
  
 

  
Tikrit Journal of Pure Science Vol. 27 (2) 2022 
 

57 

 

 

Tikrit Journal of Pure Science 
ISSN: 1813 – 1662 (Print)  --- E-ISSN: 2415 – 1726 (Online) 

 

Journal Homepage: http://tjps.tu.edu.iq/index.php/j 

 

 

A Priori and a Posteriori Error Analysis for Generic Linear Elliptic 

Problems 
Hala Raad , Mohammad Sabawi 

Mathematics Department, College of Education for Women, Tikrit University, Iraq. 

 https://doi.org/10.25130/tjps.v27i2.68  
 

A r t i c l e  i n f o. 
Article history: 

-Received:   30 / 11 / 2021 

-Accepted:     8 / 1 / 2022 

-Available online:  /   / 2022 

Keywords: A posteriori error 

analysis, a priori error analysis, finite 

element methods, elliptic problems, 

system of elliptic equations. 
Corresponding Author: 

Name: Hala Raad 

E-mail:  
hala.raad@st.tu.edu.iq  

mohammad.sabawi@tu.edu.iq 

Tel: 

ABSTRACT 

In this paper, a priori error analysis has been examined for the 

continuous Galerkin finite element method which is used for solving a 

generic scalar and a generic system of linear elliptic equations. We 

derived optimal order a priori error bounds in 𝐻0
1 (energy) norm utilising 

standard a priori error analysis techniques and tools. Also, a posteriori 

error analysis is investigated for a generic scalar linear elliptic equation 

and for a generic system of linear elliptic equations. We derived optimal 

residual-based a posteriori error estimates energy technique in 𝐻0
1 norm. 

 

 

1 Introduction 
The finite element methods (FEMs) are broad family 

of numerical and approximate methods which used 

for solving ordinary differential equations (ODEs) 

and partial differential equations (PDEs) and also it is 

used for solving integro-differential equations (IDEs). 

The FEMs have many excellent numerical features 

that make them popular and widely used in scientific 

computing. The main advantage of the FEMs is its 

ability for solving a wide variety of problems on 

different computational domains with different 

shapes. For example, finite difference methods 

(FDMs) can solve problems on rectangular and 

triangular meshes while FEMs can handle geometries 

of any shapes. The beginning of the FEMs is dated 

back to the 1940s in the works on using variational 

methods for solving engineering problems in 

particular in Courant’s work [1]. Engineers utilised 

the FEMs for solving and approximating a wide range 

of engineering application problems in 1950s and 

1960s. The rigorous mathematical foundation of the 

FEMs started in the late 1970s. From the 1980s and 

onwards a huge number of research papers, 

monographs and books appeared in the literature 

about the FEMs and their applications [2]. 

Elliptic PDEs have been studied extensively during 

the last three decades from different numerical points 

of view and a plethora of references about FEM 

solutions of elliptic problems have been appeared in 

the literature, just to name a few [3 − 16]. In [17] the 

authors solved Poisson equation using FEM and 

derived a posteriori error bounds for the numerical 

method and then they designed an adaptive finite 

element method (AFEM) utilising these a posteriori 

error bounds. The a priori error estimates for a 

coupled semilinear PDE-ODE system (where an 

elliptic PDE coupled with a semilinear ODE) are 

obtained in 𝐻0
1(0, 𝑇; 𝐿2(Ω) norm in [18]. Ern and 

Meunier [19] in (2007) derived a posterirori error 

estimates for EulerGalerkin FEM used for solving 

coupled elliptic-parabolic problems. In [20] Kim et al 

investigated the numerical solution of elliptic 

problems using staggered discontinuous Galerkin 

(SDG) method on rectangular meshes. They obtained 

optimal convergence results in 𝐿2 and 𝐻1 norms.  In 

(2003) Georgoulis [21] studied and investigated the 

ℎ𝑝-version interior penalty (ℎ𝑝-DGFEM) for linear 

elliptic and parabolic equations. Virtanen [22] 

considered and derived adaptive DGFEM for linear 

fourth order elliptic and parabolic equations. 

Guignard in [23] examined the error analysis for low 

regularity elliptic problems with random input data. 

Sabawi [24] examined and derived a posteriori and a 
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priori error estimates for elliptic and parabolic 

interface problems using discontinuous Galerkin 

DGFEM. Also, Cangiani and coworkers studied and 

investigated the adaptivity and convergence of the 

DGFEM for the elliptic and parabolic interface 

problems in [25] and [26], respectively. 

In [27] the authors considered and presented a class 

of post-processing operator in the context of studying 

the a posteriori error analysis for post-processed 

solutions of elliptic problems. Yang [28] in (2020) 

examined and studied the error analysis for elliptic 

problems with low regularity. Ye and Zhang in [29] 

analysed and studied the error estimates for 

continuous and discontinuous weak Galerkin (WG) 

FEMs for elliptic problems with low regularity 

solutions in energy and 𝐿2 norms. Casas and 

coworkers [30] examined the numerical solution of 

semilinear elliptic equations. They proved the 

existence and uniqueness of a sequence of bounded 

solutions in 𝐿∞(Ω). The a posteriori error analysis for 

elliptic obstacle problem is investigated in [31].  

In this paper, we considered deriving the a posteriori 

and a priori error estimates of the FEM solution of 

generic linear elliptic equations and also for generic 

linear systems of elliptic equations using conforming 

Galerkin finite element method. The main 

contribution of this paper is deriving optimal order 

residual based a posteriori error estimates in 𝐻0
1 norm 

for generic scalar linear elliptic equation and also for 

a generic linear system of elliptic equations using 

energy techniques. Additionally, optimal order a 

priori error bounds in 𝐻0
1 norm for generic scalar 

linear elliptic problem and for a generic linear system 

of elliptic equtions are obtained using energy 

arguments and standard interpolation error estimates.  

This paper is organised as follows. In section 2 we 

give the necessary and relevant definitions and 

preliminaries of the problem. The a posteriori error 

bounds for a general scalar linear elliptic equation 

and for a general linear system of elliptic equations 

are derived in section 3. Section 4 is devoted for the a 

priori error analysis for the general scalar linear 

elliptic equation and for a general linear system of 

elliptic equations. The conclusions are given in 

section 5. 

2 Problem Setting and Notation 
Consider the following generic scalar elliptic 

boundary value problem as a mathematical model 

𝐴𝑢 +  𝜅𝑢 = 𝑓 𝑜𝑛 Ω,     (1) 
𝑢 = 0 𝑜𝑛 𝜕Ω,  

where 𝐴: 𝑉 →  𝑉 is a second order self-adjoint linear 

elliptic operator, 𝜅 ≥  0 is a parameter and Ω is a 

bounded domain in 𝑅𝑛 , 𝑛 ≥  1 with sufficiently 

smooth boundary 𝜕Ω. The solution function 𝑢 ∈
𝐻2(Ω) ∩ 𝐻0

1(Ω)and the source function 𝑓 ∈  𝐿2(Ω). 

