On Semi- regular T₁ and Semi- regular T₂ in Intuitionistic Fuzzy Topological Spaces

Fatimah M. Mohammed

Department of Mathematic, College of Education, Tikrit University, Tikrit, Iraq

Abstract

The purpose of this paper is to give the new definitions of semi-regular T_1 and semi-regular T_2 separation axioms in intuitionistic fuzzy topological spaces. Study the basic properties, characterizations and relationships of these new concepts in intuitionistic fuzzy topological spaces.

Key words: fuzzy set, intuitionistic fuzzy topology, semi-regular T₁, semi-regular T₂.

1. Introduction

After the introduction of fuzzy sets by Zadeh [1], Atanassov in 1983 [2,3] introduced the notion of "intuitionistic fuzzy set" (IFS for short). Using intuitionistic fuzzy sets, Coker [5] introduced the notion of "intuitionistic fuzzy topological spaces. In this paper, we introduce new notions of semi-regular T_1 and semi-regular T_2 separation axioms in intuitionistic fuzzy topological spaces.

2. Preliminaries

The concept of " intuitionistic fuzzy set " (IFS for short) was introduced by Atanassov as an object of the form A=< x, A₁, A₂>, where A₁ and A₂ are subset of a nonempty fixed set X, satisfying the following A₁ \cap A₂ = ø. Every subset of a nonempty set of IFS having the form < x , A, A^c > . Some Boolean algebra operations on IFS is defined by Coker [5] as follows:-Let A, B be IF'S where A = <x , A₁, A₂>, B = < x, B₁, B₂ > belong to a non-empty set X and {Aí : í \in J} be an arbitrary family of IFS in X where Aí = <x , Ă₁, Ă₂>, then :-

$$A \subseteq B \stackrel{\longleftrightarrow}{\rightarrow} A_1 \subseteq B_1 \land A_2 \supseteq B_2 ;$$

$$A = B \stackrel{\longleftrightarrow}{\rightarrow} A \subseteq B \land B \subseteq A ;$$

$$A^c = < x, A_2, A_1 >$$

$$\bigcup A^i = < x, \bigcup \check{A}_1, \cap \check{A}_2 >,$$

$$\cap A^i = < x, \cap \check{A}_1, \bigcup \check{A}_2 >.$$

$$\breve{\varnothing} = < x, \emptyset, X >, \quad \check{X} = < x, X, \emptyset >.$$

The an intuitionistic fuzzy topology (IFT for short) on a nonempty set X is a family \mathcal{T} of IF's in X containing $\widetilde{\mathcal{O}}$, \widetilde{X} and closed under finite intersection and arbitrary union, in this case the pair (X, \mathcal{T}) is called an intuitionistic fuzzy topological space (IFTS for short).

Now let A be any IF'S in (X, \mathcal{T}) , then A said to be intuitionistic fuzzy regular (semi) open set ((IFROS), IFSOS for short) if A=Int(ClA) (A \subseteq CL (IntA)) and called intuitionistic fuzzy regular (semi)closed set (IFRCS), IFSCS for short) if A= Cl(IntA)(A \subseteq CL (IntA)), when the interior and closure of an IFS A are defined by ;

Int $A = \bigcup \{ G : G \in \mathcal{T}, G \subseteq A \}$

$Cl A = \cap \{ K : 1 - K \in \mathcal{T}, A \subseteq K \}$

Any IF'S in \mathcal{T} is known an intuitionistic fuzzy open set (IFOS for short) in X. The IF'S $\overline{\mathbf{p}} = \langle x, p, \{P\}^c \rangle$ is called intuitionistic fuzzy point in X. The IF'S $\mathbf{\bar{p}}$ is said to be contained in A if ($P \in A_1$ and $P \notin A_2$, and

the set $\bar{p}_{=} <x$, \emptyset , {P}^c > is called vanishing Intuitionistic point in X (VIP for short).

2. Some Forms of Semi-regular T₁ Separation axioms:

In this section, we introduce some new form of the separation axioms namely semi-regular T_1 (SRT₁ for short) in IFTS, we give a definition of semi-regular and semi-regular T_1 and some of it's properties and relations with each other.

Definition 2.1: Let (X, \mathcal{T}) be an IFTS, A subset A of X is said to be semi-regular if A is both semi open and semi closed [5].

The set of all semi-regular sets of X is denoted by SR(X), the intersection of all semi-regular sets of X containing A is called the semi-regular closure of A and denoted by SRCL(A) and the union of all semi-regular sets of X contained in A is called the semi-regular interior of A and denoted by SRI(A).

