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Abstract 
The purpose of this paper is to give the new definitions of semi-regular T1 and semi-regular T2 separation axioms 

in intuitionistic fuzzy topological spaces. Study the basic properties, characterizations and relationships of these 

new concepts in intuitionistic fuzzy topological spaces.  
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1. Introduction 
After the introduction of fuzzy sets by Zadeh [1], 

Atanassov in 1983 [2,3] introduced the notion of 

"intuitionistic fuzzy set " (IFS for short). Using 

intuitionistic fuzzy sets, Coker [5] introduced the 

notion of "intuitionistic fuzzy topological spaces. In 

this paper, we introduce new notions of semi-regular 

T1 and semi-regular T2 separation axioms in 

intuitionistic fuzzy topological spaces.  

2. Preliminaries  
The concept of " intuitionistic fuzzy set " (IFS for 

short) was introduced by Atanassov as an object of 

the form A=< x, A1, A2>, where A1 and A2 are subset 

of a nonempty fixed set X, satisfying the following 

A1 ∩ A2 = ø. Every subset of a nonempty set of IFS 

having the form < x , A, A
c
 > . Some Boolean algebra 

operations on IFS is defined by Coker [5] as follows:-  

Let A, B be IF'S where A = <x , A1, A2>,   B = <  x, 

B1, B2 > belong to a non-empty set X and  {Aί : ί  J} 

be an arbitrary family of IFS in X where Aί = <x , Ă1, 

Ă2>, then :- 

A  B A1    B1  Λ  A2    B2   ; 

A = B     A      B    Λ   B      A ; 

A
c
 = < x, A2, A1 > 

Aί = < x, Ă1, ∩ Ă2 >,         

∩Aί = < x, ∩ Ă1,  Ă2 > . 

  = < x, Ø, X > ,   = <x, X, Ø > . 

The an intuitionistic fuzzy topology (IFT for short) on 

a nonempty set X is a family  of IF's in X 

containing ,  and closed under finite intersection 

and arbitrary union, in this case the pair (X, ) is 

called an intuitionistic fuzzy topological space (IFTS 

for short). 

Now let A be any IF'S in (X, ), then A said to be 

intuitionistic fuzzy regular (semi) open set ((IFROS), 

IFSOS for short) if A=Int(ClA) (A  CL (IntA)) and 

called intuitionistic fuzzy regular (semi)closed set 

(IFRCS), IFSCS for short) if A= Cl(IntA)( A  CL 

(IntA)), when the interior and closure of an IFS A are 

defined by ;  

 Int A =  { G : G    ,  G    A } 

 Cl A = ∩ { K : 1-K   ,   A  K } 

Any IF'S in is known an intuitionistic fuzzy open 

set (IFOS for short) in X. The IF'S  = <x, p,{P}
c
> is 

called intuitionistic fuzzy point in X. The IF'S  is 

said to be contained in A if ( P  A1 and P  A2, and 

the set  =  <x, Ø,{P}
c
 > is called vanishing 

Intuitionistic point in X (VIP for short). 

2. Some Forms of Semi-regular T1 Separation 

axioms: 

In this section, we introduce some new form of the 

separation axioms namely semi-regular T1 (SRT1 for 

short) in IFTS, we give a definition of semi-regular 

and semi-regular T1 and some of it's properties and  

relations with each other. 

Definition 2.1: Let (X, ) be an IFTS, A subset A of 

X is said to be semi-regular if A is both semi open 

and semi closed [5]. 

The set of all semi-regular sets of X is denoted by 

SR(X), the intersection of all semi-regular sets of X 

containing A is called the semi-regular closure of A 

and denoted by SRCL(A) and the union of all semi-

regular sets of X contained in A is called the semi-

regular interior of A and denoted by SRI(A). 

Definition 2.2: Let (X, ) be an IFTS, than (X, ) is 

said to be :- 

1. SRT1(ί) if for each x, y 
 

 X, x  y,  U, V 
 
 

SR(X) s.t    
 
U ,    U and  V,  V.  

2. SRT1 (ίί) if for each  x, y  X, x  y,  U ,V  

SR(X) s.t   U,   U and  V,    
 
 V. 

3. SRT1 (ίίί) if for each x, y  X, x  y,
 

 U, V  

SR(X) s.t  U  
c
 and  V  

c
. 