For simplicity of notations, we use 𝑉 = 𝐻0
1(Ω) unless 

otherwise stated. Testing (1) with a test function 

𝑣 ∈  𝑉, and then integrating the resulting equation 

over the domain Ω, yields 

𝑎(𝑢, 𝑣) = ℓ(𝑣),    ∀𝑣 ∈ 𝑉.   (2) 

𝑎(𝑢, 𝑣)  =    ∫
Ω

(𝐴𝑢 + 𝑘𝑢)𝑣 𝑑𝑥, ∀ 𝑣 ∈ 𝑉,         (3) 

where 𝑎 is the bilinear form associated with the linear 

elliptic operator 𝐴 defined by 

(𝐴𝑢, 𝑣)  =  𝑎(𝑢, 𝑣), ∀𝑣 ∈  𝑉,    (4) 

and is ℓ(𝑣) a linear functional defined by 

ℓ(𝑣)  =  (𝑓, 𝑣)  =  ∫
Ω

 𝑓𝑣 𝑑𝑥, ∀ 𝑣 ∈  𝑉.  (5) 

Also, the bilinear form a(. , . ) satisfies the continuity 

(boundedness) and coercivity (𝑉-ellipticity) 

conditions as follows 

𝑎(𝑢, 𝑤) ≥  𝐶 𝑐𝑜𝑛𝑡‖𝑢‖𝑉 ‖𝑤‖𝑉 ,    ∀𝑢, 𝑤 ∈  𝑉,  (6) 

𝑎(𝑢, 𝑢)  ≥  𝐶 𝑐𝑜𝑒𝑟||𝑢||𝑣
2 ,    ∀𝑢 ∈  𝑉,    (7) 

where 𝐶𝑐𝑜𝑛𝑡  and 𝐶𝑐𝑜𝑒𝑟  are positive constants. Now, we 

seek to find a finite element approximate solution of 

𝑢 which satisfies 

𝑎(𝑢ℎ, 𝑣)  =  (𝑓, 𝑣), ∀𝑣 ∈  𝑉,  (8) 

picking 𝑣 =  𝜑 ∈  𝑉ℎ  ⊂  𝑉 in the weak form (8), 

then the problem becomes: find 𝑢ℎ  ∈  𝑉ℎ  such that 

𝑎(𝑢ℎ, 𝜑)  =  (𝑓, 𝜑), ∀𝜑 ∈  𝑉ℎ.   (9) 

The right-hand side function 𝑓 can be approximated 

using its 𝐿2  projection 𝑓ℎ  which is defined by 

 (𝑓, 𝜑)  =  (𝑓ℎ, 𝜑), ∀𝜑 ∈  𝑉ℎ,  (10) 

where 𝑓ℎ  =  𝑃0𝑓 is the 𝐿2  projection of f and 

𝑃0 ∶  𝐿2  →  𝑉ℎ  is the 𝐿2  projection operator. Also, 

define the discrete elliptic operator 𝐴ℎ ∶  𝑉ℎ  →  𝑉ℎ  as 

 (𝐴ℎ𝑣, 𝜑)  =  𝑎(𝑣, 𝜑), ∀𝜑 ∈  𝑉ℎ,  (11) 

using (10) in the variational form (9), we obtain 

𝑎(𝑢ℎ, 𝜑) =  (𝑓ℎ, 𝜑), ∀𝜑 ∈  𝑉ℎ,  (12) 

which can be written as 

(𝐴ℎ𝑢ℎ  +  𝜅𝑢ℎ  −  𝑓ℎ, 𝜑) =  0, ∀𝜑 ∈  𝑉ℎ,   (13) 

which can be expressed in the pointwise form as 

𝐴ℎ𝑢ℎ  +  𝜅𝑢ℎ  −  𝑓ℎ  =  0,  (14) 

since 𝐴ℎ𝑢ℎ  +  𝑘𝑢ℎ  −  𝑓ℎ  ∈  𝑉ℎ  and its projection 

with respect to every element in 𝑉ℎ  is zero. We can 

conclude from (14), that the approximate finite 

element solution 𝑢ℎ  of the original elliptic PDE 

problem in (1) is the true solution of the elliptic PDE 

with discrete elliptic operator 𝐴ℎ  and the right-hand 

side function 𝑓ℎ. The pointwise form (14) is the 

discrete version of the original elliptic PDE in (1). 

3  A Priori Error Analysis of Linear Elliptic 

Problems 

The a priori error analysis is very important topic in 

the study of error analysis and convergence analysis 

of differential equations using FEMs and other 

methods. In a priori error analysis we are interested in 

finding an error estimator of the form 

||𝑒||𝑣 = ||𝑢 − 𝑢ℎ||𝑣 ≤ (𝑢, 𝑓, 𝑉).  (15) 

Notice that in general, the bound in the a priori error 

analysis depends upon the data of the problem, the 

forcing term 𝑓, the exact solution 𝑢 of the problem 

and the space 𝑉. The a priori error bounds in general 

are not computable since they depend on the exact 

solution of the problem u which in most cases is 

unknown. While the a posteriori error estimators are 

computable and can be computed since they depend 

on the approximate solution 𝑢ℎ  which is known. For 

this reason, we use a posteriori error bounds in 

designing adaptive numerical methods. While the a 

priori error analysis is used in the study of 
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convergence of the exact solution of the original 

problem. The a priori error analysis is used in finding 

the order of convergence of the exact solution and it 

tells us the required information about how the 

convergence is fast or how it is slow. In our problem, 

the a priori error bound depends on the data of the 

problem, the right-hand side function 𝑓, and the exact 

solution 𝑢 of the original problem (1). In this section, 

we consider deriving a priori error bounds for a 

generic scalar linear elliptic equation and for a 

generic linear system of elliptic equations. 

3.1 A Priori Error Analysis for a Generic Scalar 

Linear Elliptic Problems 

In this section we derive a priori error estimates for a 

generic scalar linear elliptic PDE in (1). Now we start 

the error analysis by subtracting (9) from (2), we 

obtain 

𝑎(𝑢 − 𝑢ℎ, 𝜓)  =  (𝑓 −  𝑓ℎ, 𝜓)  =  0, ∀𝜓 ∈  𝑉ℎ .  (16) 

Now, we splitting the error in the following form 

𝑒 =  𝑢 −  𝑢ℎ  =  (𝑢 −  𝜋𝑢)  +  (𝜋𝑢 − 𝑢ℎ)  =  𝜌 +
 𝜃, (17) 

where 𝜋𝑢 ∈  𝑉ℎ is the interpolant of the exact 

solution 𝑢 ∈  𝑉, 𝜌 =  𝑢 −  𝜋𝑢 represents the 

interpolation error which is available in the literature. 

The idea here is to bound the quantity 𝜃 =  𝜋𝑢 −
 𝑢ℎ  ∈  𝑉ℎ  for which we do not have a bound by the 

quantity in terms of ρ for which we have a bound, 

consequently, the whole error e can then be bounded 

in terms of 𝜌, i.e., 

||𝑒||𝑣 = ||𝑢 − 𝑢ℎ||𝑣 = ||(𝑢 − 𝜋𝑢) + (𝜋𝑢 − 𝑢ℎ)||𝑣 =

||𝜌 + 𝜃||𝑣 ≤ ||𝜌||
𝑣

+ ||𝜃||
𝑣

,      (18) 

then, we need to bound 𝜃 by a bound depends upon 𝜌 

i.e., 

||𝜃||𝑣  ≤ E(ρ).  (19) 

Finally, the whole error is bounded by a bound in 

terms of 𝜌 

||𝑒||𝑣 = ||𝜌 + 𝜃||𝑣 ≤ 𝐸(𝜌) + ||𝜌||
𝑣

= 𝐹(𝜌).  (20) 

Note that from now on we use the following notation 

for the energy norm ||. ||𝐻0
1(Ω) = ||. ||0 . 

