Topological Features of \textit{ic}- Open Sets

Beyda S. Abdullah1, Sami Abdullah Abed2, Amir A. Mohammed1

1Department of Mathematics, College of Education for Pure Sciences, University of Mosul, Mosul, Iraq
2Department of Statistics, College of Administration and Economics, University of Diyala, , Diyala, Iraq

\textbf{ARTICLE INFO.}

\textbf{Article history:}
- Received: 9 / 9 / 2022
- Accepted: 16 / 10 / 2022
- Available online: 25 / 12 / 2022

\textbf{Keywords:} \textit{ic}-open sets; \textit{ic}-closure; \textit{ic}-interior; \textit{ic}-derived; \textit{ic}-boundary; \textit{ic}-frontier; \textit{ic}-continuous mappings; \textit{ic}-open mappings; \textit{ic}-irresolute mappings; \textit{ic}-totally continuous mappings; \textit{ic}-homeomorphism.

\textbf{Corresponding Author:}
Name: Beyda S. Abdullah
E-mail:
Baedaq419@unmosul.edu.iq
samiaabed@uodiyala.edu.iq
amirabdullah@uomosul.edu.iq
Tel:

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure.png}
\caption{Figure Caption}
\end{figure}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
Column 1 & Column 2 & Column 3 \\
\hline
Data 1 & Data 2 & Data 3 \\
\hline
\end{tabular}
\caption{Table Caption}
\end{table}

\section{ABSTRACT}

\section{1. Introduction}

Askandar in [2] using the idea of \textit{ic}-open sets, he introduces and examines the topological features of \textit{ic}-derivatives, \textit{ic}-terms and \textit{ic}-set outward appearances. Using \textit{ic}-open sets, we introduce and investigate the same notions in this research. a portion \textit{H} of \textit{X} is known as \textit{ic}-open set[1] if there exists a closed set \textit{F} = \emptyset, \textit{X} \in \tau^i such that: \textit{F} \cap \textit{H} \subseteq \text{Int}(\textit{H}), where \text{Int}(\textit{H}) denotes the interior points of \textit{H} and \tau^c denotes the family of closed sets. An \textit{ic}-closed set is the complement of an \textit{ic}-open set. We denote the family of \textit{ic}-open set in (\textit{X}, \tau) by \tau^i. Let(\textit{X}, \tau^i) be a topological space. This property allows us to prove similar properties \textit{ic}-open set. Also, we define \textit{ic}-continuous mappings, \textit{ic}-open mappings, \textit{ic}-totally continuous mappings, \textit{ic}-homeomorphism and investigate some properties of these mappings. The topological spaces (\textit{X}, \tau) and (\textit{Y}, \sigma) are denoted here by \textit{X} and \textit{Y}, respectively, topological spaces, open sets (as opposed to closed sets) by (os), (cs), TS. Throughout this paper, topological spaces are referred to as (\textit{X}, \tau) and (\textit{Y}, \sigma). \text{Cl}(\textit{H}) and \text{Int}(\textit{H}) denote the closure and interior of a space's subset \textit{H}, respectively. The following definitions come to mind; they are helpful in the follow-up.

\textbf{Definition 1.1.} A mapping \textit{f}: \textit{X} \rightarrow \textit{Y} is named
1. Continuous denoted by (\textit{comm}) [4] if \textit{f}^{-1}(\textit{U}) is (os) in \textit{X} for each (os) \textit{U} in \textit{Y}.
2. totally -continuous is denoted by (t \textit{comm}) if [4] \textit{f}^{-1}(\textit{U}) is (cl-os) in \textit{X} for each (os) \textit{U} in \textit{Y}.
3. \textit{ic-} continuous is denoted by (\textit{ic-} \textit{comm}) if [1]\n
\(f^{-1}(U) \) is (\textit{ic-os}) in \(X \) for each (os) \(U \) in \(Y \).

