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Abstract 

In the present study, we calculated the imaginary part of the x-ray 

scattering factor of nickel based on the principles of quantum mechanics 

to find a wave function that describes the electronic state of atoms by 

approximate methods, observed the study suggested that in both low 

energy values ω ≪ ωe, and at high energy values ω ≫ ωe, the imaginary 

part is approximately zero, this means that the electrons are intensely 

connected to the atom, where in the spectrum the photon energies are 

approximately equal to the electron bonding energy ω ~ ωe we note the 

study pointed out that the imaginary part of the atomic scattering factor 

become  prominent and the electron becomes highly absorbent, the 

relative accuracy varies within range (0.03-0.22)%, and there was also a 

good agreement between the behavior we obtained for the imaginary part 

of the atomic scattering factor and the behavior that was calculated using 

other models. 

Introduction  
The real and the imaginary component of the 

anomalous scattering of the total atomic scattering 

factor describe the optical properties of the material. 

This includes reflection, refraction and absorption of 

x-rays. The spatial distribution of atomic electrons is 

important for this research, as in the case of 

diffraction and total atomic scattering[1]. Where the 

importance of the subject in the find of optical 

properties of metals as mentioned in the research 

board and its applications in laser systems and all 

optical systems, the attenuation of X-rays in different 

materials provides a wide range of information about 

the fundamental properties of matter at the atomic 

and molecular level. In particular, relative and 

absolute measurements of the total attenuation factor 

are used to measure theoretical predictions of 

photovoltaic absorption using the wave functions of 

the electron with the specified state[2], Moreover, the 

dynamics of atomic processes, including Auger 

transition, and provides information on the density of 

electronic cases, molecular bonds and other solid 

state properties[3]. many studies are carried out on 

this subject ,one of them study for X-ray Extended-

Range Technique for Precision Measurement of The 

X-ray Mass Attenuation Coefficient and Im(F) for 

Copper Using Synchrotron Radiation, and he find that 

this technique achieves accuracies of (0.27– 0.5) % 

[4]. And the other study for X-ray mass attenuation 

coefficients and imaginary components of the atomic 

form factor of zinc over the energy range of 7.2–15.2 

keV and with absolute accuracy of (0.044 - 0.197) %, 

it is Observed that differences between the measured 

mass attenuation coefficients and various theoretical 

calculations reach a maximum of about 5% at the 

absorption edge and up to 2% further than 1keV away 

from the edge. The measurements call for 

improvements in the theoretical calculations of mass 

attenuation coefficients of zinc[5]. The aim of study 

is to show the evolution the imaginary part of atomic 

form factor for the nickel . 

Theoretical Part   
The study will take some of the theoretical bases that 

show how the imaginary part of the X-ray form factor 

is calculated in nickel. 
1. Time-Dependent Perturbation Theory  

Perturbation theory is an important tool for describing 

real quantum systems, as it turns out to be very 

difficult to find exact solutions to the Schrodinger 

equation for Hamiltonians of even moderate 

complexity, the Hamiltonians to which we know 

exact solutions, such as the hydrogen atom, the 

quantum harmonic oscillator and the particle in a box, 

are too idealized to adequately describe most systems. 

Using perturbation theory, we can use the known 
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solutions of these simple Hamiltonians to generate 

solutions for a range of more complicated systems, 

Schrodinger equation is treated in the following 

formula [6]. 