Theorem 3.1 (𝐇𝟎
𝟏 A Priori Error Bound for a 

Generic Scalar Linear Elliptic Equation)  

The finite element approximate solution 𝑢ℎ  of the 

problem (1), satisfies the following a priori energy 

(H0
1) error estimate 

||𝑒||0 = ||𝑢 − 𝑢ℎ||0  ≤ 𝐶3ℎ̃||𝐷𝑢||𝐿2(Ω).    (21) 

Proof. Substituting 𝑒 =  𝜌 +  𝜃 in (16), and testing 

with 𝜓 =  𝜃, we have 

𝑎(𝜃, 𝜃)  =  −𝑎(𝜌, 𝜃)  =  𝑎(−𝜌, 𝜃),   (22) 

using the continuity and ellipticity of 𝑎(. , . ), we have 

  ||𝜃||0 ≤ 𝐶1||𝜌||0,    (23) 

where 𝐶1  =  𝐶𝑐𝑜𝑛𝑡/𝐶𝑐𝑜𝑒𝑟 , and 

||𝜌||0 = ||∇𝜌||𝐿2(Ω) =  ||∇(𝑢 − 𝜋𝑢)||𝐿2(Ω) ≤

𝐶 ∑ ℎ𝑘
2

𝑘∈𝑇 ||𝐷𝑢||
𝐿2(Ω)

, 

which represents the 𝐿2  norm of the gradient of the 

interpolation error and 𝐷 is the total derivative 

 of the function 𝑢, and  

||𝜌||𝐿2(Ω)
2 = ||𝑢 − 𝜋𝑢||𝐿2(Ω)

2 ≤ 𝐶 ∑ ℎ𝑘
4

𝑘∈𝑇 ||𝐷𝑢||𝐿2(Ω) .
2   

(24) 

Now, let ℎ̃ = 𝑚𝑎𝑥𝑘∈𝑇
 ℎ𝐾  hence, we get 

||𝜌||𝐿2(Ω) ≤ 𝐶ℎ̃2||𝐷𝑢||𝐿2(Ω),   (25) 

||∇𝜌||𝐿2(Ω) ≤ 𝐶ℎ̃||𝐷𝑢||𝐿2(Ω).   (26) 

From (26), we have 

||𝜌||0 = ||∇𝜌||𝐿2(Ω) ≤ 𝐶ℎ̃||𝐷𝑢||𝐿2(Ω).  (27) 

Hence, 

||𝜃||0 ≤ 𝐶2ℎ̃||𝐷𝑢||𝐿2(Ω)
,   (28) 

where 𝐶2  =  𝐶𝐶1. Finally, combining both bounds in 

(27) and (28) yields the required estimate 

||𝑒||0 ≤ ||𝜃||
0

+ ||𝜌||
0

≤ 𝐶2ℎ̃||𝐷𝑢||
𝐿2(Ω)

+

𝐶ℎ̃||𝐷𝑢||
𝐿2(Ω)

= 𝐶3ℎ̃||𝐷𝑢||
𝐿2(Ω),

   (29) 

where 𝐶3  =  𝐶 + 𝐶2. Note that since 𝑢ℎ  is a 

piecewise linear then 𝐷𝑢 is a piecewise constant 

function and 𝐷2𝑢ℎ  =  0, where 

𝐷𝑢ℎ
=

𝜕𝑢ℎ

𝜕𝑥
+  

𝜕𝑢ℎ

𝜕𝑦
 ,  

𝐷𝑢ℎ
2 =

𝜕𝑢ℎ
2

𝜕𝑥2 + 2
𝜕𝑢ℎ

2

𝜕𝑥𝜕𝑦
+

𝜕𝑢ℎ
2

𝜕𝑦2 .  

3.2 A Priori Error Analysis of Generic Systems 

of Linear Elliptic PDEs 

The techniques and results of a priori and a posteriori 

error analysis for a generic scalar elliptic PDE can be 

extended and generalised to a generic system of any 

size of elliptic PDEs. For simplicity, we consider a 

generic linear elliptic system of two equations, noting 

that the case of a system of n equations follows 

similarly 

−𝜖11Δ𝑢 − 𝜖21Δv + 𝑘11𝑢 + 𝑘21𝑣 = 𝑓1,     

−𝜖21Δ𝑢 − 𝜖22Δv + 𝑘21𝑢 + 𝑘22𝑣 = 𝑓2 ,              (30) 

𝑢 = 𝑣 = 0  𝑜𝑛  𝜕Ω ,  
where 𝜖11, 𝜖12, 𝜖21, 𝜖22 are diffusion parameters, 

𝑘11, 𝑘12, 𝑘21, 𝑘22 are non-negative parameters and 

𝑓1, 𝑓2 are source functions of 𝑥, 𝑦. For convenience, 

we introduce a vector function 

𝑤: 𝐿2(Ω)  ×  𝐿2(Ω)  →  𝑅, where, 𝑤 =  (𝑢
𝑣

), 

using this notation, we can express the system as a 

generic scalar vector elliptic equation 

−𝜖Δ𝑤 + 𝑘𝑤 = 𝑓,  (31) 

where 𝜖 = ( 𝜖11        𝜖12
𝜖21       𝜖22      

) , Δ𝑤 is the Laplacian 

operator defined elementwise Δ𝑤 = (Δ𝑢
Δ𝑣

) and the 

function 𝑓 =  (𝑓1
𝑓2

). To write (31) in the weak form, 

we first multiply it by a vector function 𝜓 ∈ 𝐻 =

𝐻0
1(Ω) ∩ 𝐻0

1(Ω) with 𝜓 = (𝜓1
𝜓2

), where 𝜓1, 𝜓2 ∈ 𝑉 =

𝐻0
1(Ω), integrating over the domain Ω, we get 

∫
Ω

 (−𝜖𝛥𝑤 + 𝑘𝑤)𝜓 𝑑𝑥 = ∫
Ω

 𝑓𝜓 𝑑𝑥.  (32) 

Integrating the first term on the right-hand side of 

(32) using Green’s formula to obtain 

∫
Ω

 (−𝛥𝑤)𝜓 𝑑𝑥 =  ∫
Ω

𝛻𝑤𝛻𝜓 𝑑𝑥 − 𝛻𝑤𝜓|𝜕𝛺 =

∫
Ω

 𝛻𝑤𝛻𝜓 𝑑𝑥,   (33) 

since ψ = 0 on ∂Ω because 𝜓 = (𝜓1
𝜓2

) and ψ1 = ψ2 = 0 

on ∂Ω. Substituting (33) in (32), we get 

∫
Ω

(𝜖𝛻𝑤𝛻𝜓 + 𝑘𝑤𝜓)𝑑𝑥 = ∫
Ω

 𝑓𝜓 𝑑𝑥 , ∀𝜓 ∈ 𝐻.  