\textbf{Theorem 1.2.} [1]

1. Each (os) in TS is (\textit{ic-os}).
2. Each (\textit{comm}) is (\textit{ic-comm}).

\textbf{2. Applications of \textit{ic-} Open Sets.}

\textbf{Definition 2.1.} Assume \(X \) be a TS and let \(H \subseteq X \). The \textit{ic-} interior of \(H \) is defined as the union of all (\textit{ic-} os) in \(X \) content in \(H \), and is denoted by \(\text{Int}_i(H) \). It is clear that \(\text{Int}_i(H) \) is (\textit{ic-os}) for any subset \(H \) of \(X \).

\textbf{Proposition 2.2.} Assume \((X, \tau)\) is a TS and if \(H \subseteq K \subseteq X \). Then
1. \(\text{Int}_i(H) \subseteq \text{Int}_i(K) \);
2. \(\text{Int}_i(H) \subseteq H \);
3. \(H \) is \textit{ic-} open iff \(H = \text{Int}_i(H) \).

\textbf{Definition 2.3.} Assume \((X, \tau)\) be a TS and let \(H \subseteq X \). The \textit{ic-} closer of \(H \) is defined as \(\text{Int}_i(H) \). The intersection of all (\textit{ic-} os) in \(X \) containing \(H \), and is denoted by \(\text{CL}_i(H) \). It is clear that \(\text{CL}_i(H) \) is (\textit{ic-os}) for any subset \(H \) of \(X \).

\textbf{Proposition 2.4.} Assume \((X, \tau)\) be a TS and if \(H \subseteq K \subseteq X \). Then
1. \(\text{CL}_i(H) \subseteq \text{CL}_i(K) \);
2. \(H \subseteq \text{CL}_i(H) \);
3. \(H \) is \textit{ic-} closed if and only if \(H = \text{CL}_i(H) \).

\textbf{Example 2.5.} If \(X = \{1, 3, 5\} \) and \(\tau = \{\emptyset, X, \{1\}, \{1, 3\}\} \) Then
\(\tau^i = \{\emptyset, X, \{1\}, \{1, 3\}\} \)
Let \(H = \{3\} \), \(K = \{1, 3\} \) and \(\{3\} \subseteq \{1, 3\} \subseteq X \). Then
1. \(\text{Int}_i(H) = \{3\} \subseteq \text{Int}_i(K) = \{1, 3\} \);
2. \(\text{Int}_i(H) = \{3\} \subseteq H = \{3\} \);
3. \(H \) is \textit{ic-} open if and only if \(H = \{3\} = \text{Int}_i(H) = \{3\} \).

\(C(\tau^i) = \{\emptyset, X, \{3\}, \{1, 5\}, \{5\}\} \)
Let \(H = \{3\} \), \(K = \{1, 3\} \) and \(\{3\} \subseteq \{1, 3\} \subseteq X \). Then
1. \(\text{CL}_i(H) = \{3\} \subseteq \text{CL}_i(K) = X \);
2. \(H = \{3\} \subseteq \text{CL}_i(H) = \{3\} \);
3. \(H = \{3\} \) is \textit{ic-} closed if and only if \(H = \{3\} = \text{CL}_i(H) = \{3\} \).

\textbf{Definition 2.6.} Let \(H \) be a subset of a TS \(X \). A point \(n \in X \) is named \textit{ic-} limit point of \(H \) if it satisfies the following assertion:
\((\forall G \in \tau^i) (n \in G \Rightarrow G \cap (H(n)) \neq \emptyset) \)
The set of all \textit{ic-} limit points of \(H \) is named \textit{ic-derived} set of \(H \) and is denoted by \(\text{D}_i(H) \) Note that for a subset \(H \) of \(X \), a point \(n \in X \) is not \textit{ic-} limit point of \(H \) iff there exists (\textit{ic-} os) \(G \) in \(X \) s.t. \(n \in G \) & \(G \cap (H(n)) = \emptyset \) or equivalently,
\(n \in G \) and \(G \cap H = \emptyset \) or \(G \cap H = \{n\} \) or equivalently,
\(n \in G \) and \(G \cap H = \emptyset \) or \(G \cap H = \{n\} \)

\textbf{Theorem 2.7.} Let \(H \) be a subset \(X \), and \(n \in X \). Then the following are equivalent:
(1) \((\forall G \in \tau^i) (n \in G \Rightarrow G \cap H \neq \emptyset) \)
(2) \(n \in \text{CL}_i(H) \)

\textbf{Proof.} (1) \(\Rightarrow \) (2) if \(n \notin \text{CL}_i(H) \), then there exists (\textit{ic-} os) \(F \) s.t. \(H \subseteq F \) and \(n \notin F \). Hence \(X \cap F \) is (\textit{ic-os}) containing \(n \) and \(H \cap (X \cap F) \subseteq H \cap (X \cap F) = \emptyset \). This is contradiction, and hence (2) is valid.

