On Supra – Separation Axioms for Supra Topological Spaces

B. K. Mahmoud

Salah Al-Deen's Education, The Ministry of Education, Iraq b.nsbm1973@gmail.com

Abstract

Through the concepts of supra open sets and supra α – open sets, we introduce a new class of separation axioms and study some of their properties. We could comparative between these two items. At last we investigate the hereditary and other properties of them.

1-Introduction

The supra topological spaces had been introduced by A. S. Mashhour at [2] in 1983. So the supra open sets are defined where the supra topological spaces are presented. We have known that every topological space is a supra topological space, so as every open set is a supra open set, but the converse is not always true. Consideration the intersection condition is not necessary to have a supra topological space. Njastad at [6] in 1965 introduced α – open set. In 2008, R. Devi, S. Sampathkumar and M. Caldas [5] introduced the supra – α – open.

Some topological spaces we applied the properties of the separation axioms. These properties were studied by many researchers as Sze - Tsen, Hu at [3] in 1964 and S. Lipschutz at [1] in 1965. Also D. Sreerja and C. Janaki at[4] has discussed a new type of separation axioms in topological spaces in 2012.

In this paper we study the relationships between supra separation axioms and supra α – separation axioms and study some of characterizations of them.

2- Preliminaries and Basic Definitions

The spaces considered in this paper are supra topological spaces. (X, τ) is said to be a supra topological space if it is satisfing these conditions:

 $1 - \emptyset, X \in \tau$.

2– The union of any number of sets in $\tau\,$ belongs to $\tau.$

Each element $A \in \tau$ is called a supra open set in(X, τ), and A^c is called a supra closed set in (X, τ) [2].

The supra closure of a set A is denoted by supra cl(A) are defined as $cl(A) = \cap \{B: B \text{ is a supra closed and } A \subseteq B\}$. The supra interior of a set A is denoted by supra int(A) = $\cup \{B: B \text{ is a supra open and } A \supseteq B\}$.[2]

The set A of X is called a supra α – open set, if A \subseteq supra int(supra cl(supra int(A))). The

complement of a supra α – open set is a supra α – closed set[5].

3- A New Classes of Supra Separations Axioms

In this section we introduce a new classes of supra separation axioms and we study it's characterizations. **Definition1:** If (X, τ) is a supra topological space, for all $x, y \in X, x \neq y$, and there exist a supra open set G such that $x \in G$ and $y \notin G$. Then (X, τ) is called a supra T_0 - space.

Definitino2: If (X, τ) is a supra topological space, $A \subseteq X$, $A \neq \emptyset$, τ_A is the class of all intersection of A with each element in τ , then (A, τ_A) is called a supra topological subspace of (X, τ) .

The hereditary property of a supra T_0 - axiom will be proved in the following theorem.

Theorem1: If (X, τ) is a supra T_0 - space and (Y, τ) is a supra topological subspace of (X, τ) then (Y, τ_y) is a supra T_0 - space.

Proof:

Suppose that x, y \in Y, x \neq y , since Y \subseteq X then x, y \in X

Since (X, τ) is a supra T_0 - space means that there exist a supra open set $G \subseteq X$ such that $x \in G$ and $y \notin G$.

We have that $G_y = Y \cap G$, G_y is a supra open set in Yand $x \in G_y$ but $y \notin G_y$, so we found a supra open set $G_y \subseteq Y$ which it contained x and not contained y.

Hence; (Y, τ_v) is a supra T_0 - space.

The following theorem needs to define a supra open function that means ((the image of any supra open set in (X, τ) is a supra open set in (X^*, τ^*) where these are two supra topological spaces))

Theorem2: If (X, τ) , (X^*, τ^*) are two supra topological spaces, (X, τ) is a supra T_0 - space and f is a supra open function and bijective then (X^*, τ^*) is a supra T_0 - space.

Proof:

Suppose that (X, τ) is a supra T_0 - space.