Then, the variational formulation becomes 

𝑎(𝑤, 𝜓)  =  (𝜓), ∀𝜓 ∈  𝐻,   (34) 
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where 

𝑎(𝑤, 𝜓) =  ∫
Ω

 (𝜖𝛻𝑤𝛻𝜓 + 𝑤𝜓)𝑑𝑥 ∀ 𝑤, 𝜓 ∈ 𝐻,  

and 𝑎(. , . ) is the bilinear form defined as 𝑎: 𝐻 ×
 𝐻 →  𝑅 and ℓ is linear functional ℓ : 𝐻 →  𝑅 

defined by 

𝑙(𝜓) =  ∫
Ω

  𝑓𝜓 𝑑𝑥 , ∀ 𝜓 ∈ 𝐻,    

where 

𝑎(𝑤, 𝜓) =  ∫
Ω

(𝜖∇𝑤∇𝜓 + 𝑘𝑤𝜓)𝑑𝑥 = ∫
Ω

(𝜖∇𝑢∇𝜓1 +

𝑘𝑢𝜓1)𝑑𝑥 +  ∫
Ω (𝜖∇𝑢∇𝜓1 + 𝑘𝑢𝜓2) 𝑑𝑥 = 𝑎(𝑢, 𝜓1) +

𝑎(𝑣, 𝜓2), 
which represents the bilinear form on 𝑉 × 𝑉. The 

right-hand side is defined by 

ℓ(𝜓) =  ∫
Ω 𝑓𝜓 𝑑𝑥 = ∫

Ω 𝑓1 𝜓1 + ∫
Ω 𝑓2𝜓2 𝑑𝑥 =

ℓ(𝜓1) + ℓ(𝜓2) = (𝑓1, 𝜓1) + (𝑓2, 𝜓2), 
which represents the 𝐿2(Ω) inner product. The 𝐻 

norm is defined as 

||𝑤||𝐻
2 =  ∫

Ω
 (𝜖(∇𝑤)2 + 𝑘𝑤2)𝑑𝑥 = ||𝑢||𝐻

2 + ||𝑣||𝐻
2 . 

To solve this problem numerically, we seek an 

approximation 𝑤ℎ =  (𝑢ℎ
𝑣ℎ

)  ∈  𝑉ℎ = (𝑉ℎ × 𝑉ℎ) ⊂ 𝐻, 

which is a vector of finite element approximations of 

the functions u and v. Hence the problem becomes: 

find 𝑤ℎ  ∈  𝑉ℎ  such that 

𝑎(𝑤ℎ , 𝜑)  =  (𝜑), ∀𝜑 ∈  𝑉ℎ.    (35) 

Theorem 3.2 (𝑯𝟎
𝟏 A Priori Error Bound for a 

Generic Linear Elliptic System) The finite element 

approximate solution wh of the problem (30), satisfies 

the following a priori energy (H0
1) error estimate 

||e||0 =  ||w − wh||0  ≤  �̃�ℎ̃ (||u||
L2(Ω)

+

||v||
L2(Ω)

) = �̃�ℎ̃||Dw||
L2(Ω)

.  (36) 

Proof. The numerical error 𝑒 =  𝑤 −  𝑤ℎ  can be 

split up in the following form 

𝑒 =  𝑤 −  𝑤ℎ  =  (𝑤 −  𝜋𝑤)  +  (𝜋𝑤 −  𝑤ℎ)  =
 𝜌 +  𝜃, 

where 𝜌 =  𝑤 −  𝜋𝑤 ∈  𝐻 represents the 

interpolation error of w and ρ also can be split up as 

𝜌 =  𝑤 −  𝜋𝑤 =  𝜌1 +  𝜌2  =  (𝑢 −  𝜋𝑢)  + (𝑣 −
 𝜋𝑣),  where 

||𝜌||0 ≤ ||𝜌1||
0

+ ||𝜌2||
0

=  ||𝑢 − 𝜋𝑢||
0

+

||𝑣 − 𝜋𝑣||0, 

≤ 𝐶ℎ||𝐷𝑢||
𝐿2(Ω)

+ 𝐶ℎ||𝐷𝑣||𝐿2(Ω)  

𝐶ℎ(||𝐷𝑢||𝐿2(Ω) + ||𝐷𝑣||
𝐿2(Ω)

= 𝐶ℎ||𝐷𝑤||
𝐿2(Ω)

,  

where 𝜌1  represents the interpolation error of 𝑢 and 

𝜌2  represents the interpolation error of 𝑣. 
Consequently, we have 

||𝜌||0 ≤ 𝐶ℎ||𝐷𝑤||𝐿2(Ω), 

while 𝜃 =  𝜋𝑤 − 𝑤ℎ  ∈  𝑉ℎ, we do not have a bound 

of 𝜃 and we use the known bound of 𝜌 to bound θ 

and consequently obtaining a bound of the total error 

𝑒 as follows 

||𝑒||0 =  ||𝜌 + 𝜃||0 ≤ ||𝜌||
0

+ ||𝜃||
0

,  

we want to have a bound such that 

||𝜃||0 ≤ 𝐶||𝜌||0, 

and hence, we get 

||𝑒||0 ≤ ||𝜌||
0

+ ||𝜃||
0 

≤ 𝐶^||𝜌||
0

.  

Subtracting (35) from (34) results in 

𝑎(𝑒, 𝜑)  =  𝑎(𝑤 −  𝑤ℎ, 𝜑)  =  𝑎(𝜌 +  𝜃, 𝜑)  =
 0, ∀𝜑 ∈  𝑉ℎ.  
Now, testing by 𝜑 =  𝜃, and using some 

mathematical manipulations leads to 

𝑎(𝜃, 𝜃)  =  −𝑎(𝜌, 𝜃)  =  𝑎(−𝜌, 𝜃),  
using coercivity and continuity of the bilinear form, 

we have 

||𝜃||0  ≤  𝐶1||𝜌||
0

,  

where 𝐶1  =  𝐶𝑐𝑜𝑛𝑡/𝐶𝑐𝑜𝑒𝑟 . Finally, we get 

||𝑒||0 ≤ ||𝜌||
0

+ ||𝜃||
0 

≤ ||𝜌||
0 

+𝐶1||𝜌||
0

=

𝐶2||𝜌||
0

,  

where 𝐶2  =  1 + 𝐶1. Consequently, we have, 

 ||𝑒||0 ≤ 𝐶2||𝜌||
0

= 𝐶2𝐶ℎ||𝐷𝑤||
𝐿2(Ω)

=

𝐶2𝐶ℎ (||𝑢||
𝐿2(Ω)

+ ||𝑣||
𝐿2(Ω)

) = 𝐶 `ℎ||𝐷𝑤||
𝐿2(Ω)

,  

where �̃�  =  𝐶2𝐶. 

4 A Posteriori Error Analysis of Linear 

Elliptic PDEs 
A posteriori error analysis is a very important and 

efficient technique in devising robust, efficient and 

effective adaptive methods. It is used for finding a 

bound or estimate for the error 𝑒 =  𝑢 − 𝑢ℎ in terms 

of the approximate solution uh, data of the problem 

and the right-hand side function 𝑓. We need to find an 

a posteriori estimator function 𝐹 =  𝐹(𝑢ℎ, 𝑓; 𝑉 ) 

which depends upon the functions 𝑢ℎ, 𝑓 and the space 

𝑉, such that 𝑓 satisfies the following relation 

||𝑒||
𝑉

 = ||𝑢 −  𝑢ℎ||
𝑉

 ≤  𝐹(𝑢ℎ, 𝑓; 𝑉). The a 

posteriori error estimators help in reducing the 

computational cost of solving a problem using the 

numerical method and this is the crucial aspect for 

any effective and reliable adaptive method. In this 

section, we derive the a posteriori residual based error 

bounds for a generic scalar linear elliptic equation 

and a generic linear system of elliptic equations. 