(2) \(\Rightarrow \) (1) straightforward. \(\blacksquare \)

\textbf{Theorem 2.8.} If \((X, \tau)\) be a TS and let \(A \subseteq B \subseteq X \). Then
1. \(\text{CL}_i(A) = A \cup D_i(A) \);
2. \(A \) is \textit{ic-closed} iff \(D_i(A) \subseteq A \);
3. \(D_i(A) \subseteq D_i(B) \);
4. \(D_i(A) \subseteq D(A) \);
5. \(\text{CL}_i(A) \subseteq \text{CL}(A) \);

\textbf{Proof.} Let \(n \notin \text{CL}_i(A) \). Then there is (\textit{ic-os}) \(F \) in \(X \) s.t. \(A \subseteq F \) and \(n \notin F \). Hence \(G = X \cap F \) is (\textit{ic-os}) \(n \notin G \) and \(G \cap A = \emptyset \). Therefore \(n \notin A \) and \(n \notin D_i(A) \) implies that there exists (\textit{ic-os}) \(G \) in \(X \) s.t. \(n \notin G \) and \(G \cap A = \emptyset \). Hence \(F = X \cap G \) is (\textit{ic-} os) \(n \notin F \) and \(n \notin F \). Hence \(n \notin D_i(A) \) thus \(\text{CL}_i(A) \subseteq A \cup D_i(A) \). Therefore \(\text{CL}_i(A) \subseteq A \cup D_i(A) \). \(\blacksquare \)

For (2), (3), (4) and (5) the proof is easy.

\textbf{Example 2.9.} Let \(X = \{1, 2, 3\} \) and \(\tau = \{\emptyset, X, \{1\}, \{1, 2\}\} \)
1. \(\tau \subseteq \tau^i = \{\emptyset, X, \{1\}, \{1, 2\}\} \)
2. \(n \subseteq D_i(H) \), then \(D(H) = \{3\} \) and \(D_i(H) = \emptyset \)
3. \(K = \{1, 2\} \), then \(D(K) = \{2, 3\} \) and \(D_i(K) = \{3\} \)

\textbf{Theorem 2.10.} Let \(\tau_1 \) and \(\tau_2 \) be topologic on \(X \). Then \(\tau_1^i \subseteq \tau_2^i \). For any subset \(H \) of \(X \), each \textit{ic-} limit point of \(H \) with respect to \(\tau_2 \) is \textit{ic-} limit point of \(H \) with respect to \(\tau_1 \).

\textbf{Proof.} Assume \(n \in \text{ic } - \text{lim point of } H \) with respect to \(\tau_2 \). Then \(G \cap (H(n)) \neq \emptyset \) for each \(G \in \tau_2^i \) s.t. \(n \in G \). But \(\tau_1^i \subseteq \tau_2^i \), so in particular, \(G \cap (H(n)) \neq \emptyset \) for each \(G \in \tau_1^i \). Hence \(n \) is \textit{ic-} limit point of \(H \) with respect to \(\tau_1 \). \(\blacksquare \)

\textbf{Theorem 2.11.} If \(H \) is a subset of a discrete topological space \(X \), then \(D_i(H) = \emptyset \)