Now we have to prove that (X^*, τ^*) is a supra T_0 -space.

Let $x^*, y^* \in X^*, x^* \neq y^*$, since f is a bijective function then there exist $x, y \in X$ such that : $x^* = f(x)$, $y^* = f(y)$ and $x \neq y$

Since (X, τ) is a supra T_0 - space then there exists $G \subseteq X$ is a supra open set such that $x \in G$ and $y \notin G$

We obtain that $f(G) \subseteq X^*$ is a supra open sets in X^* because f is a supra open function.

So $x^* \in f(G)$ and $y^* \notin f(G)$.

Then (X^*, τ^*) is a supra T_0 - space.

We can transfere the supra T_0 - property, by using a continuous, bijective, function what it will be proved in the following theorem.

Theorem3: If (X, τ) , (X^*, τ^*) are two supra topological spaces, where (X^*, τ^*) is a supra T_0 -space and $f: X \to X^*$ is a bijective continuous function then (X, τ) is a supra T_0 -space. Proof: Suppose that $x, y \in X$, $x \neq y$, since f is a bijective function then there exist $x^*, y^* \in X^*, x^* \neq y^*$ such that $x^* = f(x)$, $y^* = f(y)$.

Since X^* is a supra T_0 - space, then there exist a supra open set $G \subseteq X^*$ such that $f(x) \in G$, $f(y) \notin G$.

Since f is a continuous function then $f^{-1}(G)$ is a supra open set in X containsx, but not contains y.

Hence; (X, τ) is a supra T_0 - space.

Remark1: Every T_0 - space is a supra T_0 - space, but the converse is not true as in the next example.

Example1: Let $X = \{x, y, z\},\$ $= \{ \emptyset, X, \{x\}, \{y\}, \{x, z\}, \{y, z\}, \{x, y\} \}.$

Definition3: If (X, τ) is a supra topological space, G, $H \subseteq X$ are supra open sets and if $x \in G$, $x \notin H$ and $y \notin G$, $y \in H$ then (X, τ) is called a supra T₁- space.

Theorem4: If (X, τ) is a supra topological space then (X, τ) is a supra T₁-space if and only if for every $x \in X$, {x} is a supra closed set.

Proof: \rightarrow First

Let (X, τ) be a supra topological space, we show that $\{x\}^c$ is a supra open set in X.

Suppose that $a \in \{x\}^c$, $a \neq x$ then by (def. 3) there exist G_a is a supra open set in X where G_a does not contain x. Hence; $a \in G_a \subseteq \{x\}^c$ and $\{x\}^c =$ $\{G_a : a \in \{x\}^c\}.$

This means $\{x\}^c$ is a union of all supra open sets and by (axiom two from the def. of supra topological space).

 $\{x\}^c$ is a supra open sets. Then $\{x\}$ is a supra closed set.

← Conversely

Suppose that $\{x\}$ is a supra closed set in X and let a, $b \in X$ where $a \neq b$ then $a \in \{b\}^c$, $b \in \{a\}^c$ and $\{b\}^c$, $\{a\}^c$ are supra open sets in X. П

Hence (X, τ) is a supra T_1 -space.

The next theorem will use the definition of a supra T_1 - space with the idea of the proof of (theorem 1).

Theorem5: If (X, τ) is a supra T_1 - space and (Y, τ) is a supra topological subspace of (X, τ) then (Y, τ_v) is a supra T_1 - space.

The next theorem will use the definition of a supra T_1 - space with the idea of the proof of (theorem2).

Theoerm6: If (X, τ) , (X^*, τ^*) are two supra topological spaces, (X, τ) is a supra T₁- space and f is a supra open function and bijective then (X^*, τ^*) is a supra T₁- space.

We want to show that the role of the finite set in a supra T₁ - space.