4.1 A Posteriori Error Analysis for a Generic 

Scalar Linear Elliptic Problems 

We consider the BVP (1) when 𝐴 = −𝜖 Δ which 

becomes 

−𝜖Δ𝑢 + 𝑘𝑢 = 𝑓 𝑜𝑛 Ω,     (37) 

𝑢 = 0 𝑜𝑛 𝜕Ω, 
where 𝜅, 𝑢, 𝑓 as in (1) and 𝜖 > 0 is the diffusion 

parameter. 

Theorem 4.1 (𝑯𝟎
𝟏 𝑨 Posteriori Error Bound for a 

Generic Scalar Linear Elliptic Equation)  
The finite element approximate solution uh of the 

problem (37), satisfies the following a posteriori 

energy (H0
1) error estimate 

||e||0
2 + ||u − uh||0 

2 ≤ ∑ ξk
2

k∈T (uh),    (38) 

where 𝜉𝐾(𝑢ℎ) is the element wise residual which is 

defined as 

ξk(uh) =

hk||R(uh)||L2(Ω) +
1

2
 h

k

1
2⁄

 ||[n. ∇uh]||
L2(∂k

∂Ω⁄ ) 
 ,  (39) 

where R(uh) = f + ϵΔuh + kuh  is the residual which 

expresses the amount the approximate solution uh 

misses to satisfy the weak form and 𝑅 ∈  𝑉0 
is the 

residual operator and 𝑉0 
is the dual space of  V =
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H0
1(Ω), and [𝑛. 𝛻𝑢ℎ] is the jump in the normal 

derivative of the approximate solution 𝑢ℎ  on the 

interior edges of element 𝐾. 

Proof. Subtracting the finite element approximation 

weak form (9) from (2), this yields 

𝑎(𝑢 − 𝑢_ℎ, 𝑣) =  ∫
Ω

 (𝜖𝛻(𝑢 − 𝑢_ℎ ). 𝛻𝑣 + 𝑘(𝑢

− 𝑢_ℎ )𝑣)𝑑𝑥 = 0 ,   ∀𝑣 ∈ 𝑉. (40) 
Let 𝑒 =  𝑢 −  𝑢ℎ, then we get 

𝑎(𝑒, 𝑣) =  ∫
Ω  (𝜖∇𝑒. ∇𝑣 + 𝑘𝑒𝑣)𝑑𝑥 = 0 ,       ∀ 𝑣 ∈

𝑉.  (41) 

Now, test by 𝑣 =  𝑒 ∈  𝑉, we obtain 

𝑎(𝑒, 𝑒) =  ||𝑒||0
2 = ∫

Ω
(𝜖(∇e)2 + 𝑘𝑒2)𝑑𝑥 = 0.    (42) 

Note that𝑒 ∈ 𝐻0
1(Ω) since 𝑒 =  𝑢 − 𝑢ℎ  =  0 on 𝜕Ω 

and ||𝑒||
0

 = ||𝑒||
1 when   𝜖 = 𝑘 = 1. Using Galerkin 

orthogonality, we have 

||𝑒||0
2 = 𝜖∫

Ω ∇𝑒. ∇(𝑒 − 𝜋𝑒)𝑑𝑥 + 𝑘 ∫
Ω

𝑒(𝑒 − 𝜋𝑒)𝑑𝑥 ,  

(43) 

where 𝜋𝑒 is the interpolant of 𝑒. Integrating 

elementwise and using Green’s formula on the first 

integral on the left-hand side, we obtain 

||𝑒||0
2 = 𝜖∫

Ω
∇𝑒. ∇(𝑒 − 𝜋𝑒)𝑑𝑥 + 𝑘 ∫

Ω
𝑒(𝑒 − 𝜋𝑒)𝑑𝑥 =

∑ −𝑘∈𝑇 𝜖⨜Ω  ∆𝑒(𝑒 − 𝜋𝑒)𝑑𝑥   

+𝜖 ∫
𝜕Ω

 𝑛. ∇𝑒(𝑒 − 𝜋𝑒)𝑑𝑠 + ∑ 𝑘𝑘∈𝑇 ∫
Ω

 e(e − πe)𝑑𝑥,  

where 𝑇 is the triangulation of the domain Ω. Notice 

that 𝑒 and its interpolant πe both vanish on the 

boundary (𝜕Ω), this yields 

 ||𝑒||0
2 = ∑ −𝑘∈𝑇 𝜖∫

𝐾   ∇𝑒. ∇(𝑒 − 𝜋𝑒)𝑑𝑥 + 𝑘 ∫
𝐾

𝑒(𝑒 −

𝜋𝑒) 𝑑𝑥 = ∑ −  𝑘∈𝑇  𝜖∫
∂k/∂Ω  

  Δ𝑒(𝑒 − 𝜋𝑒)𝑑𝑥 + 𝜖∫
𝜕Ω

 

𝑛. ∇𝑒(𝑒 − 𝜋𝑒)𝑑𝑠 + ∑ 𝑘𝑘∈𝑇 ∫
K

 e(e − πe)𝑑𝑥.    (44) 

Upon observing that (−𝜖Δ𝑒 + 𝑘𝑒)|𝑘 = (𝑓 + 𝜖Δ𝑢ℎ −
𝑘𝑢ℎ)|𝑘 , we obtain 

||𝑒||0
2 = ∑ ∫

𝐾
(𝑓 + 𝜖Δ𝑢ℎ − 𝑘𝑢ℎ)(𝑒 − 𝜋𝑒)𝑑𝑥𝑘∈𝑇  + 

∑ 𝜖𝑘∈𝑇 ∫
∂k/∂Ω 

 𝑛. ∇𝑒(𝑒 − 𝜋𝑒)𝑑𝑠,    (45) 

since we have two contributions from each edge 𝐸 

(because the edge 𝐸 is a common edge between two 

elements (triangles) K
+ 

and K
−
, considering these 

contributions, we arrive at 

∫
∂k+/∂k−   

𝑛. ∇𝑒(𝑒 − 𝜋𝑒)𝑑𝑠 = ∫
𝐸

(𝑛+. ∇𝑒+ (𝑒+ −

 𝜋𝑒+) + 𝑛−. ∇𝑒− (𝑒− − 𝜋𝑒−)) 𝑑𝑠,     (46) 

since the error function is continuous, so we have 

(𝑒 +  − 𝜋𝑒+)|𝐸 =  (𝑒 − − 𝜋𝑒−)|𝐸.  
Therefore, 

∫
∂k+/∂k−   

𝑛. ∇𝑒(𝑒 − 𝜋𝑒)𝑑𝑠 = ∫
𝐸  (𝑛+. ∇𝑒+ (𝑒+ −

 𝜋𝑒+) + 𝑛−. ∇𝑒− (𝑒− − 𝜋𝑒−)) 𝑑𝑠      (47) 

= ∫
𝐸

 (𝑛+. ∇𝑒+ + 𝑛− ∇𝑒−)(𝑒 − 𝜋𝑒) 𝑑𝑠.  