\textbf{Proof.} Assume \(n \) be any element of \(X \). Recall that each subset of \(X \) is (os) and so (ic-os). In particular the singleton set \(G = \{n\} \) is (ic-os). But \(n \in G \) & \(G \cap H = \{n\} \cap H \subseteq \{n\} \). Hence \(n \) is not \textit{ic-} limit point of \(H \), and so \(D_i(H) = \emptyset \). \(\blacksquare \)
Theorem 2.12. Let H and K be subsets of X. If $H \in \tau^*$ and τ^* is a topology on X, then

$$H \cap \text{CL}_{ic}(K) \subseteq \text{CL}_{ic}(H \cap K).$$

Proof. Assume $n \in H \cap \text{CL}_{ic}(K)$. Then $n \in H$ and $n \in \text{CL}_{ic}(K) = K \cup D_c(K)$. If $n \in K$, then $n \in H \cap K \subseteq \text{CL}_{ic}(H \cap K)$. If $n \notin K$, then $n \in D_c(K)$ and so $G \cap K \neq \emptyset$ for all $(ic-\text{os}) G$ containing n. Since $H \in \tau^*$, $G \cap H$ is also $(ic-\text{os})$ containing n. Hence $G \cap (H \cap K) = (G \cap H) \cap K \neq \emptyset$, and consequently $n \in D_c(K \cap H) \subseteq \text{CL}_{ic}(H \cap K)$. Therefore $H \cap \text{CL}_{ic}(K) \subseteq \text{CL}_{ic}(H \cap K)$.

Definition 2.13. For any subset H of X, the set $b_{ic}(H) = H \cap \text{Int}_{ic}(H)$ is called the ic- border of H.

Proposition 2.14. For a subset A of a space X, the following statements hold:

1. $b_{ic}(A) \subset b(A)$ where $b(A)$ denotes the border of A.
2. $A = \text{Int}_{ic}(A) \cup b_{ic}(A)$.
3. $\text{Int}_{ic}(A) \cap b_{ic}(A) = \emptyset$.
4. A is an (ic)-open set if and only if $b_{ic}(A) = \emptyset$.
5. $b_{ic}(\text{Int}_{ic}(A)) = \emptyset$.
6. $\text{Int}_{ic}(b_{ic}(A)) = \emptyset$.
7. $b_{ic}(b_{ic}(A)) = b_{ic}(A)$.

Proof. (1) Since $\text{Int}(A) \subset \text{Int}_{ic}(A)$, we have $b_{ic}(A) = A \setminus \text{Int}_{ic}(A) \subseteq A \setminus \text{Int}(A) = b(A)$.

(2) & (3). Straightforward.

(4) Assume $\text{Int}_{ic}(A) \subset A$, it follows from proposition 2.2 (3). That A is (ic)-open $\iff A = \text{Int}_{ic}(A) \iff b_{ic}(A) = A \setminus \text{Int}_{ic}(A) = \emptyset$.

(5) Assume $\text{Int}_{ic}(A)$ is (ic)-open, it follows from (4) that $b_{ic}(\text{Int}_{ic}(A)) = \emptyset$.

(6) If $n \in \text{Int}_{ic}(b_{ic}(A))$, then $n \in b_{ic}(A)$. On the other hand, since $b_{ic}(A) \subset A$, $n \in \text{Int}_{ic}(b_{ic}(A)) \subset \text{Int}_{ic}(A)$. Hence, $n \in \text{Int}_{ic}(A) \cap (b_{ic}(A))$, which contradicts (3). Thus $\text{Int}_{ic}(b_{ic}(A)) = \emptyset$.

(7) Using (6), we get $b_{ic}(b_{ic}(A)) = b_{ic}(A \setminus \text{Int}_{ic}(b_{ic}(A))) = b_{ic}(A)$.

Example 2.15. From example 2.5. If $A = \{1, 5\}$ be a subset of X. Then $\text{Int}_{ic}(A) = \{1\}$, and so $b_{ic}(A) = A \setminus \text{Int}_{ic}(A) = \{1, 5\}$.

Proof. (1) Since $\text{CL}_{ic}(A) \subset \text{Cl}(A)$ and $\text{Int}(A) \subset \text{Int}_{ic}(A)$, it follows that $\text{Fr}_{ic}(A) = \text{CL}_{ic}(A) \setminus \text{Int}_{ic}(A)$, and $\text{Int}_{ic}(A) \subset \text{Cl}(A) \setminus \text{Int}_{ic}(A)$.

