On Semi- regular T_{1} and Semi- regular $\mathrm{T}_{\mathbf{2}}$ in Intuitionistic Fuzzy Topological Spaces

Fatimah M. Mohammed
Department of Mathematic, College of Education, Tikrit University, Tikrit, Iraq

Abstract

The purpose of this paper is to give the new definitions of semi-regular T_{1} and semi-regular T_{2} separation axioms in intuitionistic fuzzy topological spaces. Study the basic properties, characterizations and relationships of these new concepts in intuitionistic fuzzy topological spaces.

Key words: fuzzy set, intuitionistic fuzzy topology, semi-regular T_{1}, semi-regular T_{2}.

1. Introduction

After the introduction of fuzzy sets by Zadeh [1], Atanassov in 1983 [2,3] introduced the notion of "intuitionistic fuzzy set " (IFS for short). Using intuitionistic fuzzy sets, Coker [5] introduced the notion of "intuitionistic fuzzy topological spaces. In this paper, we introduce new notions of semi-regular T_{1} and semi-regular T_{2} separation axioms in intuitionistic fuzzy topological spaces.

2. Preliminaries

The concept of " intuitionistic fuzzy set " (IFS for short) was introduced by Atanassov as an object of the form $\left.A=<x, A_{1}, A_{2}\right\rangle$, where A_{1} and A_{2} are subset of a nonempty fixed set X, satisfying the following $\mathrm{A}_{1} \cap \mathrm{~A}_{2}=\varnothing$. Every subset of a nonempty set of IFS having the form $\left\langle\mathrm{x}, \mathrm{A}, \mathrm{A}^{\mathrm{c}}\right\rangle$. Some Boolean algebra operations on IFS is defined by Coker [5] as follows:Let A, B be IF'S where $A=\left\langle x, A_{1}, A_{2}>, B=<x\right.$, $B_{1}, B_{2}>$ belong to a non-empty set X and $\{A i ́: i \in J\}$ be an arbitrary family of IFS in X where $A \hat{i}=<x, \breve{A}_{1}$, $\breve{A}_{2}>$, then :-
$\mathrm{A} \subseteq \mathrm{B} \stackrel{\mathrm{A}_{1} \subseteq \mathrm{~B}_{1} \Lambda \mathrm{~A}_{2} \supseteq \mathrm{~B}_{2} ; ~}{\text {; }}$
$\mathrm{A}=\mathrm{B} \Leftrightarrow \mathrm{A} \subseteq \mathrm{B} \quad \Lambda \mathrm{B} \subseteq \mathrm{A}$;
$\mathrm{A}^{\mathrm{c}}=\left\langle\mathrm{x}, \mathrm{A}_{2}, \mathrm{~A}_{1}\right\rangle$
UAí $\left.=<x, \bigcup_{A_{1}}, \cap \breve{A}_{2}\right\rangle$,
$\cap A i ́=\left\langle x, \cap \check{A}_{1}, \bigcup \breve{A}_{2}\right\rangle$.
$\widetilde{\varnothing}=\langle x, \varnothing, X\rangle, \tilde{X}_{=}=\langle x, X, \varnothing\rangle$.
The an intuitionistic fuzzy topology (IFT for short) on a nonempty set X is a family \mathcal{T} of IF's in X containing $\widetilde{\mathscr{D}}, \tilde{X}$ and closed under finite intersection and arbitrary union, in this case the pair (X, \mathcal{T}) is called an intuitionistic fuzzy topological space (IFTS for short).
Now let A be any IF'S in (X, \mathcal{T}), then A said to be intuitionistic fuzzy regular (semi) open set ((IFROS), IFSOS for short) if $\mathrm{A}=\operatorname{Int}(\mathrm{ClA})(\mathrm{A} \subseteq \mathrm{CL}(\operatorname{Int} \mathrm{A}))$ and called intuitionistic fuzzy regular (semi)closed set (IFRCS), IFSCS for short) if $\mathrm{A}=\mathrm{Cl}(\operatorname{Int} \mathrm{A})(\mathrm{A} \subseteq \mathrm{CL}$ (IntA)), when the interior and closure of an IFS A are defined by ;

$$
\begin{aligned}
& \text { Int } \mathrm{A}=\cup\{\mathrm{G}: \mathrm{G} \in \mathcal{T}, \mathrm{G} \subseteq \mathrm{~A}\} \\
& \mathrm{Cl} \mathrm{~A}=\cap\{\mathrm{K}: 1-\mathrm{K} \in \mathcal{T}, \mathrm{~A} \subseteq \mathrm{~K}\}
\end{aligned}
$$