Definition 2.2: Let (X, \mathcal{T}) be an IFTS, than (X, \mathcal{T}) is said to be :-

1. SRT₁(i) if for each x, y \in X, x \neq y, \exists U, V \in

SR(X) s.t $\overline{x} \in U$, $\overline{y} \notin U$ and $\overline{y} \in V$, $\overline{x} \notin V$.

2. SRT₁ (ii) if for each x, $y \in X$, $x \neq y$, $\exists U, V \in$

SR(X) s.t $\overline{\overline{x}} \in U$, $\overline{\overline{y}} \notin U$ and $\overline{\overline{y}} \in V$, $\overline{\overline{x}} \notin \overline{x} \in V$.

3. SRT₁ (iii) if for each x, $y \in X$, $x \neq y$, $\exists U, V \in$

SR(X) s.t $\overline{X} \in U \subseteq \overline{Y}^c$ and $\overline{Y} \in V \subseteq \overline{X}^c$.

4. SRT₁ (iv) if for each x, $y \in X$, $x \neq y, \exists U, V \in$ SR(X) s.t $\overline{\overline{x}} \in U \subseteq \overline{\overline{Y}}^c$ and $\overline{\overline{y}} \in V \subseteq \overline{\overline{X}}^c$.

5. SRT₁(V) if for each x, $y \in X$, $x \neq y$, $\exists U, V \in$ SR(X) s.t $y \notin V$ and $\bar{x} \notin V$.

6.SRT₁(Ví) if for each x, y ∈X, x≠y, ∃ U, V ∈SR(X) s.t $\overline{y}^c \notin U$ and $\overline{x} \notin V$.

The following theorem appears in [4] for IFOS without proof, we generalize it for SR sets and give it here with proof.

Theorem 2.3 : Let (X, \mathcal{T}) be an IFTS, then the following implication are valid.

$$SRT_{1}(V) \longleftarrow SRT_{1}(Vi)$$

$$\uparrow \qquad \checkmark$$

$$SRT_{1}(i) \longleftarrow SRT_{1}(i) + SRT_{1}(ii) \rightarrow SRT_{1}(ii)$$

$$\downarrow \qquad \downarrow$$

 $SRT_1(iii) SRT_1(iv)$

Proof : To prove $SRT_1(vi) \rightarrow SRT_1(v)$:-

Let x, y $\in X$, x \neq y, since SRT₁(v i) hold so there exists U, V \in SR(X) s.t $\overline{y} \notin$ U and $\overline{x} \notin$ V, this implies that $y \in u_2$ and $x \in V_2$, Since $u_1 \cap u_2 = \emptyset$ and $v_1 \cap v_2 =$ Ø, we get $y \notin u_1$ and $x \notin V_1$, therefore $\overline{\mathbf{x}} \notin \mathbf{V}$ and $\overline{\mathbf{y}} \notin \mathbf{U}$ so SRT₁(v) holds. To prove $SRT_1(i) \rightarrow SRT_1(v)$:-Let x, y \in X. Since SRT₁(i) hold, so there exists U, $V \in SR(X)$ s.t $\overline{x} \in U, \overline{y} \notin U$ and $y \in V, x \notin U$, this implies that $\bar{x} \notin U$ and $\bar{y} \in V, \bar{x} \notin V, x \notin V$ and \bar{y} \notin U, therefore SRT₁(v) hold. In order to prove $SRT_1(ii) \rightarrow SRT_1(vi)$, take x, y \in X, $x \neq y$. Since SRT₁(ii) hold, so there exists U, V \in SR(X) s.t $\bar{x} \in U$, $\bar{y} \notin U$ and $\bar{y} \in V$, $\bar{x} \notin \bar{x}$, $\in V$. From this we have $\overline{x} \notin V$ and $\overline{y} \notin U$, therefore $SRT_1(vi)$ hold. $SRT_1(i) + SRT_1(ii) \longrightarrow SRT_1(i)$ and $SRT_1(i) + SRT_1(ii) \longrightarrow SRT_1(ii)$ is direct. To prove $SRT_1(i) + SRT_1(ii) \rightarrow SRT_1(iii) :$ Let x, $y \in X$, $x \neq y$. Since $SRT_1(i)$ & $SRT_1(i)$ hold so \exists U, V \in SR(X) s.t $\bar{x} \in U, \bar{y} \in V, \bar{x} \notin V$ and $\bar{y} \notin U$, so $\bar{\bar{x}} \in U$, $\bar{\bar{y}} \notin U$ and $\bar{\bar{y}} \in V$, $\bar{\bar{x}} \notin \bar{x} \in V$. First we have to prove :- $\bar{x} \in U \subseteq \bar{Y}^c$ and $\bar{y} \in V \subseteq \bar{X}^c$, we have from assumption $\overline{x} \in U$ and $\overline{y} \in V$. To prove $U \subseteq \overline{Y}^c$, let $U = \langle x, u_1, u_2 \rangle$ and $\overline{Y}^c = \langle y, u_1, u_2 \rangle$ $\{y\}^c$, $\{y\}$ >, since $\overline{y} \notin U$, so $y \in u_1$, therefore $u_1 \subseteq \{y\}^c$ and $\{y\}\subseteq u_2$, this implies that $\bigcup \subseteq \overline{Y}^c$. In a similar way, we can prove $V \subseteq \overline{X}^c$. Hence $SRT_1(iii)$ holds.

