

TIKRIT JOURNAL OF PURE SCIENCE

Journal Homepage: http://main.tu-jo.com/ojs/index.php/TJPS/index

A Relation between π Generalized Pre Connectedness and π Generalized Supra Connectedness In Intuitionistic Fuzzy Topological Space

Omer S Mustfa

Department of Physics, College of Science, Tikrit University, Tikrit, Iraq DOI: http://dx.doi.org/10.25130/tjps.23.2018.119

ARTICLE INFO.

Article history:

Abstract

-Received: 11 / 2 / 2018 -Accepted: 23 / 4 / 2018 -Available online: / / 2018

Keywords: Intuionistic Fuzzy Topology, Connectedness, Intuitionistic Fuzzy π Generalized Pre Connectedness, Intuitionistic Fuzzy π Generalized Supra Connectedness.

Corresponding Author: Name: Omer S Mustfa

E-mail:

Omer_saber1984@yahoo.com

Tel:

1. Introduction

In1965, the concept of " fuzzy set" was introduced by Zadeh in his classical paper [1]. Chang [2] introduced the concept of "fuzzy topological space" by using concept of fuzzy sets. After that, in 1986, Atanassov [3] introduced the " intuitionistic fuzzy sets" . in the 1997 Coker [4] defined the concept of "intuitionistic fuzzy topological spaces". Recently appeared many concepts of fuzzy topological such as fuzzy connectedness have been generalized in intuitionistic fuzzy topological spaces ,also S. Özça g and D. Coker [5] introduced the π -generalized Semi Connectedness in "Intuitionistic Fuzzy Topological Spaces connectedness" .In this paper we introduce concept of intuitionistic fuzzy π generalized pre connectedness with it relation intuitionistic fuzzy π generalized supra connectedness and investigates some them properties .

2. Preliminaries

Definition 2.1: [3] Let $X \neq \emptyset$. An "intuitionistic fuzzy set" ("IFS", in short) M in X is an object having the form $M = \{\langle x, \sigma_M(x), \delta_M(x) \rangle : x \in X\}$ where the functions $\sigma_M(x): X \rightarrow [0, 1]$ and

$$\begin{split} \delta_M(x): \, X &\to [0,1] \text{ denote the degree of membership} \\ (namely " \, \mu_A(x)") \text{ and the degree of non-} \end{split}$$

L he aim of this paper is to give the concepts of intuitionistic fuzzy π generalized pre connectedness with study its properties. Finally we study the relation between intuitionistic fuzzy π generalized pre connectedness and intuitionistic fuzzy π generalized supra connectedness in intuitionistic fuzzy topological space.

membership (namely " $\gamma_A(x)$ ") $\forall x \in X$ to the set M, respectively, and $0 \le \sigma_M(x) + \delta_M(x) \le 1$

 $\forall x \in X$. Denote by "IFS(X)", the set of all "intuitionistic fuzzy sets" in X.

Definition 2.2: [7] Let M and N be "IFSs" of the form $M = \langle x, \sigma_M, \delta_M \rangle$ and

 $N = \langle x, \sigma_N, \delta_N \rangle$. Then

 $\begin{array}{ll} 1 \text{-} \ M \ \subseteq \ N \ \text{iff} \quad \sigma_M(x) \leq \sigma_N(x) \ \text{and} \ \delta_M(x) \geq \delta_N(x) \\ \forall \ x \in X. \end{array}$

- 2- M = N iff M \subseteq N and N \subseteq M.
- 3- $M^c = \{ \langle x, \delta_M(x), \sigma_M(x) \rangle : x \in X \}.$
- 4- $M \cap N = \{(x, \sigma_M(x) \land \sigma_N(x), \delta_M(x) \lor \delta_N(x)) : x \in X\}$.

5- M ∪ N ={(x, $\sigma_M(x)$ ∨ $\sigma_N(x)$, $\delta_M(x) \land \delta_N(x)$): x ∈ X}.

