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ABSTRACT 

This paper considers a bi-criteria planning problems on a 

single machine, with the goal of minimizing total square time 

duration and maximizing earliness. To solve this problem we 

have to find the Pareto set. We introduced a strong relation 

between lower bound, upper bound  of the problem and the 

number of efficient solutions via a theorem which shows also 

that the lower bound is near to optimal solution if the number 

of efficient solutions is small.   

1. Introduction 
During recent years many approaches for solving 

multi-objective scheduling have been analyzed [7]. 

T'kindt and Billaut offered a comprehensive 

assessment of the over a hundred multi-objective 

scheduling problems, They concentrated on single-

machine scheduling, parallel-machine scheduling, 

flow shop scheduling, and fuzzy scheduling issues 

[13]. The hierarchical problems and the simultaneous 

problems are two alternative structures of bi-criteria 

scheduling issues. Simultaneous difficulties lead to 

the discovery of a collection of non-dominated 

solutions (the Pareto set), which gives the decision 

maker more information about which solution to 

choose [11]. Several researchers paid attention on 

finding Pareto set for bi-criteria problems. 

Hoogeveen and Velde [5] simultaneously decreased 

maximum completion time and cost. Lazarev et al. 

the Pareto set was discovered for jobs with similar 

processing times according to the criteria Lmax and 

Cmax [9]. Nguyen and Bao used a genetic algorithm 

to tackle the mixed store scheduling issue [12]. For 

the scheduling problems which involving quadratic 

measure of performance, there are relatively little 

works done in this form. Townsend posed an issue 

using a quadratic optimization method for completion 

times. [14]. Bagga and Kalra modified in some sense 

the Townsend's algorithm [2]. Gupta and Sen 

improved branching procedure of quadratic penalty 

function of completion times [3]. Abdul-Razaq and 

Kawi combined their efforts to solve a function of 

square completion time and high tardiness [1]. 

The total square completion time and greatest earliest 

completion time were the two criteria we focused on 

in this paper  ∑ 𝑐𝑗
2𝑛

𝑗=1  and Emax. This problem was 

solved by Hoogeveen and Van de Velde 

simultaneously and they found all the efficient 

solutions of the problem [4].  We introduced a 

theorem which found a strong relation between 

optimal solution, lower bound and number of 

efficient solutions. This theorem is also can be 

https://doi.org/10.25130/tjps.v27i6.764
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applied for all the problems that have the same 

structure. 

2. Fundamental Ideas and Definitions 
We describe the following in this section: 

N: set of jobs {1, ..., n}, 

Pj: processing time for job j,  

dj: due date for job j, 

cj: completion time for job j, 

Ej: earliness of job j, Ej = dj- cj, 

MST: (minimal slack periods) Minimum slack times 

are sequenced in a non-descending order sj, where sj 

= dj - pj, 

SPT: jobs with the quickest processing time are 

ordered in non-descending order by pj. 

LB: A value of the objective function that is less than 

or equal to the optimal value is known as the (lower 

bound), 

UB: (upper bound) an objective function value that is 

more than or equal to the optimal value, 

opt: optimal value. 

Definition (1): [1]. A schedule S is said to be efficient 

( Pareto optimal) if there does not exist another 

schedule S
*
 

satisfying  fi(S
*
) ≤ fi(S) , i= 1, 2, ..., k  with at least 

one of the above holding as a strict inequality. 

Otherwise S is said to be dominated by S
*
. 

We will analyze a bi-criteria Problem with scheduling 

a single machine, with complete square completion 

times as the performance metric ∑ 𝑐𝑗
2𝑛

𝑗=1  and 

maximum cost fmax. i.e., the issue is in simultaneous 

form. The cost function f may be regular or irregular 

function. The issue is as described in the following: 

 Assume n jobs (j=1, ..., n( must be scheduled on a 

single machine which can only handle one task at a 

time. A positive process time is required for each job 

pj and has a due date dj. The maximum cost function 

in this paper is maximum earliness Emax. 