4. SRT1 (iv) if for each x, y  X, x y,  U, V  

SR(X) s.t     U  
c
  and  V  

c
. 

5. SRT1(V) if for each x, y  X, x y,  U, V  

SR(X)  s.t  y V and   V. 

6.SRT1(Vί) if for each x, y X,   x y ,  U, V 

SR(X)  s.t  
c
 U  and   V. 

The following theorem appears in [4] for IFOS 

without proof, we generalize it for SR sets and give it 

here with proof. 
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Theorem 2.3 : Let (X, ) be an IFTS, then the 

following implication are valid. 

 

SRT1(V)             SRT1 (Vί) 

↑     

SRT1(ί)  SRT1(ί) + SRT1(ίί) → SRT1(ίί) 

   

SRT1(ίίί)    SRT1(ίv) 

Proof :  To prove SRT1 (vί)  SRT1(v) :- 

Let  x, y X,  x  y,   since SRT1(v ί) hold so there 

exists U ,V SR(X)  s.t U and   V, this implies 

that y u2 and x  V2, Since u1∩u2 = Ø and v1∩v2 = 

Ø, we get y  u1 and x  V1, therefore 
  V and   U  so SRT1(v) holds. 

To prove SRT1(ί)  SRT1(v) :- 

Let x, y  X. Since  SRT1(ί) hold,  so there exists U , 

V  SR(X)  s.t  U,  U and y  V, x  U, this 

implies that U and V,   V, x  V and   

 U, therefore SRT1(v) hold. 

In order to prove SRT1(ίί)  SRT1(vί), take x, y   

X, x  y. Since SRT1(ίί) hold, so there exists U, V  

SR(X) s.t     U, 
 
U and    V,    

  
,  V .  

From this we have   V and U, therefore 

SRT1(vί) hold. 

SRT1(ί) + SRT1(ίί)  SRT1(ί)  and 

SRT1(ί) + SRT1(ίί)  SRT1(ίί) is direct. 

To prove SRT1 (ί) + SRT1(ίί)  SRT1(ίίί) :- 

Let  x, y  X, x y . Since SRT1(ί)  & SRT1(ίί) hold 

so   U, V SR(X)  s.t   U, 
 

V,  V and 

U,  so   U, U and V,  
 

  V . 

     First we have to prove :-  

 U
 

c
  and 

 
V 

c
, we have from 

assumption  U and V. 

To prove U
 

c
, let U = < x, u1, u2> and 

c
 = <y, 

{y}
c
, {y}>, since U, so y u1, therefore u1 {y}

c
 

and{y} u2, this implies that U
 

c
. In a similar 

way, we can prove V
c
. Hence SRT1(ίίί) holds. 

In order to prove SRT1(ίίί)   SRT1(ί)  +SRT1(ίί) :- 

First we have to prove SRT1(ίίί)   SRT1(ί)   

Let x, y  X,  x y. Since RT1(ίίί) hold, so   U, V  

SR(X) s.t   U  
c
 and V  

c
, we have to 

prove  U, U and   V,  V this implies 

that    U and Y
 

 U so   U, U and since 
 

 V 
c
, so we get that   V,  V

 
, therefore 

SRT1(ί)  holds. 

Similarly, we can prove that SRT1(ίίί)   SRT1(ίί) . 

The following implication all proved by transitivity :- 

SRT1(ίί) + SRT1(ί)    SRT1(vί) , 

SRT1(ίί)  + SRT1(ί)   SRT1(v)   

Remark 2.4: The converse of the last theorem are not 

true in general. The following counter example shows 

the cases. 

Example 2.5 : 

1. Let X = {1,2,3} and define  ={ , , A, B, C, D, 

E, F} where A = < x, {1}, {2,3}> , B = < x,{2}, 

{1,3}>, C = < x, {1,2}, {3}> , D = < x, {1,3}, {2}> , 

E = < x, {2,3}, >, F = < x, {1,3}, > , so SR(X) = 

{ , , B, D}, then (X, ) is SRT1(ί), but not SRT1(ίί). 

2. Let X = {1,2} and  = {  , , A, B}, where A = < 

x, , {1}> , B = < x, , {2}> and SR(X) = { , , A, 

C, D} where C = < x, , {1}> and D = < x, {2}, >, 

then (X, ) is SRT1(vί), but not SRT1( ί). 