Definition4: If (X, τ) is a supra topological space, $A \subseteq X$ and $x \in X$, then x is said to be a supra limit point of A if for every supra open set G contains x, $A \cap G/\{x\} \neq \emptyset.$

The set of all supra limit points is called a supra derivative set and denoted by Á.

Remark2: A subset A of a supra topological space is a supra closed set if and only if A contains each of its supra limit points ($A \subseteq A$).

ISSN: 1813 – 1662 (Print) E-ISSN: 2415 – 1726 (On Line)

Theorem7: If (X, τ) is a supra T_1 - space and A is a finite sub set of X then A has no supra limit points. Proof:

Suppose that $A = \{a_1, a_2, ..., a_n\}$ then A is a supra closed set and contains all its supra limit points, but $\{a_2, a_3, \dots, a_n\}$ is also a finite supra – closed set, which means that $\{a_2, a_3, \dots, a_n\}^c$ is a supra open set contains a_1 .

Hence a_1 is not a supra limit point of A.

Similarly, no other points of A is a supra limit point of A.

Remark3: We know that every finite T₁- space is a discrete space from [1], but in a supra T_1 - space that is not always true, as an example (1).

The next theorem shows that a supra T_1 - axiom is a hereditary property.

Remark4: Every supra T_1 - space is a supra T_0 - space, but the converse is not true as in the next example.

Example2: Let $X = \{x, y\}$, $\tau = \{\emptyset, X, \{x\}\}$. This space is a supra T_0 - space but it is not a supra T_1 space.

Definition5: If (X, τ) is a supra topological space, $x, y \in X, x \neq y$, then there exist $G, H \subseteq X$ are supra open sets such that $x \in G, y \in H, G \cap H = \emptyset$, then (X, τ) is called a supra T₂- space.

As we proved in the supra T_0 - space, here also the hereditary property of a supra T2- space will be proved.

Theorem8: If (X, τ) is a supra T₂- space and (Y, τ) is a supra topological subspace of (X, τ) then (Y, τ_v) is a supra T₂- space.

Proof:

Suppose that , $y \in Y, x \neq y$, since $Y \subseteq X$ then $x, y \in$ X which means that there exist two supra open sets G, H \subseteq X such that $x \in G$ and $y \in H$, $G \cap H = \emptyset$. Now $G_y = G \cap Y$, $H_y = H \cap Y$ are two supra open sets in Y such that $x \in G_y$ and $y \in H_y$.

Since $G \cap H = \emptyset$, then $G_v \cap H_v = \emptyset$.

So (Y, τ_y) is a supra T₂- space.

Theorem9: If (X, τ) , (X^*, τ^*) are two supra topological spaces, (X, τ) is a supra T₂- space and f is a supra open function and bijective then (X^*, τ^*) is a supra T₂- space.:

Proof:

Suppose (X, τ) is a supra T_2 - space.

Now we have to prove that (X^*, τ^*) is a supra T₂space.

Let $x^*, y^* \in X^*$ where $x^* \neq y^*$, since f is a bijective function then there exist $x, y \in X$ such that $x^* =$ f(x), $y^* = f(y)$ and so $x \neq y$.

Since (X, τ) is a supra T₂- space then there exist G, H ⊆X two supra open sets such that $x \in G$, $y \in H$ and $G \cap H = \emptyset$.

We obtain that $f(G), f(H) \subseteq X^*$ are two supra open sets in X* because f is supra open function.

So $x^* \in f(G)$ and $y^* \in f(H)$ and $f(G) \cap f(H) = \emptyset$.

Then (X^*, τ^*) is a supra T_2 - space. **Remark4:** Every supra T_2 - space is a supra T_1 - space, but the converse is not true such as in the next example.

Example3: Let $X = \{x, y, z\}$ $\tau = \{\emptyset, X, \{x, y\}, \{y, z\}, \{x, z\}\}$

This space is a supra T_1 - space but it is not a supra T_2 - space.