Also, since 𝑢ℎ  is a piecewise linear function then its 

⨜∂k/∂Ω 𝑛. ∇𝑒(𝑒 − 𝜋𝑒)𝑑𝑠 gradient 𝛻𝑢ℎ|𝐸   is a piecewise 

constant function and in general is not continuous. 

Hence, we should take into consideration that the 

jump in normal derivative 𝑛. 𝛻𝑢ℎ  may be different on 

neighbouring elements 𝐾+ 
and 𝐾−. In addition, the 

gradient ∇u|E is continuous, so the jump term 
(𝑛+. 𝛻𝑢+  +   𝑛−. 𝛻𝑢−)|𝐸  =  0. Consequently, we 

obtain 

∫
𝐸

 (n
+
.∇e

+ 
+ n

−
.∇e

−
)(e − 

πe) ds = 

=  - ∫
𝐸  [𝑛. ∇𝑢ℎ](𝑒 −

 𝜋𝑒) 𝑑𝑠. 

   − ∫
𝐸

 (n
+
.∇u

+
h + n

−
.∇u

−
h 

)(e − πe) ds    

     (48)                                                                        

 

 

From (48), we conclude that 

∑ ∫
𝐾𝑘∈𝑇 𝑛. ∇𝑒(𝑒 − 𝜋𝑒)𝑑𝑠 =

 − ∑ ∫
𝐸𝐸∈𝐸1

 [𝑛. ∇𝑢ℎ] (𝑒 − 𝜋𝑒)𝑑𝑠.  (49) 

Using the fact that each element contributes by half 

amount of the jump, we finally have 

||𝑒||0
2 = ∑ ∫

𝐾
(𝑓 + Δ𝑢ℎ − 𝑘𝑢ℎ)(𝑒 − 𝜋𝑒)𝑑𝑥𝑘∈𝑇 −

1

2
 ∫

∂k/∂Ω  
[𝑛. ∇𝑢ℎ (𝑒 − 𝜋𝑒)𝑑𝑠.   (50) 

The equation in (50) is called the error representation 

formula. Now, returning back to the first term on the 

right-hand side of (50), we can bound it using the 

standard interpolation error bounds and Cauchy - 

Schwarz inequality to obtain 

  ∫𝐾
(𝑓 + 𝜖Δ𝑢ℎ − 𝑘𝑢ℎ)(𝑒 − 𝜋𝑒)𝑑𝑥 ≤ ||𝑓 + 𝜖Δ𝑢ℎ −

𝑘𝑢ℎ||
𝐿2(𝑘)

 ||𝑒 − 𝜋𝑒||𝐿2(𝑘) (51) 

≤ ||𝑓 + 𝜖Δ𝑢ℎ − 𝑘𝑢ℎ||
𝐿2(𝑘)

 𝐶ℎ𝑘  ||𝐷𝑒||𝐿2(𝑘). 

Using the scaled trace inequality for the edge 

contribution, we get 

||𝑒 − 𝜋𝑒||𝐿2(𝜕𝑘)  ≤ 𝐶(ℎ𝑘
−1 ||𝑒 − 𝜋𝑒||

𝐿2(𝑘)

2
+

ℎ𝑘  ||∇(𝑒 − 𝜋𝑒)||
𝐿2(𝑘)

2
). (52) 

Inserting (52) in (51) with the aid of the Cauchy-

Schwarz inequality, we get 

∫
∂k [𝑛. ∇𝑢ℎ](𝑒 − 𝜋𝑒)𝑑𝑠 ≤ ||[𝑛. ∇𝑢ℎ]||

𝐿2(𝜕𝑘)
||𝑒 −

𝜋𝑒||
𝐿2(𝜕𝑘)

   (53) 

≤ ||[𝑛. ∇𝑢ℎ]||
𝐿2(𝜕𝑘)

𝐶(ℎ𝑘
−1 ||𝑒 − 𝜋𝑒||

𝐿2(𝑘)

2
+

ℎ𝑘  ||D(𝑒 − 𝜋𝑒)||
𝐿2(𝑘)

2
)  

||[𝑛. ∇𝑢ℎ]||
𝐿2(𝜕𝑘)

𝐶ℎ𝑘

1
2  ||𝐷𝑒||𝐿2(𝑘) .  

Notice that, we used in (53), the standard 

interpolation error estimates. Combining (51) and 

(53) in (54), we finally have 

 ||𝑒||0
2  ≤ 𝐶 ∑ (ℎ𝑘

2
𝑘∈𝑇 ||𝑓 + 𝜖Δ𝑢ℎ − 𝑘𝑢ℎ||

0

2
+

1

2
ℎ𝑘

1
2⁄

 ||[𝑛. ∇𝑢ℎ]||
𝐿2(𝜕𝑘

𝜕Ω⁄ )

2
= 𝐶 ∑ 𝜉𝑘

2
𝑘∈𝑇 (𝑢ℎ).  (54) 

4.2 A Posteriori Error Analysis for a Generic 

System of Linear Elliptic Equations 

In this section, we consider deriving a posteriori error 

estimate for the general linear system of elliptic 

equations in (30). 

Theorem 4.2 (𝐇𝟎
𝟏 A Posteriori Error Bound for a 

Generic Linear Elliptic System)  

The finite element approximate solution wh of the 

problem (30), satisfies the following a posteriori 

energy (H0
1) error estimate 

||e||0
2 = ||w − wh||0

2 ≤ C ∑ ξk
2

k∈T (wh),  (55) 

where ξK(wh) is the elementwise residual which is 

defined as ξk(wh) =  hk||R(wh)L2(Ω) +
1

2
 h

k

1
2⁄

||[n. ∇wh]||
𝐿2(𝜕𝑘

𝜕Ω⁄ )
,  (56) 

where  R(wh) = f + ϵΔwh + kwh  is the residual 

which expresses the amount the approximate solution 
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wh misses to satisfy the weak form and 𝑅 ∈  𝑉0
 
is the 

residual operator, and [𝑛. 𝛻𝑤ℎ] is the jump in the 

normal derivative of the approximate solution 𝑤ℎ  on 

the interior edges of element 𝐾. 

Proof. Following the same steps as before, we arrive 

at the following weak forms 

𝑎(𝑤, 𝜑) = ℓ(𝜑), ∀𝜑 ∈  𝑉ℎ , (57)  

And 

𝑎(𝑤ℎ , 𝜑) = ℓ(𝜑), ∀𝜑 ∈  𝑉ℎ , (58)  

subtracting (58) from (57), we get 

𝑎(𝑒, 𝜙) = 𝑎(𝑤 − 𝑤ℎ , 𝜙) = 0,      ∀∈ 𝑣ℎ, 

where 

𝑒 = 𝑤 − 𝑤ℎ = (𝑢
𝑣

) − (𝑢ℎ
𝑣ℎ

) =  (𝑢−𝑢ℎ
𝑣−𝑣ℎ

) = (𝑒𝑢
𝑒𝑣

). 