3. Let X = {1,2,3} and define   = {  , , A,B, C, 

D, E, F} on X where A = < x, , {1,2}>, B = < x, 

{3}, {1,2}>, C = < x, , {2,3}>,  D= <
 
x, {3}, {2}>, 

E = < x, {1,3}, {2}>, F = < x, , {2}>, then (X, ) is 

SRT1(vί),   but not SRT1(ί ί)  and not SRT1(ίίί) . 

4. Let X = {1,2,3} and  = { , , A, B, C, D, E, F, 

G, H, K} where A = < x, {1}, {3}>, B = < x, {2}, 

{1}>, C = < x, {1},{2,3}>, D = < x, , {2}>, E = < 

x, {1,2}, >, F= < x, , {1,3}>, G = < x, , {2,3}>, 

K = < x,{1}, >  So (X, ) is SRT1(ί)    but not 

SRT1(ίίί) . 

3. Semi- regular T2 in intuitionistic Fuzzy 

Topological Spaces : 
The aim of this part is to introducing some new form 

of T2 separation axioms namely semi-regular 

 T2 in IFTS and study properties and it's relations of 

each other. 

Definition 3.1: Let (X, ) be an IFTS. (X, ) is said 

to be :- 

1. SRT2(ί) if for all x, y X, x y, U,V 
 
SR(X) 

such that   U,  V and U ∩ V = . 

2. SRT2(ίί) if for all x, y X, x y, U,V
 

 SR(X) 

such that  U,    V and U∩V = . 
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3. SRT2(ίίί) if for all x, y X,  x y, U,V  SR(X) 

such that   
 
U,  V and U∩V = . 

4. SRT2(ίv) if for all x, y X, x y, U,V 
 
SR(X) 

such that  V and U V. 

5. SRT2(v) if for all x, y X, x y, U,V SR(X) 

such that U
c
, V  

c
 and U∩V = . 

6. SRT2(vί) if for all x, y X, x y, U,V
 

 SR(X) 

such that  
 
U

c
, 

c
V  

c
  and U∩V = 

 
. 

Theorem 3.2 : Let (X, ) be an IFTS, then the 

following implications are valid. 

SRT2(v)  SRT2(vί) 

                     

SRT2(ί) → SRT2(ίί) 

                    

SRT2(ίίί)  SRT2(ίv) 

Proof :- 

1. Let (X, ) be IFTS satisfy SRT2(V), to prove that 

(X, ) is satisfy SRT2(vί) . Let  x, y X, x y. Since 

SRT2(v) holes. Then U,V SR(X) such that 
 

U
c
, V

c
   and U ∩V = , Since  U 

and V then we can get easily that U and 

V, therefore  U, V , U
c
, V  

c
 and 

U ∩V =  from hypotheses , so we get that (X, ) is 

satisfies SRT2(vί). 

2. To prove SRT2(ί)  SRT2(ίί), let (X, ) be IFTS 

satisfy SRT2(ί)and x, y X, x y, so U,V  SR(X) 

such that   U, V and U ∩V = . Then we can 

get easily that  U and V and U ∩V = , 

therefore SRT2(ίί) holds. 

3. Let (X, ) be IFTS x, y X, x y and SRT2(ί) 

holds, to prove SRT2(ίίί) is satisfy, since SRT2(ί) 

holds so U,V  SR(X) such that   U, 
 

V and 

U ∩V = , since   U and U ∩V =  this implies 

that  V, so   V
c
, this prove that for every x X 

, if   U, then   V
c
,  V,  i.e. U V , therefore 

SRT2(ίίί) holds. 

4.  Suppose that SRT2(ίί) holds, to prove SRT2(ίv), 

let x, y
 

X, x y, since SRT2(ίί) is hold so  

U,V SR(X) such that  
c

 and U ∩V=  , 

since   U, then   V
c
 = , so 

V, therefore u V, that is mean SRT2(ίv) holds. 

5. In order to prove SRT2(ίί) satisfy when SRT2(vί) 

holds. Let x, y
 

X, x y, so 
 
U, V SR(X) such 

that   
 

c ,  
  

 c

 
 X and U ∩V = , from 

this we get directly that U,V SR(X) such that   

U, 
 

V and U
 

V = , therefore SRT2(ίί) holds. 