(2) $\text{Int}_{ic}(A) \cap \text{Fr}_{ic}(A) = \text{Int}_{ic}(A) \cap (\text{CL}_{ic}(A) \setminus \text{Int}_{ic}(A)) = \emptyset$.

(3) $\text{Int}_{ic}(A) \cap \text{Fr}_{ic}(A) = \text{Int}_{ic}(A) \cap (\text{CL}_{ic}(A) \setminus \text{Int}_{ic}(A)) = \emptyset$.

(4) If $A \subset \text{CL}_{ic}(A)$, we have $b_{ic}(A) = A \setminus \text{Int}_{ic}(A) \subset \text{CL}_{ic}(A) \setminus \text{Int}_{ic}(A) = \text{Fr}_{ic}(A)$.

(5) Since $\text{Int}_{ic}(A) \cup \text{Fr}_{ic}(A) = \text{Int}_{ic}(A) \cup b_{ic}(A) \cup D_c(A)$, $\text{Fr}_{ic}(A) = b_{ic}(A) \cup D_c(A)$.

(6) Assume that A is (ic)-open. Then $\text{Fr}_{ic}(A) = b_{ic}(A) \cup D_c(A)$.

(7) $\text{Fr}_{ic}(A) = \text{CL}_{ic}(A) \setminus \text{Int}_{ic}(A) = \text{CL}_{ic}(A) \cap (\text{CL}_{ic}(X \setminus A))$.

(8) It follows from (7).
(9) $\text{CL}_e(A) \cap \text{CL}_o(A) \subseteq \text{CL}_e(X)$

(10) $\text{Fr}_e(A) \cap \text{CL}_o(A) \subseteq \text{CL}_e(X)$

(11) Since $\text{Int}_e(A) \cap \text{Int}_o(A) \subseteq \text{CL}_e(A)$, we get

(12) $\text{Fr}_e(A) \cap \text{CL}_o(A) \subseteq \text{CL}_e(A)$

(13) $\forall X \subseteq \text{Int}_e(A) \cap \text{Int}_o(A) = \text{Int}_e(A)$.

Example 2.18. Assume that the TS (X, τ) provided in Example 2.5, If $A = \{1, 2\}$ be a subset of X. Then

$\text{Int}_e(A) = \{1, 3\}$, and so $\text{Fr}_e(A) = \{1, 3\} \neq \emptyset$. Then $A = \{5\}$ is ic-closed, $\text{CL}_e(A) = \{5\}$ and thus $\text{Fr}_e(A) = \text{CL}_e(A)$.

Theorem 2.19. For a subset H of X, H is (ic-cs) iff $\text{Fr}_e(H) \subseteq H$.

Proof. Assume that H is (ic-cs). Then $\text{Fr}_e(H) = \text{CL}_e(H) \cap \text{Int}_e(H) = H \cap \text{Int}_e(H) \subseteq H$.

Conversely suppose that $\text{Fr}_e(H) \subseteq H$. Then $\text{CL}_e(H) \cap \text{Int}_e(H) \subseteq H$, and so $\text{CL}_e(H) \subseteq H$. Since $\text{Int}_e(H) \subseteq H$, noticing that $H \subseteq \text{CL}_e(H)$, we have $H = \text{CL}_e(H)$. Therefore, H is (ic-cs). ■

Definition 2.20. For a subset H of X, $\text{Ext}_e(H) = \text{Int}_o(X \setminus H)$ is said to be an ic-exterior of H.

Example 2.21. Assume (X, τ) be a TS in Example 2.9. For subset $H = \{2\}$ and $K = \{1\}$ of X, we have $\text{Ext}_e(H) = \{1\}$ and $\text{Ext}_e(K) = \{2\}$.

