann_RM \subseteq B$ and $BM \neq M$ for each strongly prime ideal B of R. If N is a submodule of M such that N = IM for some ideal I of R. Then the following statements are equivalent.

 $1/\,N$ is a strong essential submodule of M .

2/ I is a strong essential ideal of R.

3/ (N:(x)) is a strong essential ideal of R, for each $x{\in}M$.

The proof is similar to the proof of theorem (3-11), hence we omitted.

S₄ : Strong Uniform R-modules

Recall that a non-zero module M is called uniform if every non-zero submodule of M is an essential, [3, p. 85]. Abdullah, N. K. generalize uniform module, she name it semi-uniform module that is an R-module M in which every non-zero submodule is semiessential, [1]. In this section, we introduce another generalization of uniform module to strong uniform modules.

(4-1): Definition

A non-zero R-module M is called strong uniform if each non-zero submodule of M is strong essential . And a ring R is called strong uniform if each non-zero ideal of R is strong essential .

The following theorem gives a relation between strong uniform module and strong uniform ring .

(4-2) : Theorem

Let R be an integral domain and let M be a faithful multiplication R-module. Then M is strong uniform R-module if and only if R is strong uniform ring.

Proof : Let M be a strong uniform R-module, and let I be an ideal of R such that $I \cap B = (0)$ for each strongly prime ideal B of R. Since M is a multiplication R-module, then $(I \cap B)M = (0)$, [2, prop.(1-3), P.10], so IM \cap BM = (0). By lemma (3-2) we get BM is a strongly prime submodule of M. But M is a strong uniform R-module, hence IM is a strong essential submodule of M. Therefore BM = (0), and since M is a faithful R-module, then B = (0). Thus I is a strong essential ideal of R, Whence R is strong uniform ring.

Conversely; let R be a strong uniform ring, and let N be a submodule of M such that $N \cap P = (0)$ for each strongly prime submodule P of M. Thus $(N \cap P:M) =$ (0), so (N:M) \cap (P:M) = (0), but (P:M) strongly prime ideal of R (lemma (3-8)). Since R is strong uniform ring, then (N:M) is strong essential ideal of R . Hence (P:M) = (0), which implies that P = (0), that is N is strong essential submodule of M. Therefore M is strong uniform R-module.

(4-3): Proposition

Let M_1 and M_2 are two R-modules , and let $f : M_1$ \rightarrow M₂ be an epimorphism . Then

1/ If M_1 is strong uniform R-module , then M_2 is also strong uniform R-module .

2/ If M_2 is strong uniform R-module such that ker f \subseteq P for each strongly prime submodule P of M_1 , then M₁ is strong uniform R-module .

Proof:

1/ Let N_2 be a submodule of M_2 , then $f^{-1}(N_2)$ is a submodule of M_1 . Since M_1 is strong uniform Rmodule, thus $f^{-1}(N_2)$ is a strong essential submodule of M₁. By prop. (2-4) (1), we get $f(f^{-1}(N_2)) = N_2$ is a strong essential submodule of M_2 . Therefore M_2 is strong uniform R-module .

2/ / Let N₁ be a submodule of M₁, then f(N₁) is a submodule of M2. Since M2 is strong uniform Rmodule, thus f(N₁) is a strong essential submodule of M₂. By prop. (2-4) (2), we get $f^{-1}(f(N_1)) = N_1$ is a strong essential submodule of M₁. Therefore M₁ is strong uniform R-module .

(4-4): Corollary

Let M_1 and M_2 are two R-modules, and let f: M_1 \rightarrow M₂ be an epimorphism , such that ker f \subset P for

References

Abdullah, N. K. (2005), Semi-essential 1/ submodules and semi-uniform modules , M. Sc. Thesis, Univ. of Tikrit.

2/ Ahmed, A. A. (1992), On submodules of multiplication modules, M. Sc. Thesis , Univ. of Baghdad .

3/ Ahmed, M. A. (2009), Weak essential submodules , Dep. of Math. Um-Salama Sci. Journal, Vol. 6 (1), p. 214-221.

4/ Athab, E. A. (1996), Prime and semi prime submodules, M. Sc. Thesis, Univ. of Baghdad.

5/ Dauns, J. and McDonald, B. R. (1980), Prime modules and one sided ideals in ring theory and Algebra III, Proceedings of the third Oklahoma conference: 301-344.

each strongly prime submodule P of M_1 . Then M_1 is strong uniform R-module if and only if M₂ is strong uniform R-module .

Recall that an R-module M is called pseudo valuation module (provided PVM), if every prime submodule of M is strongly prime submodule, [7].

(4-5): Remark

Let M be a pseudo valuation module. If M is a semiuniform R-module , then M is strong uniform Rmodule .

Recall that a trace of R-module M is defined by T(M) $=\sum_{f \in M^*} f(M)$ [14], where $M^* = Hom(M,R)$.

Recall that an R-module M is called torsion less module if \cap ker f =(0), where f \in Hom(M,R) [9].

We end this section by the following proposition, compare with [1,prop.(2-3-11)].

(4-6): Proposition

Let M be a faithful multiplication R-module . And for each $f \in M^*$, f is an onto and ker $f \subset P$ for each strongly prime submodule P of M . If T(M) is a strong uniform module , then M is strong uniform module .