6. SRT2(ίv)  SRT2(ί) is clear. 

7. To prove SRT2(ίv) satisfy when SRT2(ίίί) holds, 

suppose that x, y  X,  x y so  U,V  SR(X) such 

that   U, V and U V
c
, so we get directly that 

 U,  V and  

U ∩V = , therefore SRT2(ίv) holds. 

Remark 3.3: In general the converse of the diagram 

appears in the theorem is not true in general. The 

following counter example shows the cases. 

Example 3.4 : 

(ί) Let X= {1,2,3} and define = { , , A, B, C} on 

X where A= <x, {1}, {2,3}> , B = < x,{2}, {1,3}>, C 

= <x,{1,2}, {3}>, then SR(X) = { ,X,D,E} where D 

= < x, {1},{2}>,  E = < x, {2}, {1}>, so the IFTS (X, 

)  is SRT2(ίί) but not SRT2(ί) . 

(ίί)  Let X = {1,2} and define  =  { , , A, B} on X 

where A = <x, , {2}> , B = < x,  {1}>,   then the 

IFTS (X, )  is SRT2(ίί), but not SRT2(ί). 

(ίίί) Let X={1,2,3} and define  =  { , , A, B} on 

X where A = <x, , {2,3}> , B = <x, , {1,3}>, then 

the IFTS (X, )  is SRT2(vί), but not SRT2(v). 

Since every T2 separation axiom is T1 separation 

axiom in general topology, then we have the 

following corollary :- 

Corollary 3.5: Let (X, ) be IFTS, then if  (X, ) is 

satisfies SRT2(n), then it satisfies SRT1(n), where 

n {ί, ίί, ίίί, ίv, v, vί}, but the converse of the last 

corollary is not true in general and the following 

examples show the cases :- 

Example 3.6 : 

1. Let X={1,2,3} and define  = { , , A, B, C, D, 

E, F} where A = < x, , {1,2}> , B = <x, , {2,3}>,  

C = <x,{3},{1,2} >,  D = <x, {3},{2}>,  E = < x, 

{1,3},{2}>, F = < x, , {2}>,  so SR(X) ={ , , M, 

H} where M= <x,{3}, >, H = <x, , {3}>, so (X, 

) is SRT1(vi), but not SRT2(vi). 

2. In the example 3.4(1) we see (X, ) is SRT1(ί) but 

not SRT2(ί) and in the (iii) of the example 3.4 we see 

(X, ) is SRT1(v) , but not SRT2(v). 
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3. Let X = {1,2} and define ={ , ,A,B} where A 

= <x, , {1}> , B = < x, , {2}>,so SR(X) = . 

Hence, (X, ) is SRT1(ίί) , but not SRT2(ίί). 

4. Take X = {1,2,3} and define  = { , , A, B, C, 

D, E, F, G}, where A = <x,{1}, {2,3}> , B = <x,{2}, 

{1,3}>,  C = <x,{1,2},{3} >,  D = <x, {3},{1,2}>,  E 

= <x {1,3},{2}>, F = <x, {2,3}, {1}>, so SR(X) = , 

then  (X, ) is SRT1(ίίί) , but not SRT2(ίίί).  

 Let X = {1,2,3} and define ={ , , A, B, C, D, E, 

F, G, H, K} where A = <x,{1},{3}> , B = < x,{2}, 

>,  C = < x, {3},  > ,  D = < x,{1,2}, >,  E = < 

x, {1,3}, >, F = < x, {2,3}, >, G = < x, ,{3}> , 

H = < x, , >,  K= < x {1}, >, then the IFS (X, 

) on X is SRT1(ίv), but not SRT2(ίv). 
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 في الفضاءات التبولوجية الحدسية T2 المنتظمشبه الو  T1 المنتظمشبه الحول 
 فاطمة محمود محمد

 العراق،  تكريت،  جامعة تكريت ، كمية التربية لمعموم الصرفة قسم الرياضيات ،
 

 الملخص
و  T1الفضاء الشبه المنتظم  وهيفي الفضاءات التبولوجية الحدسية  T2و  T1يف جديد لبديهيتي الفصل الهدف من هذا البحث هو إعطاء تعر 

 ودراسة بعض صفاتهما وتعميمها مع بعض التفاصيل والعلاقات التي تربط بينهما .  T2الشبه المنتظم 