6- $\tilde{0} = \{(x,0,1): x \in X\}, \tilde{1} = \{(x,1,0): x \in X\}.$ we use this notation:

 $\begin{array}{ll} M &= \mbox{ } \langle x, (\sigma_M\,, \sigma_N), (\delta_M\,, \delta_N)\,\rangle & \mbox{instead} & \mbox{of} & M \\ \langle x, (M/\sigma_M\,, N/\sigma_M), (M/\delta_M\,, N/\delta_N)\,\rangle \,. \end{array}$

Definition 2.3: [3] Let $X \neq \emptyset$. An "intuitionistic fuzzy topology" ("IFT", for short) on X is a collection ρ of "IFSs" in X with this conditions:

1) $\tilde{0}, \tilde{1} \in \rho$.

2) $j_1 \cap j_2 \in \rho$ for any $j_1, j_2 \in \rho$.

3) $\cup j_i \in \rho$ for any arbitrary family $\{G_i : i \in J\} \subseteq \rho$. The pair (X, ρ) is called an "intuitionistic fuzzy topological space" ("IFTS", for short), any "IFS" in ρ is "intuitionistic fuzzy open set" ("IFOS", for short) in X. The complement M^c of "IFOS M" in an "IFTS" (X, ρ) is called

"intuitionistic fuzzy closed set" ("IFCS", for short) in X.

Definition 2.4: [3] Let (X, ρ) be an "IFTS" and $M = \langle x, \sigma_M, \delta_M \rangle$ be "IFS" in X. Then :

 $Int(M) = \cup \{ J : J \text{ is IFOSin } X, J \subseteq M \},\$

 $Cl(M) = \cap \{ L : L \text{ is IFCSin } X, M \subseteq L \}.$

Definition 2.5: An "IFS" M

 $\{\langle x\,,\rho_M(x),\delta_M(x)\rangle {:}\, x\in X\}\,$ in an "IFTS" (X,ρ) is said to be an

1) [4] "intuitionistic fuzzy semi closed set" ("IFSCS", for short) if $Int(Cl(M)) \subseteq M$,

2) [4] "intuitionistic fuzzy α -closed set" ("If α CS", for short) if Cl(Int(Cl(M))) \subseteq M,

3) [4] "intuitionistic fuzzy pre-closed set" ("IFPCS", for short) if $Cl(Int(M)) \subseteq M$,

4) [8] "intuitionistic fuzzy generalized closed set" ("IFGCS", for short) if $Cl(M) \subseteq K$ whenever

 $M \subseteq K$ and K is an "IFOS",

5) [8] "intuitionistic fuzzy π open set" ("IF π GSCS", for short) if sCl(M) \subseteq K and K is "IFO β ",

6) [8] "intuitionistic fuzzy π open set" ("IF π GSCS", for short) if pCl(M) \subseteq K, and K is "IFO β ",

7) [8] "intuitionistic fuzzy generalized semi closed set" ("IF π GSCS", for short) if sCl(M) \subseteq K, whenever M \subseteq K and K is an IF π OS,

8) [8] "intuitionistic fuzzy generalized pre closed set" ("IF π GPCS", for short) if pCl(M) \subseteq K, whenever

 $M \subseteq K$ and K is an "IF π OP".

Definition 2.6: [8] An "IFS" M is said to be an "intuitionistic fuzzy π – generalized semi open set" ("IF π GSOS", for short) in X if M^c is "IF π GSCS" in

X .The collection of "IF π GSCSs" of "IFTS"

 (X, ρ) is write by "IF π GSC(X)".

Result 2.7:[8] Every "IFCS", "If α CS", "IFGCS", "IFPCS", "IF α GCS" is an "IF π GSCS" but the reverse not true in generally.