Now, testing by 𝜑 =  𝑒 ∈  𝐻, we have 

𝑎(𝑒, 𝑒) = ||𝑒||0
2 = ∫

Ω
  (𝜖(∇𝑒)2 + 𝑘𝑒2)𝑑𝑥.  

Using Galerkin orthogonality, we get 

||𝑒||0
2 = 𝜖 ∫

Ω
∇𝑒∇(𝑒 − 𝜋𝑒)dx +k ∫

Ω
 𝑒(𝑒 − 𝜋𝑒) 𝑑𝑥 =

∑ −𝜖∫
𝐾

Δ𝑒(𝑒 − 𝜋𝑒)𝑑𝑥𝑘∈𝑇  

+𝜖∫
∂k 𝑛. ∇𝑒(𝑒 − 𝜋𝑒)𝑑𝑠 + ∑ ∫

𝐾𝑘∈𝑇 𝑒(𝑒 − 𝜋𝑒)𝑑𝑥, 
where 

𝜋𝑒 = (𝜋𝑒𝑢
𝜋𝑒𝑣

) = (𝑢−𝜋𝑢
𝑣−𝜋𝑣

). ∇𝑒 = (∇𝑒𝑢
∇𝑒𝑣

) = (∇(𝑢−𝑢ℎ )
∇(𝑣−𝑣ℎ   )

), 

where 𝜋𝑒𝑢 is the interpolation error for the function 𝑢 

and 𝜋𝑒𝑣  is the interpolation error for the function 

𝑣, 𝛻𝑒𝑢  is the gradient of the interpolation error of u 

and 𝛻𝑒𝑣  is the gradient of the interpolation error of 𝑣. 

Noting that (−𝜖Δ𝑒 + 𝑘𝑒)|𝑘 = (𝑓 + 𝜖Δ𝑤ℎ − 𝑘𝑤ℎ)|𝑘, 

where 

(−𝜖Δ𝑒𝑢 + 𝑘𝑒𝑢)|𝑘 = (𝑓 + 𝜖Δ𝑢ℎ − 𝑘𝑢ℎ), 

and 

(−𝜖Δ𝑒𝑣 + 𝑘𝑒𝑣)|𝑘 = (𝑓 + 𝜖Δ𝑒𝑣 − 𝑘𝑣ℎ ). 

Considering the contributions of the internal edge E 

between the two elements (triangles) K
+ 

and K
−
, we 

obtain 

∫
𝜕𝑘+∩𝜕𝑘− 

  𝑛. 𝛻𝑒(𝑒 − 𝜋𝑒)𝑑𝑠 =  ∫
𝐸

 (𝑛+. 𝛻𝑛+(𝑒+ −

𝜋𝑒+) + 𝛻𝑒−(𝑒− − 𝜋𝑒−))𝑑𝑠,  
where 

𝑒+ = (
𝑒𝑢

+

𝑒𝑣
+) = (

(𝑢−𝑢ℎ)+

(𝑣−𝑣ℎ)+ ) ,  𝑒− = (𝑒𝑢
−

𝑒𝑣
−) = ((𝑢−𝑢ℎ)−

(𝑣−𝑣ℎ)− ) ,  

since the error function is continuous, we have 

(𝑒+  −  𝜋𝑒+)|𝐸 =  (𝑒−  −  𝜋𝑒−)|𝐸 , 
where (𝑒𝑢

+ − 𝜋𝑒𝑢
+)|𝐸 = (𝑒𝑢

− − 𝜋𝑒𝑢
−)|𝐸 = and 

(𝑒𝑣
+ − 𝜋𝑒𝑣

+)|𝐸 = (𝑒𝑣
− − 𝜋𝑒𝑣

−)|𝐸.  

Therefore, 

∫
𝜕𝐾+∩𝜕𝐾−  𝑛. 𝛻𝑒(𝑒 −  𝜋𝑒)𝑑𝑠 =  ∫

𝐸
 (𝑛+𝛻𝑒+  +

 𝑛−𝛻𝑒−)(𝑒 −  𝜋𝑒)𝑑𝑠.   

Also, since the approximate functions 𝑢ℎ  and 𝑣ℎ  are 

piecewise linears then their gradients 𝛻𝑢ℎ|𝐸  and 

𝛻𝑣ℎ|𝐸  are piecewise constants. So, we have to take 

into account that the jumps in normal derivatives 

𝑛. 𝛻𝑢ℎ  and 𝑛. 𝛻𝑣ℎ  may be not the same on the 

adjacent elements 𝐾+ 
and 𝐾−. Moreover, the 

gradients 𝛻𝑢|𝐸  and 𝛻𝑣|𝐸  are continuous. Hence, the 

jump terms are 

(𝑛+. 𝛻𝑢+  +  𝑛−. 𝛻𝑢−)|𝐸  
=  0 and (𝑛+. 𝛻𝑣+  +  𝑛−. 𝛻𝑣−)|𝐸  
=  0. 

So, we have 

∫
𝐸

(𝑛+∇𝑒+ + 𝑛−∇𝑒−)(𝑒 − 𝜋𝑒)𝑑𝑠 = - ∫
𝐸  (𝑛+∇𝑤ℎ

+ +

𝑛−∇𝑤ℎ
−)(𝑒 − 𝜋𝑒)𝑑𝑠 =   

-∫
𝐸

(𝑛+∇𝑢ℎ
+ + 𝑛−∇𝑢ℎ

−)(𝑒 − 𝜋𝑒)𝑑𝑠 − ∫
𝐸  (𝑛+∇𝑣ℎ

+ +

𝑛−∇𝑣ℎ
−)(𝑒 − 𝜋𝑒)𝑑𝑠 

= - ∫
𝐸

[𝑛∇𝑢ℎ](𝑒 − 𝜋𝑒)𝑑𝑠 − ∫
𝐸

[𝑛∇𝑣ℎ]( 𝑒 −

𝜋𝑒)𝑑𝑥 =  −  

∫
𝐸

 (𝑛+∇(𝑢ℎ
+ + 𝑣ℎ

+) +  𝑛−∇(𝑢ℎ
− + 𝑣ℎ

−))(𝑒 −

𝜋𝑒)𝑑𝑠 = − ∫
𝐸

[𝑛∇𝑤ℎ]( 𝑒 − 𝜋𝑒)𝑑𝑠. 
Upon observing that every element contributes by 

half amount of the jump, so we get 

||𝑒||0
2 = ∑ ∫

𝐾
(𝑓 + 𝜖Δ𝑤ℎ − 𝑘𝑤ℎ)(𝑒 − 𝜋𝑒)𝑑𝑥 −𝑘∈𝑇

1

2
∫

∂k/∂Ω  
 [𝑛∇𝑤ℎ](𝑒 − 𝜋𝑒)𝑑𝑠 

= ∑ ∫
𝐾𝐾∈𝑇 (𝑓 + 𝜖11Δ𝑢ℎ + 𝜖12Δ𝑣ℎ − 𝑘11𝑢ℎ −

𝑘12𝑣ℎ) (𝑒 − 𝜋𝑒)𝑑𝑠  

+ ∑ ∫
𝐾𝐾∈𝑇 (𝑓2 + 𝜖21Δ𝑢ℎ + 𝜖22Δ𝑣ℎ − 𝑘21𝑢ℎ −

𝑘22𝑣ℎ) (𝑒 − 𝜋𝑒)𝑑𝑠  

−
1

2 
∫

∂k/∂Ω  
 [𝑛∇𝑢ℎ + 𝑛∇𝑣ℎ](𝑒 − 𝜋𝑒). 