Any IF'S in \mathcal{T} is known an intuitionistic fuzzy open set (IFOS for short) in X. The IF'S $\bar{p}=\left\langle\mathrm{x}, \mathrm{p},\{\mathrm{P}\}^{\mathrm{c}}\right\rangle^{\rangle}$is
called intuitionistic fuzzy point in X. The IF'S \bar{p} is said to be contained in A if $\left(\mathrm{P} \in \mathrm{A}_{1}\right.$ and $\mathrm{P} \notin \mathrm{A}_{2}$, and the set $\overline{\bar{p}}_{=}\left\langle\mathrm{x}, \emptyset,\{\mathrm{P}\}^{\mathrm{c}}>\right.$ is called vanishing Intuitionistic point in X (VIP for short).
2. Some Forms of Semi-regular T_{1} Separation axioms:
In this section, we introduce some new form of the separation axioms namely semi-regular $\mathrm{T}_{1}\left(\mathrm{SRT}_{1}\right.$ for short) in IFTS, we give a definition of semi-regular and semi-regular T_{1} and some of it's properties and relations with each other.
Definition 2.1: Let $(\mathrm{X}, \mathcal{T})$ be an IFTS, A subset A of X is said to be semi-regular if A is both semi open and semi closed [5].
The set of all semi-regular sets of X is denoted by $\operatorname{SR}(X)$, the intersection of all semi-regular sets of X containing A is called the semi-regular closure of A and denoted by $\operatorname{SRCL}(\mathrm{A})$ and the union of all semiregular sets of X contained in A is called the semiregular interior of A and denoted by $\operatorname{SRI}(\mathrm{A})$.
Definition 2.2: Let $(\mathrm{X}, \mathcal{T})$ be an IFTS, than $(\mathrm{X}, \mathcal{T})$ is said to be :-

1. $\mathbf{S R T}_{1}(\mathbf{i} \mathbf{)}$ if for each $x, y \in X, x \neq y, \exists U, V \in$ $\mathrm{SR}(\mathrm{X})$ s.t $\bar{x} \in \mathrm{U}, \bar{y} \notin \mathrm{U}$ and $\bar{y} \in \mathrm{~V}, \bar{x} \notin \mathrm{~V}$.
2. SRT $_{1}$ (íí) if for each $x, y \in X, x \neq y, \exists U, V \in$ $\operatorname{SR}(X)$ s.t $\overline{\bar{x}} \in U,{ }^{\bar{y}} \notin \mathrm{U}$ and ${ }^{\overline{\bar{y}}} \in \mathrm{~V}, \overline{\bar{x}} \notin \bar{x} \in \mathrm{~V}$.
3. $\mathbf{S R T}_{1}$ (íií) if for each $x, y \in X, x \neq y, \exists U, V \in$ $\operatorname{SR}(\mathrm{X})$ s.t $\bar{X} \in \mathrm{U} \subseteq \bar{Y}^{\mathrm{c}}$ and $\bar{y} \in \mathrm{~V} \subseteq \tilde{X}^{\mathrm{c}}$.
4. $\mathbf{S R T}_{1}$ (iv) if for each $x, y \in X, x \neq y, \exists U, V \in$ $\operatorname{SR}(\mathrm{X})$ s.t $\overline{\bar{x}} \in \mathrm{U} \subseteq \overline{\bar{Y}}^{\mathrm{c}}$ and ${ }^{\overline{\bar{y}}} \in \mathrm{~V} \subseteq \overline{\bar{X}}^{\mathrm{c}}$.
5. $\mathbf{S R T}_{\mathbf{1}}(V)$ if for each $x, y \in X, x \neq y, \exists U, V \in$ $\mathrm{SR}(\mathrm{X})$ s.t y $\notin \mathrm{V}$ and $\bar{x} \notin \mathrm{~V}$.
6.SRT $\mathbf{1}_{\mathbf{1}}(\mathrm{Vi})$ if for each $\mathrm{x}, \mathrm{y} \in \mathrm{X}, \quad \mathrm{x} \neq \mathrm{y}, \exists \mathrm{U}, \mathrm{V}$ $\in \operatorname{SR}(X)$ s.t $\bar{y}^{\mathrm{c}} \notin \mathrm{U}$ and $\overline{\bar{x}} \notin \mathrm{~V}$.
The following theorem appears in [4] for IFOS without proof, we generalize it for SR sets and give it here with proof.

Theorem 2.3 : Let (X, \mathcal{T}) be an IFTS, then the following implication are valid.