Definition 2.8: [8] Let M be an "IFS" in an "IFTS" (X, ρ) . Then " π -generalized semi closure" M (" π gscl(M)", for short) and " π -generalized Semi interior" of M (" π gsint(M)", for short) are :

 $\begin{aligned} \pi gsInt(M) &= \cup \{ J : J \text{ is "IF} \pi GSOS" \text{ in } X, J \subseteq M \}, \\ \pi gscl(M) &= \cap \{ L : L \text{ is "IF} \pi GSCS" \text{ in } X , M \subseteq L \}. \end{aligned}$

Definition 2.9: [3] Let a map T: $(M, \rho) \rightarrow (N, \gamma)$. If $N = \{ \langle w, \sigma_N(w), \delta_N(w) \rangle : w \in W \}$ is an "IFS" in W, then the image of N under T denoted by $T^{-1}(N)$, is the "IFS" in X defined by

$$\begin{split} T^{-1}(N) &= \left\{ \langle r \,, T^{-1}\big(\sigma_N(r)\big), T^{-1}\big(\delta_N(r)\big) \rangle : r \in R \right\} \text{ . If } \\ M &= \left\{ \langle r \,, \sigma_M(r), \delta_M(r) \rangle : r \in R \right\} \text{ is an "IFS" in } M, \end{split}$$

then the image of M under T denoted by T(M) is "IFS" in W where ,

ISSN: 1813 – 1662 (Print) E-ISSN: 2415 – 1726 (On Line)

 $T(M) = \{ \langle w, T(\sigma_M(w)), \underline{T}(\delta_N(w)) \rangle : w \in W \}$ where $T(\delta_B(w)) = 1 - T(1 - \delta_N) .$

Definition 2.10: [8] A map T: $(X, \rho) \rightarrow (Y, \gamma)$ is "intuitionistic fuzzy π generalized semi irresolute" ("If π GSir ,for short) if T⁻¹(N) is "IF π SGCS" in (X, ρ) \forall "IF π GSCS" N of (Y, γ).

Definition 2.11: [8] A map T: $(X, \rho) \rightarrow (Y, \gamma)$ is "intuitionistic fuzzy π generalized semi continuous" ("IF π GSC", for short) if T(M) is "IF π SGOS" in $(Y, \gamma) \forall$ "IF π GSOS M " of (X, ρ) .

Definition 2.12: A map T: $(X, \rho) \rightarrow (Y, \gamma)$ is

(a) [4] "intuitionistic fuzzy closed mapping" ("IFCM", for short) if T(M) is "IFCS" in $Y \forall$ "IFCS" A in X.

(b) [4] "intuitionistic fuzzy α -closed mapping" ("If α CM", for short) if T(M) is "If α CS" in Y \forall "IFCS" M in X.

Definition 2.13: [6] "IFTS" (X, ρ) is "IF $\pi T_{1/2}$ " space

if every "IFRWGCS" in X is "IFCS" in X, where

IFRWGCS is brief of Intuitionistic Fuzzy Regular Generalized Closed Set .

Definition 2.14: [6] "IFTS" (X, ρ) is "IF $\pi g T_{1/2}$ " space if every "IFRWGCS" in X is "IFPCS" in X.

Definition 2.15:[5] "IFTS" (X, ρ) is said to be "intuitionistic fuzzy C_5 - connected space" if

 $\tilde{0} \text{ and } \tilde{1} \text{ are both "IFOS" and "IFCS" only } .$

Definition 2.16:[5] "IFTS" (X, ρ) is "intuitionistic fuzzy GO-connected space" if $\tilde{0}$ and $\tilde{1}$

are both "IFGOS" and "IFGCS" only .

Definition 2.17:[5] "IFTS" (X, ρ) is an "intuitionistic fuzzy C₅-connected" between "IFS" M, N if \nexists "IFOS" Q in (X, ρ) s.t M \subseteq Q and Q \subseteq N^c.

Definition 2.18: [5] "IFTS" (X, ρ) is "IF π GS connected space" if $\tilde{0}$ and $\tilde{1}$ are both IF π GSOS" and "IF π GSCS" only .

3. "Intuitionistic fuzzy π generalized pre connected spaces"

In this section, we have introduced "intuitionistic fuzzy π generalized pre connected" ("IF π GP connected", for short) space and studied some of its properties.

Definition 3.1: An "intuitionistic fuzzy π – generalized pre open sets" ("IF π GPOS", for short)(resp. "pre closed sets" ("IF π GPCS", for short) in (X, ρ) if its complement M^c is "IF π GPCS" in X (resp. if its complement M is "IF π GPOS" in (X, ρ)). The collection of "IF π GPOS" (resp. "IF π GPCS") of "IFTS" (X, ρ) is denoted by "IF π GPO(X)" (resp. "IF π GPC(X)").