In order to prove $\text{SRT}_1(\mathfrak{i}\mathfrak{i}) \to \text{SRT}_1(\mathfrak{i}) + \text{SRT}_1(\mathfrak{i}\mathfrak{i}) :=$

First we have to prove $SRT_1(iii) \rightarrow SRT_1(i)$

ISSN: 1813 – 1662 (Print) E-ISSN: 2415 – 1726 (On Line)

Let x, $y \in X$, $x \neq y$. Since $\operatorname{RT}_1(\operatorname{iii})$ hold, so $\exists U, V \in$ SR(X) s.t $\overline{x} \in U \subseteq \subseteq \overline{Y}^c$ and $\overline{y} \in V \subseteq \overline{X}^c$, we have to prove $\overline{x} \in U$, $\overline{y} \notin U$ and $\overline{y} \sim V$, $\overline{x} \notin V$ this implies that $\overline{x} \in U$ and $Y \subseteq U$ so $\overline{x} \in U$, $\overline{y} \notin U$ and since $\overline{y} \in V \subseteq \overline{X}^c$, so we get that $\overline{y} \in V$, $\overline{x} \notin V$, therefore SRT₁(i) holds.

Similarly, we can prove that $SRT_1(\mathfrak{i}\mathfrak{i}) \rightarrow SRT_1(\mathfrak{i}\mathfrak{i})$.

The following implication all proved by transitivity :-SRT₁(ii) + SRT₁(ii) \rightarrow SRT₁(vi),

 $SRT_1(ii) + SRT_1(i) \rightarrow SRT_1(v)$

Remark 2.4: The converse of the last theorem are not true in general. The following counter example shows the cases.

Example 2.5 :

1. Let X = {1,2,3} and define $\mathcal{T} = \{\widetilde{\mathcal{O}}, \widetilde{X}, A, B, C, D, E, F\}$ where A = < x, {1}, {2,3}>, B = < x,{2}, {1,3}>, C = < x, {1,2}, {3}>, D = < x, {1,3}, {2}>, E = < x, {2,3}, $\mathscr{O}>$, F = < x, {1,3}, $\mathscr{O}>$, so SR(X) = $\{\widetilde{\mathcal{O}}, \widetilde{X}, B, D\}$, then (X, \mathcal{T}) is SRT₁(i), but not SRT₁(ii). 2. Let X = {1,2} and $\mathcal{T} = \{\widetilde{\mathcal{O}}, \widetilde{X}, A, B\}$, where A = < x, $\mathscr{O}, \{1\}>$, B = < x, $\mathscr{O}, \{2\}>$ and SR(X) = $\{\widetilde{\mathcal{O}}, \widetilde{X}, A, C, D\}$ where C = < x, $\mathscr{O}, \{1\}>$ and D = < x, {2}, $\mathscr{O}>$, then (X, \mathcal{T}) is SRT₁(vi), but not SRT₁(i). 3. Let X = {1,2,3} and define $\mathcal{T} = \{\widetilde{\mathcal{O}}, \widetilde{X}, A, B, C, D, E, F\}$ on X where A = < x, $\mathscr{O}, \{2,3\}>$, D= < x, {3}, {2}>, E = < x, {1,3}, {2}>, F = < x, $\mathscr{O}, \{2,3\}>$, then (X, \mathcal{T}) is SRT₁(vi), but not SRT₁(ii).