3. Problem Approaches for Multi-Criteria 

Scheduling 
In scheduling problems multi-criteria relates to the 

issue in which there are more than one performance 

criteria. The hierarchical and simultaneous problems 

are two sorts of issues. One of the criteria is regarded 

a fundamental criterion in the hierarchical scenario, 

while the other is called a secondary criterion, 

whereas in the simultaneous case both criteria have 

the same importance, and in this case the solution 

leads to generate all the efficient solutions. Lee and 

Vairaktarakis [10] reviewed computational 

complexity results of hierarchical minimization 

problems. Hoogeveen [11] introduced a survey on 

multi-criteria scheduling problems containing 

simultaneous approximation. Hoogeveen and Van de 

Velde [5] solved a simultaneous minimization 

problem in a polynomial time. It's important to 

mention that the specific instance of the simultaneous 

scenario 1// F(f, g)  is  hierarchical scheduling 

problem 1// Lex (f, g)  Where f is the fundamental 

criterion and the secondary criterion is g, and the 

simultaneous case is likewise NP-hard if the 

hierarchical issue is NP-hard. 

4. Pareto Set and Optimal Solution 
The Pareto set for the simultaneous situation was 

discovered by Hoogeveen and Van de Velde [6] 1// F 

(∑ 𝑐𝑗,
    𝑛

𝑗=1 𝐸𝑚𝑎𝑥  ), By employing a genetic algorithm, 

Kurz and Canterbury [8] discovered the Pareto set for 

the similar problem. 

We will give a theorem that finds a relation between 

the Pareto set, The optimal solution, as well as the 

lowest bounds for total square completion time and 

greatest earliness. It is important to mention that this 

theorem can be applied to all the problems in this 

structure, this means the bi-criteria problems in 

simultaneous case with 𝑓𝑚𝑎𝑥 Here in this paper    

𝑓𝑚𝑎𝑥 = 𝐸𝑚𝑎𝑥 . 

Let the lower bound 𝐿𝐵 = ∑ 𝑐𝑗
2𝑁

𝑗=1 (𝑆𝑃𝑇) +

𝐸𝑚𝑎𝑥(𝑀𝑆𝑇) and the upper 

bound 𝑈𝐵 = ∑ 𝑐𝑗
2𝑁

𝑗=1 (𝑆𝑃𝑇) + 𝐸𝑚𝑎𝑥(𝑆𝑃𝑇). 

Theorem 4.1: 

There exists an integer M and non-negative such that 

𝐿𝐵 + 𝑀 = 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 and 𝑀 ∈ [𝑁1 −1, 𝑁2 +
1]  where 𝑁1  = number of effective solutions and 

𝑁2 = 𝐸𝑚𝑎𝑥(𝑆𝑃𝑇)-𝐸𝑚𝑎𝑥(𝑀𝑆𝑇). 

Proof: 

Since LB is less the optimal value, so there exists an 

integer M and non-negative so that 𝐿𝐵 + 𝑀 =
𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 The first section of the theorem is 

proved by this. It is still to demonstrate M ∈ [ N1-1, 

N2+1] or to demonstrate   N1-1 ≤ 𝑀 ≤  N2+1.  We 

have M = optimum rate - LB ≤ UB - LB 

=  ∑ 𝑐𝑗
2𝑁

𝑗=1 (𝑆𝑃𝑇) + 𝐸𝑚𝑎𝑥(𝑆𝑃𝑇) -∑ 𝑐𝑗
2𝑁

𝑗=1 (𝑆𝑃𝑇) −

 𝐸𝑚𝑎𝑥(𝑀𝑆𝑇)  

= 𝐸𝑚𝑎𝑥(𝑆𝑃𝑇) - 𝐸𝑚𝑎𝑥(𝑀𝑆𝑇) =  𝑁2 ≤  𝑁2 + 1. 