Definition 3.2: "IFTS" (X, ρ) is "IF π GP connected space" if $\tilde{0}$ and $\tilde{1}$ are both "IF π GPOS" and "IF π GPCS" only.

Example 3.3: Let $W = \{m, n\}$ and $\rho = \{\tilde{0}, K, \tilde{1}\}$

be "IFT" on X, where $K = \langle w, (0.3, 0.2), (0.4, 0.2) \rangle$. Then "IFTS" (X, ρ) is "IF π GP connected space" between the "IFS"

 $\begin{array}{ll} \mathsf{M} = \langle \mathsf{w}, (0.7, 0.1), (0.3, 0.3) \rangle & \text{and} & \mathsf{N} = \\ \langle \mathsf{w}, (0.1, 0.2), (0.5, 0.3) \rangle \end{array}$

Proposition 3.4: Each "IF π GP connected space" is "IFC₅-connected space"

Proof: Let (X, ρ) is "IF π GP connected space". Suppose that (X, ρ) is not "intuitionistic fuzzy C_5 – connected space", then \exists "IFS A" which is both "intuitionistic fuzzy open" and "intuitionistic fuzzy closed" in (X, ρ) . So M is "IF π GPOS" and "IF π GPCS" in (X, ρ) . Hence (X, ρ) is not an

"IF π GP connected space". Thus we get a contradiction. Therefore (X, ρ) is "intuitionistic fuzzy C₅ –connected space".

Remark 3.5:The converse of above proposition is not true . the example bellow shows the converse is not true .

Example 3.6: Let $W=\{m,n\}$, $\rho=\{\tilde{0},K,\tilde{1}\}$ be "IFT" on W , where

$$\begin{split} K &= \langle w, (0.2, 0.2), (0.1, 0.8) \rangle. \text{ Then } (X, \rho) \text{ is "IFC}_5\text{-} \\ \text{connected space" because the "intuitionistic fuzzy sets" } \tilde{0} \text{ and } \tilde{1} \text{ are both "IFOS" and "IFCS" , but not an "IF\piGP connected space", since the "IFS K" in ρ is both an "IF\piGPOS" and an "IF\piGPCS" in (X, ρ). \end{split}$$

Proposition 3.7: Let (X, ρ) is an "IFTS". Then (X, ρ) is "GO-connected" iff \forall "IF π GP connected space". **Proof:** \Longrightarrow Let (X, ρ) is "IF π GP connected space". suppose that (X, ρ) "IFGO-connected space", let $\tilde{0}$ and $\tilde{1}$ are both "IFGOS" and IFGCS ((X, ρ) is an "IFGO-connected space") since "IF π GPOS" and "IF π GPCS" are $\tilde{0}$ and $\tilde{1}$. Hence (X, ρ) is "IF π GP connected space".

⇐Suppose (X, ρ) is not an "IFGO –connected space", then ∃ "IFS M" which is both "IFGOS" and "IFGCS" in (X, ρ). So M is both "IFπGPOS" and "IFπGPCS" in (X, ρ). Thus (X, ρ) is not

"IF π GP connected space". Hence ,we get a contradiction. Thus (X, ρ) is "IFGO –connected space".

Remark 3.8: Let (X, ρ) is an "IFTS". The implications are valid :

IFπGP connected space

IFGO-connected space

[™]IFC₅-connected space

Example 3.10: Let W = { m, n } and $\rho = \{ \tilde{0}, K, \tilde{1} \}$ be "IFT" on X , where

 $K = \langle w, (0.6, 0.1), (0.2, 0.2) \rangle$. Then "IFTS" (X, ρ) is IFC₅-connected space between the "IFS"

 $M = \langle w, (0.5, 0.4), (0.4, 0.5) \rangle \text{ and } N = \langle w, (0.7, 0.3), (0.2, 0.6) \rangle, \text{ but it is not IF} \pi GP \text{ connected}$

space . Also (X, ρ) is IFGO-connected space but it is not IF π GP connected space.