Using standard interpolation error estimates and some 

mathematical techniques, we arrive at 

∫
𝐾  (𝑓 + 𝜖Δ𝑤ℎ − 𝑘 𝑤ℎ) (𝑒 − 𝜋𝑒)𝑑𝑠 ≤ ||𝑓 + 𝜖𝑤ℎ −

𝑘𝑤ℎ||
𝐿2(Ω)

 ||𝑒 − 𝜋𝑒||
𝐿2(Ω)

. 

≤

||𝑓1 + 𝜖11Δ𝑢ℎ + 𝜖12Δ𝑣ℎ − 𝑘11𝑢ℎ −

𝑘12𝑣ℎ||
𝐿2(Ω)

 𝐶ℎ𝑘  ||𝐷𝑒𝑢||𝐿2(Ω)  

+||𝑓2 + 𝜖21Δ𝑢ℎ + 𝜖22Δ𝑣ℎ − 𝑘21𝑢ℎ −

𝑘22𝑣ℎ||
𝐿2(Ω)

 𝐶ℎ𝑘  ||𝐷𝑒𝑣||𝐿2(Ω).  

Using the scaled version of the trace-inequality, we 

get 

||𝑒 − 𝜋𝑒||𝐿2(𝜕Ω) = ||𝑒𝑢 − 𝜋𝑒||𝐿2(𝜕𝑘) + ||𝑒𝑣 −

𝜋𝑒𝑣||𝐿2(𝜕𝑘) . 

≤ 𝐶 (ℎ𝑘
−1 ||𝑒𝑢 − 𝜋𝑒𝑢||

𝐿2(𝑘)

2
+ ℎ𝑘||∇(𝑒𝑢 −

𝜋𝑒𝑢)||
𝐿2(𝑘)

2
)  

+𝐶 (ℎ𝑘
−1 ||𝑒𝑣 − 𝜋𝑒𝑣||

𝐿2(𝑘)

2
+ ℎ𝑘||∇(𝑒𝑣 −

𝜋𝑒𝑣)||
𝐿2(𝑘)

2
).  

Using this inequality with the Cauchy-Schwarz 

inequality, we obtain 

∫
𝜕Ω  [𝑛∇𝑤ℎ](𝑒 − 𝜋𝑒)𝑑𝑠 ≤  ||𝑛∇𝑤ℎ||𝐿2(𝜕Ω)||𝑒 −

𝜋𝑒||𝐿2(𝑘) 

≤ ||[𝑛∇𝑤ℎ]||
𝐿2(𝜕Ω)

 𝐶 (ℎ𝑘
−1 ||𝑒 − 𝜋𝑒||

𝐿2(𝑘)

2
+

ℎ𝑘||D(𝑒 − 𝜋)||
𝐿2(𝑘)

2
)  

≤ ||[𝑛∇𝑤ℎ]||
𝐿2(𝜕Ω)

𝐶ℎ
1

2⁄  ||𝐷𝑒||𝐿2(𝑘)  

=

(||[𝑛∇𝑢ℎ]||
𝐿2(𝜕k)

+

||[𝑛∇𝑣ℎ]||
𝐿2(𝜕Ω)

)  𝐶ℎ
1

2⁄  ||𝐷𝑒||𝐿2(𝜕𝑘).  

Finally, we get 

||𝑒||0
2 = ||𝑒𝑢||0

2 + ||𝑒𝑣||0
2 ≤ 𝐶 ∑ (ℎ𝑘

2
𝑘∈𝑇 ||𝑓 + 𝜖Δ𝑤ℎ −

𝑘𝑤ℎ||
𝐿2(𝑘)

2
+

1

2
 ℎ

𝑘

1
2⁄

||[𝑛∇𝑤ℎ]||
𝐿2(𝜕𝑘

𝜕Ω)⁄

2
)  
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≤ 𝐶 ∑ (ℎ𝑘
2(𝑘∈𝑇 ||𝑓1 + 𝜖11Δ𝑢ℎ + 𝜖21Δ𝑣ℎ − 𝑘11𝑢ℎ −

𝑘12𝑣ℎ||
𝐿2(𝑘)

2
)  

+||𝑓2 + 𝜖21Δ𝑢ℎ + 𝜖22Δ𝑣ℎ − 𝑘21𝑢ℎ − 𝑘22𝑣ℎ||
𝐿2(𝑘))

2
)   

+
1

2
 ℎ

𝑘

1
2⁄

(||[𝑛∇𝑢ℎ]||
𝐿2(𝜕𝑘

𝜕Ω)⁄

2
+ ||[𝑛∇𝑣ℎ]||

𝐿2(𝜕𝑘
𝜕Ω)⁄

2
 )   

= 𝐶 (∑ (𝜉𝑘
2

𝑘∈𝑇 (𝑢ℎ)𝜉𝑘
2(𝑣ℎ) )) =  ∑ 𝜉𝑘

2
𝑘∈𝑇 ( 𝑤ℎ).  

5 Conclusions 
We studied the error analysis of the finite element 

solution of generic scalar linear elliptic BVP and also, 

we considered the error analysis of the finite element 

solution of a generic system of linear elliptic 

equations in 2𝐷. Continuous Galerkin finite element 

method (CGFEM) is used on a mesh of triangular 

elements. Piecewise linear polynomials are used for 

the space discretisation. A posteriori error analysis for 

a general scalar linear elliptic problem and for a 

general system of linear elliptic equations is 

investigated. Optimal order a posteriori error bounds 

in 𝐻0
1 norm are obtained. These error estimates are 

residual based and derived using energy techniques. 

In addition, a priori error analysis for a generic scalar 

linear elliptic problem and for a generic system of 

linear elliptic equations is examined. Optimal order a 

priori error bounds are obtained using energy 

arguments and standard interpolation error estimators.
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 الناقص الخطية العامة دلات القطعحليل الخطأ القبلي والبعدي لمعات
 محمد السبعاوي ،  حلى رعد عبدالله

 قسم الرياضيات ، كلية التربية للبنات ، جامعة تكريت ، تكريت ، العراق

 الملخص
المسمتلةمة لدما المعماةات التلاضملية الج ميمة مم   المت ايطمة Galerkinتمم يمه اماا ال دما ةراسمة اللقمل الطبلمه لقريطمة العناهمر المنتنيمة مم  النم   

𝐻0ن   الطقع الناقص يه دالمة معاةلمة  نممام مم  المعماةاتت اا تمم الدهم ي  لمأ قبمة لقمل قبلمه م ماله الرت مة دسم  مطيما  
 اسمتلةام اسسمالب    1

م ممم  المعمماةاتت اا تممم الدهمم ي  لممأ قبممة لقممل  عممةر الطياسممية المسممتلةمة يممه تدلبمما اللقممل ال عممةرت كممالط تممم ةراسممة اللقممل ال عممةر لمعاةلممة  لنممما
𝐻0م اله الرت ة دس  مطيا  

  استلةام أسل   مطيا  القاقةت   1