Proof : Let N be a non-zero submodule of M, and let P be a strongly prime submodule of M, such that $N \cap P = (0)$. Since M is multiplication R-module. Thus $(N:M)M \cap (P:M)M = (0)$, and then $(N:M) \cap (P:M) =$ (0). Then M is torsion less module [9], so $\bigcap_{f \in M^*} \ker f = (0)$, and there are f, g $\in M^*$ such that $f(N)\neq(0)$ and $g(P)\neq(0)$. In fact if $f(N)\neq(0)$ for each f \in M^{*}, then N $\subseteq \bigcap_{f \in M^*} \ker f = (0)$, which is a contradiction, similarly $g(P) \neq (0)$. Note that g(P) is strongly prime ideal of R (lemma(2-3)), and is strongly prime ideal of T(M).

 $(N:M) \supseteq (N:M)f(M) = f((N:M)M) = f(N) \subseteq T(M),$

and $(P:M) \supset (P:M)g(M) = g(P:M)M = g(P) \subset T(M)$. Then $f(N) \cap g(P) \subset (N:M) \cap (P:M) = \{(N \cap P):M\} =$ (0:M) = annM.

Hence $f(N) \cap g(P) = (0)$. This is a contradiction, whence $N \cap P \neq (0)$. Therefore N is a strong essential submodule of M, and hence M is a strong uniform module .

6/ Elbast, A. and Smith, P. F. (1988), Multiplication modules, Comm. Algebra Vol. 16: 755-774.

7/ Goodearl, K. R. (1976), Ring theory, Marcel Dekker, New York.

8/ Hedstron, J. R. and Houston, E. G. (1978), Pseudo valuation domains, Pac J. of Math., 75(1): 137-147

9/ Kasch, F. (1982), Modules and rings, Academic press, London .

10/Lu, C. P. (1984), Prime submodules of modules, Comment Math. Univ. St. Paul. 33: 61-69.

11/ Moghaderi , J. and Nekooei , R. (2010) , Strongly prime submodules and pseudo-valuation modules, Rec. 31 May, com. Math. Subject class.: 31c13c99.

14/ Zimmermann Huisgen, B. (1975), Endomorphism

rings of self generators, pacific, J. Math. 61: 587-602

12/ Naghipour, A. R. (2000), <u>Strongly prime</u> submodules, Dep. Of Math. Univ. of Shahrekord, Iran, P. 1-9.
13/ Naoum, A. G. and Hadi, I. M. A. (2009), <u>On</u>

strongly prime submodules, Iraqi Journal of science, P. 35-40.

المقاسات الجزئية الجوهرية بقوة والمقاسات المنتظمة بقوة

ندى خالد عبد الله الدبان

قسم الرياضيات ، كلية التربية للعلوم الصرفة ، جامعة تكريت ، تكريت ، العراق

الملخص

المقاس الجزئي الغير صفري K من المقاس M يسمى بالمقاس الجزئي الجوهري اذا كان لكل مقاس جزئي L من M . ويسمى المقاس M مقاس منتظم منتظم اذا كان كل (0) ≠ L ∩ L مقاس جزئي من M جوهري بقوة ومقاس منتظم اذا كان كل (0) ≠ L ∩ L مقاس جزئي من M جوهري بقوة لكل مقاس جزئي اولي بقوة P من M . كما عرف الباحث المقاس N بقوة , حيث عرف المقاس الجزئي الغير صفري N بالمقاس الجوهري بقوة لكل مقاس جزئي اولي بقوة P من M . كما عرف الباحث المقاس N بقوة , حيث عرف المقاس الجزئي الغير صفري N بالمقاس الجوهري بقوة لكل مقاس جزئي اولي بقوة P من M . كما عرف الباحث المقاس N بقوة , حيث عرف المقاس الجزئي الغير صفري N بالمقاس الجوهري بقوة لكل مقاس جزئي اولي بقوة P من M . كما عرف الباحث المقاس N بقوة , حيث عرف المقاس الجزئي الجوهري الى (0) ≠ P ∩ اذا كان M بانه منتظم بقوة اذا كان كل مقاس جزئي من M جوهري بقوة . ثم عمم بعض صفات المقاس الجزئي الجوهري الى المقاس الجزئي الجوهري الى المقاس الجزئي الجوهري بقوة ، فضلا عن ذلك قدمنا تعميم لبعض خصائص المقاس المنتظم الى المقاس المنتظم بقوة ، فضلا عن ذلك قدمنا تعميم لبعض خصائص المقاس المنتظم الى المقاس المنتظم بقوة ، فضلا عن ذلك قدمنا تعميم لبعض خصائص المقاس المنتظم الى المقاس المنتظم بقوة ، فضلا عن ذلك قدمنا تعميم لبعض خصائص المقاس المنتظم الى المقاس المنتظم بقوة ، فضلا عن ذلك قدمنا تعميم لبعض خصائص المقاس المنتظم الى المقاس المنتظم بقوة ، وذلك بوضع بعض المقاس الجزئي الجوهري بقوة ، فضلا عن ذلك قدمنا تعميم لبعض خصائص المقاس المنتظم الى المقاس المنتظم بقوة ، فضلا عن ذلك قدمنا تعميم لبعض خصائص المقاس المنتظم الى المقاس المنتظم بقوة ، وذلك بوضع بعض المؤرط الواجب توفرها للحصول على التعميم.

117