Proposition 3.11: The "IFTS" (X, ρ) is "IF π GP connected space" iff \exists no non-zero

"IF π GPOS" M and N in (X, ρ) s.t M = N^c.

Proof: Let M and N be two "IF π GPOS" in (X, ρ) such that M $\neq \tilde{0}$, N $\neq \tilde{1}$ and M = N^c. Therefore

ISSN: 1813 – 1662 (Print) E-ISSN: 2415 – 1726 (On Line)

N^c is an "IF π GPCS". Since M $\neq \tilde{0}$ N $\neq \tilde{1}$. So that N is "IFS" which is both "IF π GPOS" and

"IF π GPCS" in (X, ρ). Thus (X, ρ) is not "IF π GP connected space", but this a contradiction .

Hence \exists no non-zero "IF π GPOS" M and N in (X, ρ) s.t M = N^c. Let M be both

"IF π GPOS" and "IF π GPCS" in (X, ρ) such that $\tilde{0} \neq M \neq \tilde{1}$. Now let N = M^c. Then N is

"IF π GPOS" and B \neq 1~. Hence N^c = M \neq 0, and its contradiction . Therefore (X, ρ)

is "IF π GP connected space".

Proposition 3.12: Let (X, ρ) be "IF π T_{1/2} " space, then this implications are equivalent:

(i) (X, ρ) is "IF π GP connected space".

(ii) (X, ρ) is "IFGO-connected space".

(iii) (X, ρ) is "IFC₅-connected space".

Proof: (i) \rightarrow (ii): By using Proposition 3.8, we get the result.

(ii) \rightarrow (iii): By using Remark 3.9, we get the result .

(iii) \rightarrow (i): Let (X, ρ) be "IFC₅-connected space". Suppose (X, ρ) is not "IF π GP

connected space", so \exists "IFS M " in (X, ρ) which is both "IF π GPOS" and "IF π GPCS" in

(X, ρ). But (X, ρ) is an "IF π a T_{1/2} " space, M is both "IFO" and "IFC" in (X, ρ). Thus (X, ρ)

not "IFC5-connected", and its contradiction . Hence (X,ρ) must be an" IF\piGP connected

space".

Definition 3.13: A map $T: (X, \rho) \rightarrow (Y, \gamma)$ is "intuitionistic fuzzy π generalized pre irresolute" ("IF π GPir", for brief) if $T^{-1}(N)$ is "IF π PGCS" in $(X, \rho) \forall$ "IF π GPCS N" of (Y, γ) .

Proposition 3.14: If T: $(X, \rho) \rightarrow (Y, \gamma)$ is "IF π GP continuous" and (X, ρ) is an "IF π GP connected space", then (Y, γ) is "IFC5 connected space".

Proof: Let (X, ρ) be "IF π GP connected space". Suppose that (Y, γ) is not "intuitionistic fuzzy C₅-

connected space", then \exists "IFS M" which is both "IFO" and "IFC" in (Y, γ) . Since T is "If π GP

continuous mapping", so $T^{-1}(M)$ is "IF π GPOS" and "IF π GPCS" in (X, ρ), but it is a contradiction.

Therefore (Y, γ) is IFC₅-connected space.

Proposition 3.15: If $T: (X, \rho) \rightarrow (Y, \gamma)$ is "IF π GPir" and (X, ρ) is an "IF π GP connected space", then (Y, γ) is "IF π GP connected space".

Proof: Suppose that (Y, γ) is not "IF π GP connected space", so \exists "IFS M" s.t M is both

"IF\piGPOS" and "IF\piGPCS" in (Y,γ) . Since T is "IF\piGP irresolute mapping", $T^{-1}(M)$ is both

"IF π GPOS" and "IF π GPCS" in (X, ρ), we get a contradiction. Therefore (Y, γ) is

an "IF π GP connected space".

Definition 3.16: "IFTS" (X, ρ) is "IF π GP connected" between "IFS" M and N if \nexists "IF π GPOS K" in (X, ρ) s.t M \subseteq K and K \subseteq M^c.