SRT_{1} (iií) SRT_{1} (ív)
Proof: To prove $\mathrm{SRT}_{1}(\mathrm{ví}) \rightarrow \mathrm{SRT}_{1}(\mathrm{v}):-$
Let $x, y \in X, x \neq y, \quad$ since $\operatorname{SRT}_{1}(v i ́)$ hold so there exists $\mathrm{U}, \mathrm{V} \in \mathrm{SR}(\mathrm{X})$ s.t $\overline{\bar{y}} \notin \mathrm{U}$ and $\overline{\bar{x}} \notin \mathrm{~V}$, this implies that $y \in u_{2}$ and $x \in V_{2}$, Since $u_{1} \cap u_{2}=\emptyset$ and $v_{1} \cap v_{2}=$ \emptyset, we get $y \notin u_{1}$ and $x \notin V_{1}$, therefore
$\bar{x} \notin \mathrm{~V}$ and $\bar{y} \notin \mathrm{U}$ so $\mathrm{SRT}_{1}(\mathrm{v})$ holds.
To prove $\mathrm{SRT}_{1}(\mathrm{i}) \rightarrow \mathrm{SRT}_{1}(\mathrm{v}):-$
Let $x, y \in X$. Since $\operatorname{SRT}_{1}(\hat{i})$ hold, so there exists U, $\mathrm{V} \in \mathrm{SR}(\mathrm{X})$ s.t $\bar{x} \in \mathrm{U}, \bar{y} \notin \mathrm{U}$ and $\mathrm{y} \in \mathrm{V}$, $\mathrm{x} \notin \mathrm{U}$, this implies that $\bar{x} \notin \mathrm{U}$ and $\bar{y} \in \mathrm{~V}, \bar{x} \notin \mathrm{~V}, \mathrm{x} \notin \mathrm{V}$ and \bar{y} $\notin \mathrm{U}$, therefore $\mathrm{SRT}_{1}(\mathrm{v})$ hold.
In order to prove $\operatorname{SRT}_{1}($ ií $) \rightarrow \operatorname{SRT}_{1}(v i ́)$, take $x, y \in$ $X, x \neq y$. Since $\operatorname{SRT}_{1}($ ií $)$ hold, so there exists $U, V \in$ $\mathrm{SR}(\mathrm{X})$ s.t $\overline{\bar{x}} \in \mathrm{U}, \overline{\bar{y}}_{\notin \mathrm{U} \text { and }}{ }^{\overline{\bar{y}}} \in \mathrm{~V}, \overline{\bar{x}} \notin \bar{x}, \in \mathrm{~V}$. From this we have $\bar{X} \notin \mathrm{~V}$ and ${ }^{\bar{y}} \notin \mathrm{U}$, therefore $\mathrm{SRT}_{1}(\mathrm{ví})$ hold.
$\mathrm{SRT}_{1}(\mathrm{i})+\mathrm{SRT}_{1}(\mathrm{i} \mathbf{i}) \longrightarrow \mathrm{SRT}_{1}(\mathrm{i})$ and
$\mathrm{SRT}_{1}(\mathrm{i})+\mathrm{SRT}_{1}(\mathrm{ii}) \longrightarrow \mathrm{SRT}_{1}(\mathrm{ii})$ is direct.
To prove $\mathrm{SRT}_{1}(\mathrm{i})+\mathrm{SRT}_{1}(\mathrm{i} i ́) \rightarrow \mathrm{SRT}_{1}($ iií $):-$
Let $x, y \in X, x \neq y$. Since $\operatorname{SRT}_{1}(i) \quad \& \operatorname{SRT}_{1}(i i)$ hold so $\exists \mathrm{U}, \mathrm{V} \in \mathrm{SR}(\mathrm{X})$ s.t $\bar{x} \in \mathrm{U}, \bar{y} \in \mathrm{~V}, \bar{x} \notin \mathrm{~V}$ and $\bar{y} \notin \mathrm{U}$, so $\overline{\bar{x}} \in \mathrm{U},{ }^{\bar{y}} \notin \mathrm{U}$ and ${ }^{\overline{\bar{y}}} \in \mathrm{~V}, \overline{\bar{x}} \notin \bar{x} \in \mathrm{~V}$.

First we har to prove :-
$\bar{x} \in \mathrm{U} \subseteq \bar{Y}^{\mathrm{c}}$ and $\bar{y} \in \mathrm{~V} \subseteq \bar{X}^{\mathrm{c}}$, we have from assumption $\bar{x} \in \mathrm{U}$ and $\bar{y} \in \mathrm{~V}$.