4. Let X = {1,2,3} and $\mathcal{T} = \{\widetilde{\emptyset}, X, A, B, C, D, E, F, G, H, K\}$ where A = < x, {1}, {3}>, B = < x, {2}, {1}>, C = < x, {1}, {2,3}>, D = < x, \emptyset , {2}>, E = < x, {1,2}, \emptyset >, F= < x, \emptyset , {1,3}>, G = < x, \emptyset , {2,3}>,

 $K = \langle x, \{1\}, \not O \rangle$ So (X, \mathcal{T}) is $SRT_1(i)$ but not $SRT_1(iii)$.

3. Semi- regular T₂ in intuitionistic Fuzzy Topological Spaces :

The aim of this part is to introducing some new form of T_2 separation axioms namely semi-regular

 T_2 in IFTS and study properties and it's relations of each other.

Definition 3.1: Let (X, \mathcal{T}) be an IFTS. (X, \mathcal{T}) is said to be :-

1. $SRT_2(i)$ if for all x, $y \in X$, $x \neq y$, $\exists U, V \in SR(X)$

such that $\overline{x} \in U$, $\overline{y} \in V$ and $U \cap V = \widetilde{\varphi}$.

2. $SRT_2(\mathfrak{i}\mathfrak{l})$ if for all x, $y \in X$, $x \neq y$, $\exists U, V \in SR(X)$

such that $\overline{\overline{x}} \in U$, $\overline{\overline{y}} \in V$ and $U \cap V = \overline{\emptyset}$.

Tikrit Journal of Pure Science 22 (2) 2017

3. SRT₂(iii) if for all x, $y \in X$, $x \neq y$, $\exists U, V \in SR(X)$ such that $\overline{x} \in U$, $\overline{y} \in V$ and $U \cap V = \overset{\widetilde{\emptyset}}{=}$.

4. $SRT_2(iv)$ if for all x, $y \in X$, $x \neq y$, $\exists U, V \in SR(X)$ such that $\overline{\overline{x}} \in V$ and $U \subseteq V$.

5. SRT₂(v) if for all x, $y \in X$, $x \neq y, \exists U, V \in SR(X)$ such that $\overline{x} \in U \subseteq \overline{Y}^c, \overline{y} \in V \subseteq \overline{X}^c$ and $U \cap V = \overset{\widetilde{\emptyset}}{=}$.

6. SRT₂(vi) if for all x, $y \in X$, $x \neq y$, $\exists U, V \in SR(X)$ such that $\overline{\overline{x}} \in U \subseteq \overline{Y}^c$, $\overline{\overline{y}}^c \in V \subseteq \overline{X}^c$ and $U \cap V = \overline{\emptyset}$.

Theorem 3.2 : Let (X, \mathcal{T}) be an IFTS, then the following implications are valid.

$$SRT_{2}(v) \longrightarrow SRT_{2}(vi)$$

$$\downarrow \qquad \downarrow$$

$$SRT_{2}(i) \rightarrow SRT_{2}(ii)$$

$$\downarrow \qquad \downarrow$$

$$SRT_{2}(iii) \rightarrow SRT_{2}(iv)$$

Proof :-

1. Let (X, \mathcal{T}) be IFTS satisfy $SRT_2(V)$, to prove that (X, \mathcal{T}) is satisfy $SRT_2(vi)$. Let $x, y \in X, x \neq y$. Since $SRT_2(v)$ holes. Then $\exists U, V \in SR(X)$ such that $\overline{x} \in U \subseteq \overline{Y}^c$, $\overline{y} \in V \subseteq \overline{X}^c$ and $U \cap V = ^{\widetilde{\varphi}}$, Since $\overline{x} \in U$ and $\overline{y} \in V$ then we can get easily that $\overline{x} \in U$ and $\overline{y} \in V$ therefore $\overline{x} \in U, \overline{y} \in V, U \subseteq \overline{Y}^c, V \subseteq \overline{X}^c$ and $U \cap V = ^{\widetilde{\varphi}}$ from hypotheses, so we get that (X, \mathcal{T}) is satisfies $SRT_2(vi)$. 2. To prove $SRT_2(i) \to SRT_2(ii)$, let (X, \mathcal{T}) be IFTS satisfy $SRT_2(i)$ and $x, y \in X, x \neq y$, so $\exists U, V \in SR(X)$ such that $\overline{x} \in U, \overline{y} \in V$ and $U \cap V = ^{\widetilde{\varphi}}$. Then we can get easily that $\overline{x} \in U$ and $\overline{y} \in V$ and $U \cap V = ^{\widetilde{\varphi}}$, therefore $SRT_2(i)$ holds.