Example 3.17: Let $W = \{ m, n \}$ and $\rho = \{ \tilde{0}, K, \tilde{1} \}$ be "IFT" on X, where

 $K = \langle w, (0.3, 0.3), (0.4, 0.5) \rangle$. Then "IFTS" (X, ρ) is "IF π GP connected" between the "IFS"

 $M = \langle w, (0.6, 0.2), (0.6, 0.4) \rangle \text{ and } N = \langle w, (0.6, 0.2), (0.3, 0.3) \rangle \text{ where }$

 $M^{c} = \langle w, (0.06, 0.4), (0.6, 0.2) \rangle$.

Proposition 3.18: An "IFTS" (X, ρ) is "IF π GP connected" between two "IFSs" M and N iff there is no "IF π GPOS" and "IF π GPCS K" in (X, ρ) s.t $M \subseteq K \subseteq N^{c}$.

Proof: Let (X, ρ) be "IF π GP connected" between M and N. Suppose that \exists an "IF π GPOS"

and "IF π GPCS K " in (X, ρ) s.t M \subseteq K \subseteq N^c, then N \subseteq K^c and M \subseteq K. So (X, ρ)

not "IF πGP connected" between M and N, , so we get a contradiction .

Therefore \exists no "IF π GPOS" and an "IF π GPCS K" in (X, ρ) s.t $M \subseteq K \subseteq N^c$.

Conversely suppose that (X, ρ) is not "IF π GP connected" between M and N. So \exists "IF π GPOS

K" in (X, ρ) s.t M \subseteq K and K \subseteq N^c. So that \exists an "IF π GPOS K" in (X, ρ) s.t M \subseteq K \subseteq N^c, but we

get a contradiction. Thus (X, ρ) is "IF π GP connected" between M and N .

Proposition 3.19: Let (X, ρ) be an "IFTS" and M and N be "IFS" in (X, ρ) . Then, $M \subseteq N$, iff X is an "IF π GP connected" between M and N.

Proof: Suppose (X, ρ) is not "IF π GP connected" between M and N. Then \exists an "IF π GPOS K" in (X, ρ) s.t M \subseteq K and K \subseteq N^c. So that M \subseteq N^c, but we get a contradiction (M \subseteq N). Therefore X is an "IF π GP connected" between M, N.

Conversely suppose (X, ρ) is an "IF π GP connected" between M, N.Thus M = N (by definition of

"IF π GPOS connected"). Therefore, M \subseteq N.

4-The Relations between π Generalized Pre Connectedness and π Generalized supra connectedness in "IFTS"

Definition 4-1: An "intuitionistic fuzzy π –generalized supra open sets" ("IF π GSUOS", for short)(resp. "supra closed sets" ("IF π GSUCS", for short) in (X, ρ) if its complement M^c is

"IF π GSUCS" in X (resp. if its complement M is "IF π GSUOS" in (X, ρ)). The collection of

"IF π GSUOS" (resp. "IF π GSUCS") of "IFTS" (X, ρ) is denoted by "IF π GSUO(X)" (resp.

"IF π GSUC(X)").

Proposition 4.2: The relation among π Generalized Pre Connectedness and π Generalized supra connectedness of intuitionistic fuzzy connectedness is given in the following diagram.

Proof :

IF π GS connected space IFC₅-connected space by definition of "IFC₅-connected space" and Remark 3.8, we get the result .

ISSN: 1813 – 1662 (Print) E-ISSN: 2415 – 1726 (On Line)

Remark 4.3: By transitivity we get $IF\pi GSU$

Remark 4.4:The converse of above proposition are not true . the counter examples bellow shows the converse are not true .

Example 4.5: Recall Example 3.6, we get (X, ρ) is an IFC5-connected space because the

"IFS" Õand Ĩ are both "IFOS" and "IFCS", but not an "IF π GP connected space", because the "IFS K" in ρ is both an "IF π GPOS" and an "IF π GPCS" in (X, ρ).