�̂�(𝑟)|𝑥, 𝑡⟩  = 𝑖ℏ
𝜕

𝜕𝑡
 |𝑥, 𝑡⟩ … . (1)  

Where �̂� the Hamiltonian's effective which 

represents  kinetic and potential energy, ( 𝑖ℏ
𝜕

𝜕𝑡
 ) 

represents energy, ℏ plank constant , 

  
𝜕

𝜕𝑡
 is the time variable and |𝑥, 𝑡⟩  is the wave 

function , we found that after separating the variables 

that: 

|𝑥, 𝑡⟩ = |𝑥⟩|𝑡⟩𝑒−𝑖𝐸𝑡/ℏ   … . (2)   
Studying the approximate theories, we find that by 

adding small time-dependent variables to the 

Hamiltonian we can deal with it by the theory of 

perturbation, theory Time- Dependent perturbation is 

one of the most appropriate and powerful methods to 

study the interaction of energy with materials such as 

electromagnetic radiation, whose effect appears 

through photons and electrons, these radiations have 

different frequencies and therefore they are changed 

with time, so we treat them as time disturbances. As a 

result of these time disturbances, levels (functions) 

become unstable, therefore, electrons transport from a 

higher level to a lower level by spontaneous emission 

or by a stimulated emission, which is the basis of the 

theory of laser action [7]. 

In this study we will focus on the effect of small 

perturbations only, which are added to the non-time 

dependent primary Hamiltonian . When we deal with 

the time-dependent Hamiltonian effect, we will not 

have stable solutions in terms of functions and 

descriptive values, thus our usual choices which 

depend on distinct functions (solutions of distinct 

equations) as the basis of the factorial of any 

unknown function becomes impractical. [8]. 

The probability of transition from the primary level 
|φi⟩ to the final level ⟨φf| in the presence of the 

effective Ĥ′, since the total Hamiltonian Ĥ  consists 

of two parts: the first non-turbulent Hamiltonian Ĥ0 
(a part of which can be found in complete solution 

analytically) and the second Ĥ′, which we consider to 

be too small for Ĥ0 and is responsible for the disorder 

and clearly depends on time as follows [8]: 

�̂� = �̂�0 + 𝜆�̂�
′(𝑡),     �̂�′(𝑡) ≪  �̂�0   … . (3)   

Where 𝜆 is the wave length. Assuming that there is a 

solution to Schrodinger characteristic equation  

�̂�0|𝜑𝑘⟩ = 𝐸𝑘|𝜑𝑘⟩  … . (4)  
Which appears as a time equation in the form: 

�̂�0|Ψ0⟩  = 𝑖ℏ
𝜕

𝜕𝑡
 |𝛹0⟩ … . (5)     

Where 

|𝛹0⟩ = ∑ 𝑐𝑘
(0)

𝑘 𝑒−𝑖𝐸/ℏ|𝜑𝑘⟩  … . (6)  

Where 𝑐𝑘
(0)

 are coefficients time independent, and the 

quantity |ck
(0)
|
2
 here expresses the probability of the 

system being at a stable level k  before starting the 

perturbation, note that the aggregation in equation (6) 

is done at both separated and related levels, Since the 

functions |𝜑𝑘⟩ are integrated group, therefore, the 

general solution of Schrodinger's time equation: 

�̂� |𝛹 ⟩  = 𝑖ℏ
𝜕

𝜕𝑡
 |𝛹 ⟩  … (7)  

Can be shown as follows: 

|Ψ ⟩ = ∑ ckk (t) e−iEkt/ℏ|φk⟩ ,   ∑ |ck(t)|
2

k = 1… (8)  

Dirac assumed that the coefficients ck(t) are 

explicitly dependent on time, if we know that the 

characteristic functions |φk⟩ have the properties of 

orthogonal and calibration and that the function of  
|Ψ ⟩ which has the calibration properties, it is noted 

that the quantity |ck(t)|
2 express the probability that 

the system is in the case of (level k) at the specified 

time t and ck(t) denotes the probability amplitude, by 

comparing equations (6) and (8) we note that with the 

use of the condition Ĥ′(t) = 0 the time coefficient 

ck(t) converts to constant ck
(0)

 this is why we 

consider it an initial value (initial condition) of 

coefficient ck(t) [9].  
Here we see a radical shift in the issue, instead of 

finding special values and functions for Schrodinger's 

characteristic equation (7) , we will look for finding 

the values of the coefficients ck(t),to solve this 

dilemma we substitute equation (8) in equation (7) 

with the use of equations (3) and (4) to find[10]: 