3. Let (X, \mathcal{T}) be IFTS x, $y \in X$, $x \neq y$ and $SRT_2(i)$ holds, to prove $SRT_2(iii)$ is satisfy, since $SRT_2(i)$ holds so $\exists U, V \in SR(X)$ such that $\overline{x} \in U, \overline{y} \in V$ and $U \cap V = \overline{\emptyset}$, since $\overline{x} \in U$ and $U \cap V = \overline{\emptyset}$ this implies

that $\overline{x} \notin V$, so $\overline{x} \in V^c$, this prove that for every $x \in X$

, if $\bar{x} \in U$, then $\bar{x} \in V^c$, $\bar{y} \in V$, i.e. $U \subseteq V$, therefore $SRT_2(iii)$ holds.

4. Suppose that $SRT_2(ii)$ holds, to prove $SRT_2(iv)$, let x, y $\in X$, $x \neq y$, since $SRT_2(ii)$ is hold so

 $\exists U, V \in SR(X)$ such that $\overline{\overline{x}} \in \overline{U}^c \subseteq \overline{\overline{y}}$ and $U \cap V = \overset{\emptyset}{\varphi}$, since $\overline{\overline{x}} \in U$, then $\overline{x} \notin V^c = \emptyset$, so

 $\overline{\overline{x}} \in V$, therefore $u \in V$, that is mean SRT₂(iv) holds.

ISSN: 1813 – 1662 (Print) E-ISSN: 2415 – 1726 (On Line)

5. In order to prove SRT₂(ii) satisfy when SRT₂(vi) holds. Let x, y $\in X$, $x \neq y$, so $\exists U, V \in SR(X)$ such that $\overline{\overline{x}} \in \overline{U} \circ \subseteq^{\overline{\overline{Y}}}$, $\overline{\overline{y}} \in \overline{V} \circ \subseteq X$ and $U \cap V = ^{\overline{\emptyset}}$, from this we get directly that $\exists U, V \in SR(X)$ such that $\overline{\overline{x}} \in U$, $\overline{\overline{y}} \in V$ and $U \cap V =^{\overline{\emptyset}}$, therefore SRT₂(ii) holds.

6. $SRT_2(iv) \rightarrow SRT_2(i)$ is clear.

7. To prove $SRT_2(iv)$ satisfy when $SRT_2(iii)$ holds, suppose that x, $y \in X$, $x \neq y$ so $\exists U, V \in SR(X)$ such

that $\overline{x} \in U$, $\overline{y} \in V$ and $U \subseteq V^c$, so we get directly that $\overline{x} \in U$, $\overline{z} \in V$.

 $\overline{\bar{x}} \in U, \ \overline{\bar{y}} \in V$ and

 $U \cap V = \widetilde{\emptyset}$, therefore SRT₂(iv) holds.

Remark 3.3: In general the converse of the diagram appears in the theorem is not true in general. The following counter example shows the cases. **Example 3.4 :**

(i) Let X= {1,2,3} and define $\mathcal{T} = \{\widetilde{\emptyset}, \widetilde{X}, A, B, C\}$ on X where A= <x, {1}, {2,3}>, B = < x, {2}, {1,3}>, C = <x, {1,2}, {3}>, then SR(X) = { $\widetilde{\emptyset}$,X,D,E} where D = < x, {1},{2}>, E = < x, {2}, {1}>, so the IFTS (X, \mathcal{T}) is SRT₂(ii) but not SRT₂(i).

(ii) Let X = {1,2} and define $\mathcal{T} = \{\widetilde{\mathcal{O}}, \widetilde{X}, A, B\}$ on X where A = <x, \emptyset , {2}>, B = < x, \emptyset {1}>, then the

IFTS (X, \mathcal{T}) is SRT₂($\mathfrak{i}\mathfrak{i}$), but not SRT₂($\mathfrak{i}\mathfrak{i}$).

(iii) Let X={1,2,3} and define $\mathcal{T} = \{ \widetilde{\emptyset}, \overset{X}{X}, A, B \}$ on X where A = <x, \emptyset , {2,3}>, B = <x, \emptyset , {1,3}>, then

the IFTS (X, \mathcal{T}) is SRT₂(ví), but not SRT₂(v).