Example 4.6: Let W = {m, n, k} and $\rho = \{ \tilde{0}, K, \tilde{1} \}$ be "IFT" on W, where

$$\begin{split} M &= \langle w, (0.7, 0.3), (0.5, 0.2), (0.2, 0.7) \rangle & . & \text{Then} \\ (X, \rho) \text{ is an "IF}\pi GP \text{ connected space" because the} \\ \text{both "IF}\pi GPOS" \text{ and "IF}\pi GPCS" \text{ are } \tilde{0} \text{ and } \tilde{1} \text{ , but} \\ \text{not an "IF}\pi GSU \text{ connected space", because the "IFS} \\ M" \text{ in } \rho \text{ is not "IF}\pi GSUOS" \text{ and "IF}\pi GSUCS" in \\ (X, \rho) . \end{split}$$

Example 4.7: Let $W = \{m, n, k, h\}$ and $\rho = \{\tilde{0}, K, \tilde{1}\}$ be an "IFT" on W, where

 $K = \langle w, (0.6, 0.6), (0.3, 0.2), (0.3, 0.5), (0.3, 0.3) \rangle .$

Then (X, ρ) is an "IF π GSU connected space" because the both "IF π GSUOS" and "IF π GSUCS" are $\tilde{0}$ and $\tilde{1}$, but not an "IF π GP connected space", because the "IFS K" in ρ is not an "IF π GPOS" and an "IF π GPCS" in (X, ρ) .

Example 4.8: Let $W = \{m, n, k, h\}$ and $\rho = \{\tilde{0}, K, \tilde{1}\}$ be "IFT" on W, where

 $K = \langle w, (0.1, 0.6), (0.2, 0.6), (0.3, 0.3), (0.5, 0.6) \rangle$.

Then (X, ρ) is an "IFC₅-connected space" because the IFS $\tilde{0}$ and $\tilde{1}$ are both "IFOS" and "IFCS", but not "IF π GS connected space", since the "IFS K" in ρ is not an "IF π GSUOS" and an "IF π GSUCS" in (X, ρ) .

Proposition 4.9: Let (X, ρ) be " $IF\pi T_{1/2}$ space", then these relations are given as:

IFGO-connected

IF π GP connected space \longrightarrow IFC₅-connected space : its prove by transitivity .

IF π GSU connected space space : By using Proposition 4.2 we get the result . IF π GSU connected space \longrightarrow IF π GP connected space

Suppose (X, ρ) be "IF π T_{1/2} " space and (X, ρ) is "IF π GSU connected space" so \exists

"IFGOS" and "IFGCS" are $\tilde{0}$ and $\tilde{1}$ in $(X,\rho).$ Since $\tilde{0}$ and $\tilde{1}$ are

both "IFGPOS" and "IFGSUCS" in (X, ρ) because (X, ρ) be an" IF $\pi a T_{1/2}$ ". Thus (X, ρ) is "IF πGP

connected space".

Remark 4.10:The converse of above proposition are not true . The counter examples

bellow shows the converse are not true .

Example 4.11: Let $W = \{m, n, k\}$ and $\rho = \rho = \{\tilde{0}, K, \tilde{1}\}$ be "IFT" on W, where

 $K = \langle x, (0.3, 0.7), (0.3, 0.5), (0.2, 0.1), (0.7, 0.3) \rangle$

Then (X, ρ) is an "IFGO-connected" because the "IFS" $\tilde{0}$ and $\tilde{1}$ are both "IFOS" and "IFCS", but not an "IF π GSU connected space", since the "IFS K" in ρ is not an "IF π GSUOS" and an "IF π GSUCS" in (X, ρ) . Also (X, ρ) is not an "IF π GP connected", since the "IFS K" in ρ is not an "IF π GPOS" and an "IF π GPCS" in (X, ρ) .

Example 4.12: Let $W = \{m, n, k\}$ and $\rho = \{\tilde{0}, K, \tilde{1}\}$ be "IFT" on W, where

 $K = \langle w, (0.5, 0.6), (0.4, 0.2), (0.5, 0.2), (0.3, 0.7) \rangle$

Then (X,ρ) is an "IFC₅-connected space" because the "IFS" $\tilde{0}$ and $\tilde{1}$ are both "IFOS" and "IFCS", but not "IFGO-connected space", because $\tilde{0}$ and $\tilde{1}$ are not "IFOS" and "IFCS" in (X,ρ) .