To prove $\mathrm{U} \subseteq \bar{Y}^{\mathrm{c}}$, let $\mathrm{U}=\left\langle\mathrm{x}, \mathrm{u}_{1}, \mathrm{u}_{2}\right\rangle$ and $\bar{Y}^{\mathrm{c}}=\langle\mathrm{y}$, $\{y\}^{c},\{y\}>$, since $\bar{y} \notin U$, so $y \in u_{1}$, therefore $u_{1} \subseteq\{y\}^{c}$ and $\{\mathrm{y}\} \subseteq \mathrm{u}_{2}$, this implies that $\mathrm{U} \subseteq \bar{Y}^{\mathrm{c}}$. In a similar way, we can prove $\mathrm{V} \subseteq \bar{X}^{\mathrm{c}}$. Hence $\mathrm{SRT}_{1}($ (iíi) holds.
In order to prove $\mathrm{SRT}_{1}($ iíí $) \rightarrow \mathrm{SRT}_{1}(\mathrm{i})+\mathrm{SRT}_{1}(\mathrm{ii}):-$
First we have to prove $\mathrm{SRT}_{1}($ iií $) \rightarrow \mathrm{SRT}_{1}(\mathrm{i})$

Let $x, y \in X, x \neq y$. Since R_{1} (iií) hold, so $\exists U, V \in$ $\mathrm{SR}(\mathrm{X})$ s.t $\bar{x} \in \mathrm{U} \subseteq \subseteq \bar{Y}^{\mathrm{c}}$ and $\bar{y} \in \mathrm{~V} \subseteq \bar{X}^{\mathrm{c}}$, we have to prove $\bar{x} \in \mathrm{U}, \bar{y} \notin \mathrm{U}$ and $\bar{y} \approx \mathrm{~V}, \bar{x} \notin \mathrm{~V}$ this implies that $\bar{x} \in \mathrm{U}$ and $\mathrm{Y} \subseteq \mathrm{U}$ so $\bar{x} \in \mathrm{U}, \bar{y} \notin \mathrm{U}$ and since \bar{y} $\in \mathrm{V} \subseteq \bar{X}^{\mathrm{c}}$, so we get that $\bar{y} \in \mathrm{~V}, \bar{x} \notin \mathrm{~V}$, therefore $\mathrm{SRT}_{1}(\mathrm{i})$ holds.
Similarly, we can prove that $\mathrm{SRT}_{1}($ (ií $) \rightarrow \mathrm{SRT}_{1}($ (ií $)$.
The following implication all proved by transitivity :-
$\mathrm{SRT}_{1}(\mathrm{ii})+\mathrm{SRT}_{1}(\mathrm{i}) \rightarrow \mathrm{SRT}_{1}(\mathrm{ví})$,
$\mathrm{SRT}_{1}(\mathrm{ii})+\mathrm{SRT}_{1}(\mathrm{i}) \rightarrow \mathrm{SRT}_{1}(\mathrm{v})$
Remark 2.4: The converse of the last theorem are not true in general. The following counter example shows the cases.

Example 2.5 :

1. Let $\mathrm{X}=\{1,2,3\}$ and define $\mathcal{T}=\{\tilde{\Phi}, \tilde{X}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}$, E, F \} where $\mathrm{A}=\langle\mathrm{x},\{1\},\{2,3\}\rangle, \mathrm{B}=\langle\mathrm{x},\{2\}$, $\{1,3\}>, C=\langle x,\{1,2\},\{3\}\rangle, D=\langle x,\{1,3\},\{2\}\rangle$, $\mathrm{E}=\langle\mathrm{x},\{2,3\}, \emptyset\rangle, \mathrm{F}=\langle\mathrm{x},\{1,3\}, \emptyset\rangle, \operatorname{so} \operatorname{SR}(\mathrm{X})=$ $\left\{\widetilde{\Phi}, \tilde{X}^{\tilde{X}}, \mathrm{~B}, \mathrm{D}\right\}$, then $(\mathrm{X}, \mathcal{T})$ is $\mathrm{SRT}_{1}(\mathrm{i})$, but not $\mathrm{SRT}_{1}(\mathrm{ii})$. 2. Let $\mathrm{X}=\{1,2\}$ and $\mathcal{T}=\{\widetilde{\Phi}, \tilde{X}, \mathrm{~A}, \mathrm{~B}\}$, where $\mathrm{A}=<$ $\mathrm{x}, \emptyset,\{1\}>, \mathrm{B}=\langle\mathrm{x}, \emptyset,\{2\}>$ and $\operatorname{SR}(\mathrm{X})=\{\widetilde{\Phi}, \widetilde{\bar{X}}, \mathrm{~A}$, $\mathrm{C}, \mathrm{D}\}$ where $\mathrm{C}=\langle\mathrm{x}, \emptyset,\{1\}\rangle$ and $\mathrm{D}=\langle\mathrm{x},\{2\}, \emptyset\rangle$, then $(\mathrm{X}, \mathcal{T})$ is $\mathrm{SRT}_{1}(\mathrm{vi})$, but not $\mathrm{SRT}_{1}(\mathrm{i})$.
2. Let $\mathrm{X}=\{1,2,3\}$ and define $\mathcal{T}=\{\widetilde{\varnothing}, \tilde{X}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}$, $\mathrm{D}, \mathrm{E}, \mathrm{F}\}$ on X where $\mathrm{A}=\langle\mathrm{x}, \emptyset,\{1,2\}\rangle, \mathrm{B}=\langle\mathrm{x}$, $\{3\},\{1,2\}>, C=<x, \emptyset,\{2,3\}>, D=\langle x,\{3\},\{2\}>$, $\mathrm{E}=\langle\mathrm{x},\{1,3\},\{2\}\rangle, \mathrm{F}=\langle\mathrm{x}, \emptyset,\{2\}\rangle$, then $(\mathrm{X}, \mathcal{T})$ is $\operatorname{SRT}_{1}(\mathrm{ví})$, but not $\mathrm{SRT}_{1}(\mathrm{i} i ́)$ and not $\mathrm{SRT}_{1}(\mathrm{iii})$.
3. Let $\mathrm{X}=\{1,2,3\}$ and $\mathcal{T}=\{\widetilde{\Phi}, \widetilde{X}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$, $\mathrm{G}, \mathrm{H}, \mathrm{K}\}$ where $\mathrm{A}=\langle\mathrm{x},\{1\},\{3\}\rangle, \mathrm{B}=\langle\mathrm{x},\{2\}$, $\{1\}>, C=\langle x,\{1\},\{2,3\}\rangle, D=\langle x, \emptyset,\{2\}\rangle, E=<$ $\mathrm{x},\{1,2\}, \emptyset>, \mathrm{F}=<\mathrm{x}, \emptyset,\{1,3\}>, \mathrm{G}=<\mathrm{x}, \emptyset,\{2,3\}>$, $\mathrm{K}=\langle\mathrm{x},\{1\}, \emptyset\rangle \operatorname{So}(\mathrm{X}, \mathcal{T})$ is $\operatorname{SRT}_{1}(\mathrm{i})$ but not SRT_{1} (iií).