Since every T_2 separation axiom is T_1 separation axiom in general topology, then we have the following corollary :-

Corollary 3.5: Let (X, \mathcal{T}) be IFTS, then if (X, \mathcal{T}) is satisfies $SRT_2(n)$, then it satisfies $SRT_1(n)$, where

 $n \in \{i, ii, iii, iv, v, vi\}$, but the converse of the last corollary is not true in general and the following examples show the cases :-Example 3.6 :

1. Let X={1,2,3} and define $\mathcal{T} = \{\widetilde{\emptyset}, \widetilde{X}, A, B, C, D, E, F\}$ where A = < x, Ø, {1,2}>, B = <x, Ø, {2,3}>, C = <x, {3}, {1,2} >, D = <x, {3}, {2}>, E = < x, {1,3}, {2}>, F = < x, Ø, {2}>, so SR(X) = { $\widetilde{\emptyset}, \widetilde{X}, M, H$ } where M= <x, {3}, Ø>, H = <x, Ø, {3}>, so (X, \mathcal{T}) is SRT1(vi), but not SRT2(vi).

2. In the example 3.4(1) we see (X, \mathcal{T}) is SRT₁(i) but not SRT₂(i) and in the (iii) of the example 3.4 we see (X, \mathcal{T}) is SRT₁(v), but not SRT₂(v).

3. Let X = {1,2} and define $\mathcal{T} = \{\widetilde{\mathcal{O}}, \widetilde{X}, A, B\}$ where A = $\langle x, \mathcal{Q}, \{1\} \rangle$, B = $\langle x, \mathcal{Q}, \{2\} \rangle$, so SR(X) = \mathcal{T} .

Hence, (X, \mathcal{T}) is SRT₁($\mathfrak{i}\mathfrak{i}$), but not SRT₂($\mathfrak{i}\mathfrak{i}$).

4. Take X = {1,2,3} and define $\mathcal{T} = \{\widetilde{\boldsymbol{\varnothing}}, \widetilde{\boldsymbol{X}}, A, B, C, D, E, F, G\}$, where A = <x,{1}, {2,3}>, B = <x,{2}, {1,3}>, C = <x,{1,2},{3}>, D = <x, {3},{1,2}>, E = <x {1,3},{2}>, F = <x, {2,3}, {1}>, so SR(X) = \mathcal{T} , then (X, \mathcal{T}) is SRT₁(iii), but not SRT₂(iii).

References

[1] Zadeh, L. A.(1965):" Fuzzy Sets, "Information and Control 8 (3)338-353.

[2] Atanasov, K. and Stoeva, S. (1983): "Intuitionistic Fuzzy Sets In: Polish Symp on Interval and Fuzzy Mathematics". Poznon pp. 23-26.

[3] Atanassov K. (1986): "Intuitionistic Fuzzy Sets" Fuzzy set and systems 20, 87-96.

ISSN: 1813 – 1662 (Print) E-ISSN: 2415 – 1726 (On Line)

Let X = {1,2,3} and define $\mathcal{T} = \{\widetilde{\mathcal{O}}, \widetilde{X}, A, B, C, D, E, F, G, H, K\}$ where A = <x,{1},{3}>, B = < x,{2}, \emptyset >, C = < x, {3}, \emptyset >, D = < x,{1,2}, \emptyset >, E = < x, {1,3}, \emptyset >, F = < x, {2,3}, \emptyset >, G = < x, \emptyset ,{3}>, H = < x, \emptyset , \emptyset >, K= < x {1}, \emptyset >, then the IFS (X, \mathcal{T}) on X is SRT₁(iv), but not SRT₂(iv).

[4] Bayhan, S. and Coker, D. (2000): "On Fuzzy Separation Axioms in Intuitionistic Fuzzy Topological Spaces". Internet pp. 620-630.

[5] Coker, D. (1996): " A note on Intuitionistic Sets and Intuitionistic Points". Turkish J. Math. 20, No. 3, pp. 343-351.

حول الشبه المنتظم T₁ والشبه المنتظم T₂ في الفضاءات التبولوجية الحدسية فاطمة محمود محمد

قسم الرياضيات ، كلية التربية للعلوم الصرفة ، جامعة تكريت ، تكريت ، العراق

الملخص

الهدف من هذا البحث هو إعطاء تعريف جديد لبديهيتي الفصل T₁ و T₂ في الفضاءات التبولوجية الحدسية وهي الفضاء الشبه المنتظم T₁ و الشبه المنتظم T₂ ودراسة بعض صفاتهما وتعميمها مع بعض النفاصيل والعلاقات التي تربط بينهما .