Hence 𝑀 ≤  𝑁2 + 1.  

To prove  𝑁1 − 1 ≤ 𝑀 we will use mathematical 

induction on 𝑁1 .  If  𝑁1 = 1 ,   That seems to be, 

there is just one effective solution, SPT. then M =  

∑ 𝑐𝑗
2𝑁

𝑗=1 (𝑆𝑃𝑇) + 𝐸𝑚𝑎𝑥(𝑆𝑃𝑇) -∑ 𝑐𝑗
2𝑁

𝑗=1 (𝑆𝑃𝑇) −

𝐸𝑚𝑎𝑥(𝑀𝑆𝑇) =0, because 𝐸𝑚𝑎𝑥(𝑆𝑃𝑇)_ 𝐸𝑚𝑎𝑥(𝑀𝑆𝑇) 

=0. 

This is a special case where the SPT sequence is the 

same as MST sequence and M ∈ [0, 1]. Thus  

𝑁1 − 1  ≤ 𝑀 ≤   𝑁2 + 1], As a result, the theorem is 

correct for   𝑁1 = 1. 

If  𝑁1 = 2,  that is, SPT and  are the only two 

effective options, say. Since 𝑁1 = 2, so 𝑁1 − 1 = 1. 

The two options are as follows: 

a- If   SPT is optimal then   ∑ 𝑐𝑗
2𝑁

𝑗=1 (𝑆𝑃𝑇) +

𝐸𝑚𝑎𝑥(𝑆𝑃𝑇) − ∑ 𝑐𝑗
2𝑁

𝑗=1 (𝑆𝑃𝑇) − 𝐸𝑚𝑎𝑥(𝑀𝑆𝑇), implied 

that  

𝐸𝑚𝑎𝑥(𝑆𝑃𝑇)_ 𝐸𝑚𝑎𝑥(𝑀𝑆𝑇) ≥ 1= 𝑁1 − 1.   

b- If    is optimal then ∑ 𝑐𝑗
2𝑁

𝑗=1 () + 𝐸𝑚𝑎𝑥() 

− ∑ 𝑐𝑗
2𝑁

𝑗=1 (𝑆𝑃𝑇) − 𝐸𝑚𝑎𝑥(𝑀𝑆𝑇)  ≥ 1, 

because  ∑ 𝑐𝑗
2𝑁

𝑗=1 () − ∑ 𝑐𝑗
2𝑁

𝑗=1 (𝑆𝑃𝑇) ≥ 1.  Thus 

𝑁1 − 1 ≤ 𝑀 ≤  𝑁2 + 1   and hence the theorem is 

true for 𝑁1 = 2 .  
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If   𝑁1 = 3 , that is, SPT,   and 1  are the three most 

efficient solutions, say.  

Since  𝑁1 = 3 , 𝑠𝑜 𝑁1 − 1 = 2.. The three cases are 

as follows: 

a- If   SPT is optimal then  ∑ 𝑐𝑗
2𝑁

𝑗=1 (𝑆𝑃𝑇) +

𝐸𝑚𝑎𝑥(𝑆𝑃𝑇) – ∑ 𝑐𝑗
2𝑁

𝑗=1 (𝑆𝑃𝑇) − 𝐸𝑚𝑎𝑥(𝑀𝑆𝑇), implies 

that  

𝐸𝑚𝑎𝑥(𝑆𝑃𝑇) – 𝐸𝑚𝑎𝑥(𝑀𝑆𝑇) ≥ 2 = 𝑁1 − 1.   

b- If    is optimal then  𝑀 = ∑ 𝑐𝑗
2𝑁

𝑗=1 () + 𝐸𝑚𝑎𝑥() 

– ∑ 𝑐𝑗
2𝑁

𝑗=1 (𝑆𝑃𝑇) − 𝐸𝑚𝑎𝑥(𝑀𝑆𝑇),  implies that 

∑ 𝑐𝑗
2𝑁

𝑗=1 () − ∑ 𝑐𝑗
2𝑁

𝑗=1 (𝑆𝑃𝑇) + 𝐸𝑚𝑎𝑥() 