Proposition 2.22. These propositions are true for a subset A of a space X:

1. $\text{Ext}_e(A)$ is ic-open;
2. $\text{Ext}_o(X \setminus A) = X \setminus \text{CL}_e(A)$;
3. If $A \subseteq B$, then $\text{Ext}_e(A) \supseteq \text{Ext}_e(B)$;
4. $\text{Ext}_e(A \cup B) \subseteq \text{Ext}_e(A) \cup \text{Ext}_e(B)$;
5. $\text{Ext}_e(A \cap B) \supseteq \text{Ext}_e(A) \cap \text{Ext}_e(B)$;
6. $\text{Ext}_e(A) = \emptyset$;
7. $\text{Ext}_e(\emptyset) = X$;
8. $\text{Ext}_o(A) = \text{Ext}_o(X \setminus \text{Ext}_e(A));$
9. $X = \text{Int}_e(A) \cup \text{Ext}_e(A) \cup \text{Fr}_e(A)$.

Proof. (1) and (2) straightforward.

(3) Assume that $A \subseteq B$. Then $\text{Ext}_e(B) = \text{Int}_e(X) \cap \text{Ext}_e(A)$.

(4) $\text{Ext}_e(A \cup B) = \text{Int}_e(X) \cap \text{Ext}_e(A \cup B)$, $\text{Ext}_e((X \setminus A) \cap \text{Ext}_e(B)) = \text{Ext}_e(A) \cap \text{Ext}_e(B)$.

(5) $\text{Ext}_e(A \cap B) = \text{Int}_e(X) \cap \text{Ext}_e(A) \cup \text{Int}_e(X \setminus B)$.

(6) and (7) Straightforward.

(8) $\text{Ext}_e(X) = \text{Ext}_e(X \setminus \text{Ext}_e(A)) = \text{Int}_e(X) \setminus \text{Int}_e(A)$.

(9) Straightforward.

Example 2.22. Assume $\tau = \{1, 2, 3\}$ and $\tau = \emptyset, X, \{1\}, \{1, 2\}$ Then $\text{Ext}_e(H) = \{1\}$, $\text{Ext}_e(H) = \{2\}$, $\text{Ext}_e(H) = \{1\}$, $\text{Ext}_e(H) = \{2\}$, $\text{Ext}_e(H) = \{1\}$, $\text{Ext}_e(H) = \{2\}$.

(1) If $H = \{1\}$, $K = \{2\}$. Then $\text{Ext}_e(H) = \emptyset$.

(2) If $H = \{1\}$, $K = \{2\}$. Then $\text{Ext}_e(H \cap K) = \{1\}$.

3. **ic-Continuous Mappings and ic-Homeomorphism**

This section is devoted to introduce ic-open map, ic-irresolute map, ic-totally continuous map, ic-homeomorphism and discussed the relationships between the other known existing map.

Definition 3.1. A mapping $f : X \to Y$ is named ic-open denoted by (ic-om), if $f(U)$ is (ic-os) in Y for each $(os) U$ in X.

Example 3.2. Let $X = Y = \{3, 5, 7\}$ and $\tau = \emptyset, X, \{3, 5\}$, $\sigma = \emptyset, Y, \{3, 5\}$ Then $\tau = \emptyset, Y, \{3, 5\}$. Clearly, the identity mapping $f : X \to Y$ is (ic-om).

Proposition 3.3. Any (om) is (ic-om) but not conversely.

Proof. Assume $f : X \to Y$ be (om) and H be (os) in X. Since, f is open, then $f(H)$ is (os) in Y. Since, each (os) is (ic-os) then, $f(H)$ is (ic-os) in Y. Therefore, f is (ic-om). ■
If $X = Y = \{1,2,3\}$ and $\tau = \emptyset, X, \{2\}, \{1,2\}$, $\sigma = \emptyset, Y, \{1\}, \{1,2\}$ Then $\tau^ic = \emptyset, Y, \{1\}, \{2\}, \{1,2\}$ Clearly, the identity mapping $f: X \to Y$ is (ic-om) but not (om).

Theorem 3.4. If $f: X \to Y$ is open & $g: Y \to Z$ is ic-open, then $gof: X \to Z$ is ic-open.

Proof. Suppose that $f: X \to Y$ be open & $g: Y \to Z$ is ic-open. Let G be an (os) in Y. Since, f is an open, then $f(G)$ is an (os) in Y. Since, each (os) is (ic-os), then $f(G)$ is (ic-os) in Y. Since, g is (ic-os), then $(gof)^{-1}(G) = f(G)$ is (ic-os) in Z. Therefore, $gof: X \to Z$ is ic-open. ■

Theorem 3.5. If $f: X \to Y$ is (ic-comm) and $g: Y \to Z$ is (comm), then $gof: X \to Z$ is (ic-comm).