3. Semi- regular T_{2} in intuitionistic Fuzzy Topological Spaces :

The aim of this part is to introducing some new form of T_{2} separation axioms namely semi-regular
T_{2} in IFTS and study properties and it's relations of each other.
Definition 3.1: Let (X, \mathcal{T}) be an IFTS. (X, $\mathcal{T})$ is said to be :-

1. $\operatorname{SRT}_{2}(\hat{i})$ if for all $x, y \in X, x \neq y, \exists U, V \in \operatorname{SR}(X)$ such that $\bar{x} \in \mathrm{U}, \bar{y} \in \mathrm{~V}$ and $\mathrm{U} \cap \mathrm{V}=\widetilde{\varnothing}$.
2. $\operatorname{SRT}_{2}($ ií $)$ if for all $x, y \in X, x \neq y, \exists U, V \in \operatorname{SR}(X)$ such that $\overline{\bar{x}} \in \mathrm{U},{ }^{\bar{y}} \in \mathrm{~V}$ and $\mathrm{U} \cap \mathrm{V}=\widetilde{\varnothing}$.
3. $\operatorname{SRT}_{2}($ (iíí) if for all $x, y \in X, x \neq y, \exists U, V \in \operatorname{SR}(X)$ such that $\bar{x} \in \mathrm{U}, \bar{y} \in \mathrm{~V}$ and $\mathrm{U} \cap \mathrm{V}=\widetilde{\varnothing}$.
4. $\operatorname{SRT}_{2}($ ív $)$ if for all $x, y \in X, x \neq y, \exists U, V \in \operatorname{SR}(X)$ such that $\overline{\bar{X}} \in \mathrm{~V}$ and $\mathrm{U} \subseteq \mathrm{V}$.
5. $\operatorname{SRT}_{2}(v)$ if for all $x, y \in X, x \neq y, \exists U, V \in S R(X)$ such that $\bar{x} \in U \subseteq \bar{Y}^{\mathrm{c}}, \bar{y} \in \mathrm{~V} \subseteq \bar{X}^{\mathrm{c}}$ and $\mathrm{U} \cap \mathrm{V}=\widetilde{\Phi}$.
6. $\operatorname{SRT}_{2}(\mathrm{ví})$ if for all $x, y \in X, x \neq y, \exists U, V \in \operatorname{SR}(X)$ such that $\overline{\bar{x}} \in \mathrm{U} \subseteq \bar{Y}^{\mathrm{c}}, \bar{y}^{\mathrm{c}} \in \mathrm{V} \subseteq \bar{X}^{\mathrm{c}}$ and $\mathrm{U} \cap \mathrm{V}=\widetilde{\varnothing}$.

Theorem 3.2 : Let $(\mathrm{X}, \mathcal{T})$ be an IFTS, then the following implications are valid.