Definition6: If (X, τ) is a supra topological space, for all $x, y \in X, x \neq y$, and there exist a supra α – open set G such that $x \in G$ and $y \notin G$. Then (X, τ) is called a supra $\alpha - T_0$ - space.

Definitino7: If (X, τ) is a supra topological space, $A \subseteq X$, $A \neq \emptyset$, τ_A is the class of all intersection of A with each element in τ , then (A, τ_A) is called a supra topological subspace of (X, τ) .

The hereditary property of a supra $\alpha - T_0$ - axiom will be proved in the following theorem.

Theorem10: If (X, τ) is a supra $\alpha - T_0$ - space and (Y, τ) is a supra topological subspace of (X, τ) then (Y, τ_y) is a supra $\alpha - T_0$ - space. Proof:

Suppose that $x, y \in Y, x \neq y$, since $Y \subseteq X$ then $x, y \in X$

Since (X, τ) is a supra $\alpha - T_0$ - space means that there exist a supra α -open set $G \subseteq X$ such that $x \in G$ and $y \notin G$.

We have that $G_y = Y \cap G$, G_y is a supra α -open set in Yand $x \in G_y$ but $y \notin G_y$, so we found a supra α -open set $G_y \subseteq Y$ which it contained x and not contained y.

Hence; (Y, τ_v) is a supra $\alpha - T_0$ - space.

Theorem11: If (X, τ) , (X^*, τ^*) are two supra topological spaces, (X, τ) is a supra $\alpha - T_0$ - space and f is a supra open function and bijective then (X^*, τ^*) is a supra $\alpha - T_0$ - space.

Proof:

Suppose that (X, τ) is a supra $\alpha - T_0$ -space.

Now we have to prove that (X^*, τ^*) is a supra $\alpha - T_0$ -space.

 $\begin{array}{lll} \mbox{Let} & x^*,y^*\in X^*,x^*\neq y^*, \mbox{ since } f \mbox{ is a bijective } \\ \mbox{function then there exist } x,y\in X \mbox{ such that, } x^*= \\ f(x) \mbox{ , } y^*=f(y) \mbox{ and } x\neq y \end{array}$

Since (X, τ) is a supra $\alpha - T_0$ -space then there exists $G \subseteq X$ is a supra α -open set such that $x \in G$ and $y \notin G$.

We obtain that $f(G) \subseteq X^*$ is a supra α –open sets in X^* because f is a supra open function.

So $x^* \in f(G)$ and $y^* \notin f(G)$.

Then (X^*, τ^*) is a supra $\alpha - T_0$ - space.

Definition8: If (X, τ) is a supra topological space, G, H \subseteq X are supra α -open sets and if x \in G, x \notin H and y \notin G, y \in H then (X, τ) is called a supra α - T₁- space.

The next theorem show us the hereditary property of a supra $\alpha - T_1$ - axiom which will be proved by using the definition of a supra $\alpha - T_1$ - space with the idea of the proof of (theorem10).

ISSN: 1813 – 1662 (Print) E-ISSN: 2415 – 1726 (On Line)

Theorem12: If (X, τ) is a supra $\alpha - T_1$ - space and (Y, τ) is a supra topological subspace of (X, τ) then (Y, τ_v) is a supra $\alpha - T_1$ - space.

The next theorem will use the definition of a supra $\alpha - T_1$ - space with the idea of the proof of (theorem11).

Theoerm13: If (X, τ) , (X^*, τ^*) are two supra topological spaces, (X, τ) is a supra $\alpha - T_1$ - space and f is a supra open function and bijective then (X^*, τ^*) is a supra $\alpha - T_1$ - space.

Definition9: If (X, τ) is a supra topological space, for all $x, y \in X, x \neq y$, then there exist G, H $\subseteq X$ are supra α -open sets such that $x \in G, y \in$ H, G \cap H = \emptyset , then (X, τ) is called a supra $\alpha - T_2$ -space.

As we proved in the supra $\alpha - T_0$ - space, and supra $\alpha - T_1$ - space, here also the hereditary property of a supra $\alpha - T_2$ - space will be proved.