Proof. Assume $f: X \to Y$ be (ic-comm) & $g: Y \to Z$ is (comm). Let G be an (os) in Z. Since, g is (comm), then $g^{-1}(G)$ is an (os) in Y. Since, f is (ic-comm), then $f^{-1}(g^{-1}(G)) = (gof)^{-1}(G)$ is (ic-os) in X. Therefore, $gof: X \to Z$ is (ic-comm). ■

Definition 3.6. A mapping $f: X \to Y$ is named ic-irresolute is denoted by (ic-irem), if the inverse image of every (ic-os) of Y is (ic-os) in X.

Example 3.7. If $X = Y = \{2,4,6\}$ and $\tau = \emptyset, X, \{2\}, \{2,4\}, \sigma = \emptyset, Y, \{2\}$ Then $\tau^{ic} = \emptyset, X, \{2\}, \{4\}, \{2,4\}, \sigma^{ic} = \emptyset, Y, \{2\}$ Clearly, the identity mapping $f: X \to Y$ is (ic-irem).

Proposition 3.8. Each (ic-irem) is (ic-comm).

Proof. Suppose that $f: X \to Y$ be (ic-irem) & V any (os) in Y. Since each (os) is (ic-os) and since f is ic-irresolute, then $f^{-1}(V)$ is (ic-os) in X. Therefore, f is (ic-comm). ■

Theorem 3.9. Each (comm) is (ic-comm) but not conversely.

Proof. Suppose that $f: X \to Y$ be (comm) & V any (ic-os) in Y. Since f is (comm), then $f^{-1}(V)$ is (os) in X. Since each (os) is (ic-os), then $f^{-1}(V)$ is (ic-os) in X. Therefore, f is (ic-comm).

Let $X = Y = \{2,4,6\}$ and $\tau = \emptyset, X, \{2\}, \{2,4\}, \sigma = \emptyset, Y, \{4\}$ Then $\tau^{ic} = \emptyset, X, \{2\}, \{4\}, \{2,4\}, \sigma^{ic} = \emptyset, Y, \{4\}$ Clearly, the identity mapping $f: X \to Y$ is (ic-comm) but not (comm).

Theorem 3.10. If $f: X \to Y$ is (ic-irem) & $g: Y \to Z$ is (ic-comm), then $gof: X \to Z$ is (ic-irem).

Proof. Let $f: X \to Y$ be (ic-irem) and $g: Y \to Z$ be (ic-comm). Let U be an (os) in Z. Then U is (ic-os) because each (os) is (ic-os). Since, g is (ic-comm), then $g^{-1}(U)$ is (ic-os) in Y. Since, f is (ic-irem), then $f^{-1}(g^{-1}(U)) = (gof)^{-1}(U)$ is (ic-os) in X. Therefore, $gof: X \to Z$ is (ic-irem). ■

Theorem 3.11. The composition of two (ic-irem) is also (ic-irem).

Proof. Assume $f: X \to Y$ & $g: Y \to Z$ any two (ic-irem). Suppose that U be any (ic-os) in Z. Since, g is (ic-irem), then $g^{-1}(U) = (ic-os)$ in Y. Since, f is (ic-irem), then $f^{-1}(g^{-1}(U)) = (gof)^{-1}(U)$ is (ic-os) in X. Therefore, $gof: X \to Z$ is (ic-irem). ■

Definition 3.12. Let X and Y be TS, a bijective map $f: X \to Y$ is named ic-homeomorphism is denoted by (ic-homm) if f is (ic-comm) and (ic-om).

Theorem 3.13. If $f: X \to Y$ is (homm), then f is (ic-homm) but not conversely.