Proof :-

1. Let $(\mathrm{X}, \mathcal{T})$ be IFTS satisfy $\mathrm{SRT}_{2}(\mathrm{~V})$, to prove that $(\mathrm{X}, \mathcal{T})$ is satisfy $\mathrm{SRT}_{2}\left(\mathrm{v} \mathrm{v}^{\prime}\right)$. Let $\mathrm{x}, \mathrm{y} \in \mathrm{X}, \mathrm{x} \neq \mathrm{y}$. Since $\operatorname{SRT}_{2}(\mathrm{v})$ holes. Then $\exists \mathrm{U}, \mathrm{V} \in \operatorname{SR}(\mathrm{X})$ such that $\bar{x} \in$ $\mathrm{U} \subseteq \bar{Y}^{\mathrm{c}}, \bar{y} \in \mathrm{~V} \subseteq \bar{X}^{\mathrm{c}} \quad$ and $\mathrm{U} \cap \mathrm{V}=\widetilde{\varnothing}$, Since $\bar{x} \in \mathrm{U}$ and $\bar{y} \in \mathrm{~V}$ then we can get easily that $\overline{\bar{x}} \in \mathrm{U}$ and $\overline{\bar{y}} \in \mathrm{~V}$, therefore $\overline{\bar{x}} \in \mathrm{U}, \overline{\bar{y}} \in \mathrm{~V}, \mathrm{U} \subseteq \bar{Y}^{\mathrm{c}}, \mathrm{V} \subseteq \bar{X}^{\mathrm{c}}$ and $\mathrm{U} \cap \mathrm{V}=\widetilde{\Phi}$ from hypotheses, so we get that $(\mathrm{X}, \mathcal{T})$ is satisfies SRT_{2} (ví).
2. To prove $\mathrm{SRT}_{2}(\mathrm{i}) \rightarrow \mathrm{SRT}_{2}(\mathrm{i} \hat{i})$, let $(\mathrm{X}, \mathcal{T})$ be IFTS satisfy $\operatorname{SRT}_{2}(i)$ and $x, y \in X, x \neq y$, so $\exists U, V \in \operatorname{SR}(X)$ such that $\bar{x} \in \mathrm{U}, \bar{y} \in \mathrm{~V}$ and $\mathrm{U} \cap \mathrm{V}=\widetilde{\varnothing}$. Then we can get easily that $\overline{\bar{x}} \in U$ and $\overline{\bar{y}} \in \mathrm{~V}$ and $\mathrm{U} \cap \mathrm{V}=\widetilde{\bar{\Phi}}$, therefore SRT_{2} (ií) holds.
3. Let (X, \mathcal{T}) be IFTS $x, y \in X, x \neq y$ and $\operatorname{SRT}_{2}(i)$ holds, to prove $\mathrm{SRT}_{2}\left(\right.$ (iíi) is satisfy, since $\mathrm{SRT}_{2}(\mathrm{i})$ holds so $\exists \mathrm{U}, \mathrm{V} \in \mathrm{SR}(\mathrm{X})$ such that $\bar{x} \in \mathrm{U}, \bar{y} \in \mathrm{~V}$ and $\mathrm{U} \cap \mathrm{V}=\widetilde{\Phi}$, since $\bar{x} \in \mathrm{U}$ and $\mathrm{U} \cap \mathrm{V}=\widetilde{\Phi}$ this implies that $\bar{x} \notin \mathrm{~V}$, so $\bar{x} \in \mathrm{~V}^{\mathrm{c}}$, this prove that for every $\mathrm{x} \in \mathrm{X}$, if $\bar{x} \in \mathrm{U}$, then $\bar{x} \in \mathrm{~V}^{\mathrm{c}}, \bar{y} \in \mathrm{~V}$, i.e. $\mathrm{U} \subseteq \mathrm{V}$, therefore SRT_{2} (iíí) holds.
4. Suppose that SRT_{2} (íi) holds, to prove SRT_{2} (iv), let $\mathrm{x}, \mathrm{y} \in \mathrm{X}, \mathrm{x} \neq \mathrm{y}$, since $\mathrm{SRT}_{2}($ ií $)$ is hold so
$\exists \mathrm{U}, \mathrm{V} \in \operatorname{SR}(\mathrm{X})$ such that $\overline{\bar{x}} \in \bar{U}^{\mathrm{c}} \subseteq \overline{\bar{y}}$ and $\mathrm{U} \cap \mathrm{V}=\widetilde{\varnothing}$, since $\overline{\bar{X}} \in U$, then $\bar{X} \notin \mathrm{~V}^{\mathrm{c}}=\emptyset$, so
$\overline{\bar{x}} \in \mathrm{~V}$, therefore $\mathrm{u} \in \mathrm{V}$, that is mean $\mathrm{SRT}_{2}(\mathrm{iv})$ holds.
5. In order to prove SRT_{2} (ií) satisfy when SRT_{2} (ví) holds. Let $x, y \in X, x \neq y$, so $\exists U, V \in S R(X)$ such that $\overline{\bar{x}} \in \bar{U}^{\mathrm{c}} \subseteq{ }_{\overline{\bar{Y}}}, \overline{\bar{y}} \in \bar{V}^{\mathrm{c}} \subseteq \mathrm{X}$ and $\mathrm{U} \cap \mathrm{V}=\widetilde{\bar{\Phi}}$, from this we get directly that $\exists \mathrm{U}, \mathrm{V} \in \operatorname{SR}(\mathrm{X})$ such that $\overline{\bar{x}} \in$ $\mathrm{U}, \overline{\bar{y}} \in \mathrm{~V}$ and $\mathrm{U} \cap \mathrm{V}=\widetilde{\bar{\Phi}}$, therefore $\mathrm{SRT}_{2}(\mathrm{ii})$ holds.
6. $\mathrm{SRT}_{2}(\mathrm{iv}) \rightarrow \mathrm{SRT}_{2}(\mathrm{i})$ is clear.
7. To prove $\mathrm{SRT}_{2}(\mathrm{i} v)$ satisfy when SRT_{2} (iíí) holds, suppose that $x, y \in X, x \neq y$ so $\exists U, V \in \operatorname{SR}(X)$ such that $\bar{x} \in \mathrm{U}, \bar{y} \in \mathrm{~V}$ and $\mathrm{U} \subseteq \mathrm{V}^{\mathrm{c}}$, so we get directly that $\overline{\bar{x}} \in \mathrm{U}, \overline{\bar{y}} \in \mathrm{~V}$ and
$\mathrm{U} \cap \mathrm{V}=\widetilde{\Phi}$, therefore SRT_{2} (iv) holds.
Remark 3.3: In general the converse of the diagram appears in the theorem is not true in general. The following counter example shows the cases.