−𝐸𝑚𝑎𝑥(𝑀𝑆𝑇) ≥ 1 + 1 = 2 = 𝑁1 − 1. 

c- If 1 is optimal then 𝑀 = ∑ 𝑐𝑗
2𝑁

𝑗=1 (1) +

𝐸𝑚𝑎𝑥(1) – ∑ 𝑐𝑗
2𝑁

𝑗=1 (𝑆𝑃𝑇) − 𝐸𝑚𝑎𝑥(𝑀𝑆𝑇),  implies 

that 

∑ 𝑐𝑗
2𝑁

𝑗=1 (1) – ∑ 𝑐𝑗
2𝑁

𝑗=1 (𝑆𝑃𝑇) ≥ 2.  So, 𝑁1 − 1 ≤

𝑀 ≤  𝑁2 + 1  as a result, the theorem is correct for 

𝑁1 = 3. 
Assume the theorem is correct for 𝑁1 = 𝑘, that is, for 

the k efficient solutions, the theorem holds true SPT, 

,  1, ... ,  𝑘−2 . Let  𝑁1 = 𝑘 + 1 ، this implies, 

there are 𝑘 + 1  solutions which are effective. If 

either of the first k efficient approaches is the 

optimal, as well as the theorem is correct, then for  

𝑁1 = 𝑘  we obtain 𝑁1 − 1 ≤ 𝑀  
and hence 𝑁1 − 1 ≤ 𝑀 ≤  𝑁2 + 1 .  If  𝑘−1  final 

effective solution is optimal then 

𝑀 = ∑ 𝑐𝑗
2𝑁

𝑗=1 (𝑘−1) + 𝐸𝑚𝑎𝑥(𝑘−1) 

– ∑ 𝑐𝑗
2𝑁

𝑗=1 (𝑆𝑃𝑇) − 𝐸𝑚𝑎𝑥(𝑀𝑆𝑇), implies that  

∑ 𝑐𝑗
2𝑁

𝑗=1 (𝑘−1) + 𝐸𝑚𝑎𝑥(𝑘−1) – ∑ 𝑐𝑗
2𝑁

𝑗=1 (𝑆𝑃𝑇) −

𝐸𝑚𝑎𝑥(𝑀𝑆𝑇) ≥ 𝑘.  Thus M ∈ [ N1-1, N2+1]   the 

theorem is correct for 𝑁1 = 𝑘 + 1. 

4.1 Illustrated Example 

Consider the following example with three jobs 

j 1 2 3 

pj 2 1 5 

dj 1 6 12 

At first we find all the possible sequences for 3 jobs 

which are 3! = 6. The results are as follows: 

 

Sequences Note 
∑ cj

2
N

j=1
 

Emax 
∑ cj

2
N

j=1
+ Emax 

Efficient solutions 

(1, 2, 3) MST-rule 77 4 81 Efficient 

(1, 3, 2)  117 5 122  

(2, 1, 3) SPT-rule 74 6 80 Efficient and optimal 

(2, 3, 1)  101 6 107  

(3, 1, 2)  138 7 145  

(1, 2, 3)  125 7 132  
  

Here, the optimal solution is the sequence ((2, 1, 3) 

with the cost 80.  To use the theorem we find 

LB = ∑ cj
2N

j=1 (SPT) + Emax(MST) = 74 + 4 = 78 

UB = ∑ cj
2N

j=1 (SPT) + Emax(SPT) = 74 + 6 = 80 

N2  =  Emax(SPT) -Emax(MST) = 6 – 4 = 2 

N1 = number of efficient solution -1 = 2 – 1 = 1, so 

M ∈ [N1 −1, N2 + 1] = [0, 2]. Therefore M = 2 

because LB + 2 = 80. 
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