Theorem14: If (X, τ) is a supra $\alpha - T_2$ - space and (Y, τ) is a supra topological subspace of (X, τ) then (Y, τ_y) is a supra $\alpha - T_2$ - space.

Proof:

Suppose that x, y \in Y, x \neq y, since Y \subseteq X then x, y \in X which means that there exist two supra α –open sets G, H \subseteq X such that x \in G and y \in H, G \cap H = Ø. Now G_y = G \cap Y, H_y = H \cap Y are two supra α –open sets in Y such that x \in G_y and y \in H_y.

Since $G \cap H = \emptyset$, then $G_v \cap H_v = \emptyset$.

So (Y, τ_v) is a supra $\alpha - T_2$ - space.

Theorem15: If (X, τ) , (X^*, τ^*) are two supra topological spaces, (X, τ) is a supra $\alpha - T_2$ - space and f is a supra open function and bijective then (X^*, τ^*) is a supra $\alpha - T_2$ - space.

Proof:

Suppose (X, τ) is a supra α – T₂- space.

Now we have to prove that (X^*, τ^*) is a supra $\alpha - T_2$ -space.

Let $x^*, y^* \in X^*$ where $x^* \neq y^*$, since f is a bijective function then there exist $x, y \in X$ such that $x^* = f(x)$, $y^* = f(y)$ and so $x \neq y$.

Since (X, τ) is a supra $\alpha - T_2$ - space then there exist G, H $\subseteq X$ two supra α -open sets such that $x \in G$, $y \in H$ and $G \cap H = \emptyset$.

We obtain that f(G), $f(H) \subseteq X^*$ are two supra α –open sets in X^{*} because f is a supra open function.

So $x^* \in f(G)$ and $y^* \in f(H)$ and $f(G) \cap f(H) = \emptyset$.

Then (X^*, τ^*) is a supra $\alpha - T_2$ - space.

4- Some Relationships Between Two Classes (Supra Separation Axioms And Supra α – Separation Axioms)

The following diagram introduced the relations between the two classes.

$$\begin{array}{c} \operatorname{supra} T_2 - \operatorname{space} \implies \operatorname{supra} \alpha - T_2 - \operatorname{space} \\ \Downarrow & \Downarrow \\ \operatorname{supra} T_1 - \operatorname{space} \implies \operatorname{supra} \alpha - T_1 - \operatorname{space} \\ \Downarrow & \Downarrow \\ \operatorname{supra} T_0 - \operatorname{space} \implies \operatorname{supra} \alpha - T_0 - \operatorname{space} \end{array}$$

Tikrit Journal of Pure Science 22 (2) 2017

We have to prove the above relationships and give an example to show that the converse is not always true. **Lemma1:** Every supra open set is a supra α – open set.[5]

Theorem16: Every supra T_2 - space is a supra $\alpha - T_2$ -space.

Proof:

Let (X, τ) be a supra T_2 – space, and let $x, y \in X, x \neq y$ then there exist two supra open sets $G, H \subseteq X$ such that $x \in G, y \in H, G \cap H = \emptyset$.

Since every supra open set is a supra α – open set (by lemma).

Then $G, H \subseteq X$ are two supra α – open sets such that $x \in G, y \in H, G \cap H = \emptyset$.

Hence (X, τ) is a supra $\alpha - T_2$ - space.

Theorem17: Every supra T_1 - space is a supra $\alpha - T_1$ -Proof:

Let (X, τ) be a supra T_1 – space, and let $x, y \in X, x \neq y$ then there exist two supra open sets $G, H \subseteq X$ such that $x \in G$ and $x \notin H, y \notin G, y \in H$

Since every supra open set is a supra α – open set (by lemma1).

Then $G, H \subseteq X$ are two supra α – open sets such that $x \in G$ and $x \notin H, y \notin G, y \in H$.