Example 3.4 :

(i) Let $\mathrm{X}=\{1,2,3\}$ and define $\mathcal{T}=\{\widetilde{\widetilde{\Phi}}, \tilde{X}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}\}$ on X where $A=\langle x,\{1\},\{2,3\}>, B=\langle x,\{2\},\{1,3\}>, C$ $=\langle x,\{1,2\},\{3\}\rangle$, then $\operatorname{SR}(X)=\{\widetilde{\Phi}, X, D, E\}$ where D $=\langle x,\{1\},\{2\}\rangle, E=\langle x,\{2\},\{1\}\rangle$, so the IFTS (X, $\mathcal{T})$ is $\mathrm{SRT}_{2}(\mathrm{ii})$ but not $\mathrm{SRT}_{2}(\mathrm{i})$.
(ií) Let $\mathrm{X}=\{1,2\}$ and define $\mathcal{T}=\{\widetilde{\boldsymbol{\Phi}}, \tilde{X}, \mathrm{~A}, \mathrm{~B}\}$ on X where $\mathrm{A}=\langle\mathrm{x}, \emptyset,\{2\}>, \mathrm{B}=\langle\mathrm{x}, \emptyset\{1\}>$, then the $\operatorname{IFTS}(\mathrm{X}, \mathcal{T})$ is $\mathrm{SRT}_{2}\left(\mathrm{i} \mathrm{i}^{\prime}\right)$, but not $\mathrm{SRT}_{2}(\mathrm{i})$.
(iií) Let $\mathrm{X}=\{1,2,3\}$ and define $\mathcal{T}=\{\widetilde{\mathscr{D}}, \tilde{X}, \mathrm{~A}, \mathrm{~B}\}$ on X where $\mathrm{A}=<\mathrm{x}, \emptyset,\{2,3\}>, \mathrm{B}=<\mathrm{x}, \emptyset,\{1,3\}>$, then the $\operatorname{IFTS}(\mathrm{X}, \mathcal{T})$ is $\mathrm{SRT}_{2}(\mathrm{v} \mathrm{i})$, but not $\mathrm{SRT}_{2}(\mathrm{v})$.
Since every T_{2} separation axiom is T_{1} separation axiom in general topology, then we have the following corollary :-
Corollary 3.5: Let (X, \mathcal{T}) be IFTS, then if (X, \mathcal{T}) is satisfies $\operatorname{SRT}_{2}(\mathrm{n})$, then it satisfies $\mathrm{SRT}_{1}(\mathrm{n})$, where
 corollary is not true in general and the following examples show the cases :-

Example 3.6 :