Proof. Since each (comm) is (ic-comm) by Theorem 1.2. (2). Also, since each (om) is (ic-om) by proposition (3.3). Further, since f is bijective. Therefore, f is (ic-homm). ■

Let $X = Y = \{1,2,3\}$ and $\tau = \emptyset, X, \{1\}, \{2,3\}, \sigma = \emptyset, Y, \{1\}, \{2\}$ Then $\tau^{ic} = \emptyset, X, \{1\}, \{3\}, \{2,3\}, \{1,3\}, \sigma^{ic} = \emptyset, Y, \{1\}, \{3\}, \{2\}, \{3\}$. Clearly, the identity mapping $f: X \to Y$ is (ic-homm) but not (homm).

Definition 3.14. A mapping $f: X \to Y$ is named ic-totally continuous is denoted by (ic-tcomm), if each reverse, (ic-os) of Y is (cl-os) in X.

Theorem 3.15. Each (ic-tcomm) is totally continuous but not conversely.

Proof. Suppose that $f: X \to Y$ be (ic-tcomm) and V be (os) in Y, since each (os) is (ic-os), then V is (ic-os) in Y. Since f is (ic-tcomm), then $f^{-1}(V)$ is (cl-os) in X. Therefore, f is (ic-tcomm). ■

Let $X = Y = \{1,2,3\}$ and $\tau = \emptyset, X, \{1\}, \{2,3\}, \sigma = \emptyset, Y, \{2\}$ Then $\sigma^{ic} = \emptyset, Y, \{2\}$. Clearly, the identity mapping $f: X \to Y$ is (tcomm) but not (ic-tcomm).

Theorem 3.16. Each (ic-tcomm) is (ic-irem) but not conversely.

Proof. Assume that $f: X \to Y$ be (ic-tcomm) and V be (ic-os) in Y. Since f is (ic-tcomm), then $f^{-1}(V)$ is (cl-os) in X, which implies, $f^{-1}(V)$ is (os), it follows $f^{-1}(V)$ is (ic-os) in X. Therefore, f is (ic-irem). ■

Let $X = Y = \{1,3,5\}$ and $\tau = \emptyset, X, \{1\}, \{1,3\}, \sigma = \emptyset, Y, \{3\}$ Then $\sigma^{ic} = \emptyset, Y, \{3\}$. Clearly, the identity mapping $f: X \to Y$ is (ic-irem) but not (ic-tcomm).

Theorem 3.17. The two’s (ic-tcomm) composition is also (ic-tcomm).

Proof. Suppose that $f: X \to Y$, $g: Y \to Z$ be any two (ic-tcomm). Assume V be any (ic-os) in Z. Since, g is (ic-tcomm), then $g^{-1}(V)$ is (cl-os) in Y, which implies $f^{-1}(V)$ is (os), it follows $f^{-1}(V)$ is (ic-os). Since, f is (ic-tcomm), then $f^{-1}(g^{-1}(V)) =$
(gof)^{-1}(V) \text{ is } (cl-os) \text{ in } X. \text{ Therefore, } \\text{gof}: X \to Z \text{ is (ic-tcomm).}
\textbf{Theorem 3.18.} If \ f: X \to Y \text{ be (ic-tcomm) and } g: Y \to Z \text{ be (ic-irrem), then } g \circ f: X \to Z \text{ is (ic-tcomm).}
\textbf{Proof:} Assume that \ f: X \to Y \text{ be (ic-tcomm) and } g: Y \to Z \text{ is (ic-irrem). Let } V \text{ be (ic-os) in } Z. \text{ Since } g \text{ is (ic-irrem) then } g^{-1}(V) \text{ is (ic-os) in } Y. \text{ Since } f \text{ is (ic-tcomm), then } f^{-1}(g^{-1}(V)) = (gof)^{-1}(V) \text{ is (cl-os) in } X. \text{ Therefore, } g \circ f: X \to Z \text{ is (ic-tcomm).}

\textbf{References}

ic-السمات التبولوجية لمجموعات مفتوحة من النمط-

بداي سيهل عبد الله، سامي عبد الله عبد الله

قسم الرياضيات، كلية التربية للعلوم الصرفة، جامعة الموصل، الموصل، العراق

قسم الاقتصاد، كلية الإدارة والاقتصاد، جامعة ديالى، ديالى، العراق

المتخصصة