Hence (X, τ) is a supra $\alpha - T_1$ - space.

Theorem18: Every supra T_0 - space is a supra $\alpha - T_0$ -space.

Proof:

Let (X, τ) be a supra T_0 – space, and let $x, y \in X, x \neq y$ then there exist a supra open set $G \subseteq X$ such that $x \in G$ and $y \notin G$.

Since every supra open set is a supra α – open set (by lemma1).

Then $G \subseteq X$ is a supra α – open set such that $x \in G$ and $y \notin G$

References

[1] S. Lipschutz, "General Topology", Schaum's , Series, McGraw-Hill Comp., 1965.

[2] A. S. Mashhour, A. A. Allam, F. S. Mahmoud and F. H. Khedr, "On supra topological spaces", Indian J. Pure and Appl. Math. no. 4, 14(1983), 502-510.

[3] Sze-Tsen, Hu, "Elements of General Topology", Holden – Day, 1964.

[4] D. Sreeja, C. Janaki, "A New Type of Separation

ISSN: 1813 – 1662 (Print) E-ISSN: 2415 – 1726 (On Line)

Hence (X, τ) is a supra $\alpha - T_0$ - space. **Theorem19:** Every supra $\alpha - T_2$ - space is a supra $\alpha - T_1$ - space.

Proof:

Let (X, τ) be a supra $\alpha - T_2$ – space, and let $x, y \in X, x \neq y$ then there exist two supra α –open sets $G, H \subseteq X$ such that $x \in G, y \in H, G \cap H = \emptyset$.

Since $G \cap H = \emptyset$, that is mean $x \in G$ and $x \notin H, y \notin G, y \in H$.

Hence (X, τ) is a supra $\alpha - T_1$ - space.

Theorem20: Every supra $\alpha - T_1$ - space is a supra $\alpha - T_0$ - space.

Proof:

Let (X, τ) be a supra $\alpha - T_1$ – space, and let $x, y \in X, x \neq y$ then there exist two supra α –open sets $G, H \subseteq X$ such that $x \in G$ and $x \notin H, y \notin G, y \in H$.

That is mean there exists a supra α –open set $G \subseteq X$ such that $x \in G$ and $y \notin G$.

Hence (X, τ) is a supra $\alpha - T_0$ - space.

Theorem21: Every supra $\alpha - T_2$ - space is a supra $\alpha - T_0$ - space.

Proof:

Let (X, τ) be a supra $\alpha - T_2$ – space, and let $x, y \in X, x \neq y$ then there exist two supra α –open sets $G, H \subseteq X$ such that $x \in G, y \in H, G \cap H = \emptyset$.

Since $G \cap H = \emptyset$, that is mean $x \in G$ and $x \notin H, y \notin G, y \in H$.

Then there exists a supra α –open set $G \subseteq X$ such that $x \in G$ and $y \notin G$.

Hence (X, τ) is a supra $\alpha - T_0$ - space. In section 3 we introduced some examples such as 2, 3 that is enough to show the converse of the above relationships is not true.

Axioms in Topological Spaces", Asian Journal of Current Engineering and Maths1: 4 Jul-Aug (2012), 199–203.

[5] R. Deve, S. Sampathkumar and M. Caldas, On Supra α -open Sets and S α -continuous functions , General Math., Vol. 16, Nr.2 (2008), 77-84.

[6] O., Njastad, " On some classes of nearly open sets, Paccific J. Math., 15(1965), 961-970.

بلقيس خليل محمود الأمين

مديرية تربية صلاح الدين ، تكريت ، العراق

الملخص

من خلال مفاهيم المجموعات المفتوحة الفوقية والمجموعات المفتوحة الفوقية من النمط α ، قدمنا صف جديد من بديهيات الفصل وقمنا بدراسة بعض من خصائصها، والمقارنة بينها. واخيرا" تحرينا خصائصها الوراثية بالاضافة الى خصائص اخرى.