1. Let $\mathrm{X}=\{1,2,3\}$ and define $\mathcal{T}=\left\{\widetilde{\Phi}^{\widetilde{X}}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}\right.$, E, F $\}$ where $\mathrm{A}=\langle\mathrm{x}, \emptyset,\{1,2\}\rangle, \mathrm{B}=\langle\mathrm{x}, \emptyset,\{2,3\}>$, $C=\langle x,\{3\},\{1,2\}\rangle, \quad D=\langle x,\{3\},\{2\}\rangle, \quad E=\langle x$, $\{1,3\},\{2\}\rangle, F=\langle x, \emptyset,\{2\}\rangle$, so $\operatorname{SR}(X)=\{\widetilde{\Phi}, \tilde{X}, M$, $H\}$ where $M=<x,\{3\}, \emptyset>, H=<x, \emptyset,\{3\}>$, so $(X$, \mathcal{T}) is SRT1(vi), but not SRT2(vi).
2. In the example 3.4(1) we see $(\mathrm{X}, \mathcal{T})$ is $\mathrm{SRT}_{1}(\mathrm{i})$ but not $\mathrm{SRT}_{2}(\mathrm{i})$ and in the (iii) of the example 3.4 we see (X, \mathcal{J}) is $\mathrm{SRT}_{1}(\mathrm{v})$, but not $\mathrm{SRT}_{2}(\mathrm{v})$.
3. Let $\mathrm{X}=\{1,2\}$ and define $\mathcal{T}=\{\widetilde{\widetilde{\phi}}, \tilde{X}, \mathrm{~A}, \mathrm{~B}\}$ where A $=\langle\mathrm{x}, \emptyset,\{1\}\rangle, \mathrm{B}=\langle\mathrm{x}, \emptyset,\{2\}\rangle$,so $\operatorname{SR}(\mathrm{X})=\mathcal{T}$.

Hence, $(\mathrm{X}, \mathcal{T})$ is $\mathrm{SRT}_{1}(\mathrm{ii})$, but not $\mathrm{SRT}_{2}(\mathrm{ii})$.
4. Take $\mathrm{X}=\{1,2,3\}$ and define $\mathcal{T}=\{\widetilde{\Phi}, \widetilde{X}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}$,

D, E, F, G $\}$, where $A=\langle x,\{1\},\{2,3\}>, B=\langle x,\{2\}$, $\{1,3\}>, C=\langle x,\{1,2\},\{3\}>, D=\langle x,\{3\},\{1,2\}\rangle, E$ $=\langle x\{1,3\},\{2\}\rangle, F=\langle x,\{2,3\},\{1\}\rangle$, so $\operatorname{SR}(X)=\mathcal{T}$, then $(\mathrm{X}, \mathcal{T})$ is $\mathrm{SRT}_{1}(\mathrm{i} i \mathrm{i})$, but not $\mathrm{SRT}_{2}(\mathrm{i} i \mathrm{i})$.

References

[1] Zadeh, L. A.(1965):" Fuzzy Sets, "Information and Control 8 (3)338-353.
[2] Atanasov, K. and Stoeva, S. (1983): "Intuitionistic Fuzzy Sets In: Polish Symp on Interval and Fuzzy Mathematics". Poznon pp. 23-26.
[3] Atanassov K. (1986): "Intuitionistic Fuzzy Sets" Fuzzy set and systems 20, 87-96.

Let $\mathrm{X}=\{1,2,3\}$ and define $\mathcal{T}=\{\widetilde{\Phi}, \tilde{X}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$, F, G, H, K $\}$ where $A=\langle x,\{1\},\{3\}\rangle, B=\langle x,\{2\}$, $\emptyset>, C=\langle x,\{3\}, \emptyset\rangle, D=\langle x,\{1,2\}, \emptyset\rangle, E=\langle$ $\mathrm{x},\{1,3\}, \emptyset\rangle, \mathrm{F}=\langle\mathrm{x},\{2,3\}, \emptyset\rangle, \mathrm{G}=\langle\mathrm{x}, \emptyset,\{3\}\rangle$, $\mathrm{H}=\langle\mathrm{x}, \emptyset, \emptyset\rangle, \mathrm{K}=\langle\mathrm{x}\{1\}, \emptyset\rangle$, then the IFS (X, \mathcal{T}) on X is SRT_{1} (iv), but not SRT_{2} (iv).
[4] Bayhan, S. and Coker, D. (2000): "On Fuzzy Separation Axioms in Intuitionistic Fuzzy Topological Spaces". Internet pp. 620-630.
[5] Coker, D. (1996): " A note on Intuitionistic Sets and Intuitionistic Points". Turkish J. Math. 20, No. 3, pp. 343-351 .

حول الشبهه المنتظم T1 والثببه المننظم \mathbf{T}_{2} في الفضاءات الثبولوجية الحدسية
 فاطمة محمود محمد

قسم الرياضيات ، كلية التربية للعلوم الصرفة ، جامعة تكربت ، تكربت ، العرق

[^0]
[^0]: الثبه المنتظم T2 ودراسة بعض صفاتهما وتعميمها مع بعض التفاصيل والعلاقات التي تربط بينهما .