References

[1] Zadeh, L. A.," Fuzzy sets", Information and control, 8, 338-353, 1965.

[2] Chang C.L, "Fuzzy topological spaces", J. Math. Anal. Appl, 24(1968), 182-190.

[3] Atanassov, K., "Intuitionistic fuzzy sets, Fuzzy Sets and Systems", 20 (1986), 87-96.

[4] Coker D. "An introduction to intuitionistic fuzzy topological spaces", Fuzzy sets and systems, 88(1997), 81-89.

[5] Coker D. and S. Özça^{*}g ., "On connectedness in intuitionistic fuzzy special topological

ISSN: 1813 – 1662 (Print) E-ISSN: 2415 – 1726 (On Line)

Example 4.13: Let $W = \{m, n, k, w\}$ and $\rho = \{\tilde{0}, K, \tilde{1}\}$ be an "IFT" on W, where K =

 $\langle w, (0.6, 0.4), (0.5, 0.1), (0.4, 0.3), (0.4, 0.6), (0.8, 0.2) \rangle$. Then (X, ρ) is "IF π GP connected space"

because the "IFS" $\tilde{0}$ and $\tilde{1}$ are both "IFPOS" and "IFPCS", but not "IF π GSU connected space",

because $\tilde{0}$ and $\tilde{1}$ are not "IFSUOS" and "IFSUCS" in (X, ρ) .

Proposition 4.14: For any "IFTS" (X, ρ) , we have every "IFOS", "IFSUOS", is an "IF π GPOS".

Proof: "IFOS" \rightarrow "IF π GPOS" :

Suppose that (X, ρ) is "IFTS" and $M \subseteq X$. Since every "IFOS" is "IFPOS" also every "IFPOS" is "IFGPOS" in (X, ρ) , thus A^c is an "IFGPCS" in X, so that N^c is an "IF π GPCS" in X. Thus (X, ρ) is "IF π GPCS".

"IFSOS" \rightarrow "IF π GPOS" : it's clear.

Remark 4.15:The converse of above Proposition is not true . the examples bellow shows the converse are not true .

Example 4.16: Let $W = \{m, n\}$ and $H = \langle x, (0.7, 0.1), (0.5, 0.7) \rangle$. Then $\rho = \{\tilde{0}, Q, \tilde{1}\}$ is

in W.

Example 4.17: Let $W = \{r, e\}$ and $S = \langle w, (0.1, 0.9), (0.9, 0.1) \rangle$. Then $\rho = \{\tilde{0}, Q, \tilde{1}\}$ is "IFT" on W. So "IFS

 $M'' = \langle w, (0.2, 0.1), (0.8, 0.2) \rangle$ is "IF π GPOS" but not "IFOS" in W.

spaces" Int. J. Math. Math. Sci. 21 (1998), no. 1, 33-40.

[6] Coker D. and A. H. E.s, "On fuzzy compactness in intuitionistic fuzzy topological spaces", J.

Fuzzy Math. 3 (1995), no. 4, 899–909.

[7] Coker D. and M. Demirci, "On intuitionistic fuzzy points", Notes IFS 1 (1995), no. 2, 79–84.

[8] Sarsak, M.S., and Rajesh, N., " π – Generalized Semi – Pre closed Sets", International Mathematical Forum, 5 (2010), 73-578.

العلاقة بين الترابط من النوع Pre – π والترابط من النوع Supra–π في الفضاءات التبولوجية المضبية الحدسية

عمر صابر مصطفى

قسم الفيزياء ، كلية العلوم ، جامعة تكريت ، تكريت ، العراق

الملخص

ان الهدف من هذا البحث هو تقديم مفاهيم جديدة للترابط المعمم من النوع pre – π في الفضاء التبولوجي المضبب الحدسي ودراسة بعض خواصها. واخيرا درسنا العلاقة بين الترابط من النوع pre – π مع الترابط شبه المعمم من النوع semi–π في الفضاء التبولوجي المضبب الحدسي.