𝑖ℏ∑ 𝑐𝑘
′

𝑘 (𝑡)|𝜑𝑘⟩ 𝑒
−𝑖𝐸𝑘𝑡/ℏ =

∑ 𝑐𝑘𝑘 (𝑡)𝜆�̂�′(𝑡)|𝜑𝑘⟩ 𝑒
−𝑖𝐸𝑘𝑡/ℏ… . (9)  

Where we used the time difference ck
′ (t) =

dck (t)

dt
 

there is using standard multiplication by 

⟨φm|e
−iEmt/ℏ from left to both sides of Equation (9) 

and to integrate the entire space and take into 

consideration that ⟨φm|φk⟩ = δmk we found that the 

Equation (9) became in a class of the following 

differential equations[11]: 

𝑐𝑚
′ (𝑡) =

1

𝑖ℏ
∑ 𝑐𝑘𝑘 (𝑡)𝜆�̂�𝑚𝑘

′ (𝑡) 𝑒  𝑖𝜔𝑚𝑘𝑡 … . (10)  

Whereas 

�̂�𝑚𝑘
′ (𝑡) = ⟨𝜑𝑚|�̂�

′ (𝑡)|𝜑𝑘⟩ … . (11)  

And angular frequency ωmk is : 

𝜔𝑚𝑘 =
𝐸𝑚−𝐸𝑘

ℏ
  … . (12)  

By Solving equations associated with equation (10), 

we obtain the coefficients and we calculate the 

probability of  system existence in certain condition 

time .   
2. Imaginary Part of Atomic Scattering Factor  

When the atoms disperse rays it doesn't make an 

additional change in the angles of the relative phase 

usually, this is true, but there are some exceptions in 

the case of some atoms whose absorption edge is near 

to the frequency of the falling radiation as it makes an 

additional change in the corners of the phase, and this 

is called anomalous dispersion, since the dispersion 

coefficient is calculated on the assumption that the 

electrons in the atom can be considered free and this 

assumption should be modified in the case of 

abnormal dispersion, the interaction of the falling 

radiation on the electrons associated with the nucleus 

as should be considered this interaction is what makes 

the absorption edge, as the dispersion coefficient 
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becomes the composite amount of  𝑓 + 𝑓 ʹ + 𝑓 ʹʹ and 

the imaginary part 𝑓 ʹʹ is what matters to us as it is the 

component that enters the change in phase[12]. 

The interaction of X-rays with atoms can be 

described by approximation of the atomic dispersion 

factor f, except for the Compton scattering, which can 

be written by [13] 

𝑓 = 𝑓0 + 𝑓
′ + 𝑓′′… . (13)   

Where f0 is the Thomason Scattering factor, and for 

forward scattering is equal to the atomic number, ( 
f ′ + f ′′( the real and imaginary part for correction 

scattering, which strongly depends on energy near the 

absorption edge, the method of partial wave analysis 

was used, which is one of the approximation methods 

for finding an integrated solution for Schrodinger's 

equation when the central potential V(r) is large and 

effective, when the field causing the dispersion is 

spherically symmetric, the effect of each value of the 

different angular momentum values will appear 

independently in dispersion, Therefore, we will deal 

with falling and scattered waves as an overlap partial 

waves, in this approximation method, a relationship 

was obtained between the total cross-section(𝜎𝑡𝑜𝑡𝑎𝑙) 
of the scatter and the imaginary part of the elastic 

dispersion in the forward direction of the following 

relationship [14]: 
𝜎𝑡𝑜𝑡𝑎𝑙 =

4𝜋

𝑘
 𝑓′′(0) … . (14)   

Where 𝑘 is the wave number, similarly to the cross-

section of the scattering, the cross-section of 

absorption (𝜎𝑎) is defined by the following 

relationship [15] 

𝜎𝑎 =
𝜔

Φ0
 … . (15)  

Where ω is the transitive rate (sec
-1

) and Φ0 the 

falling flow (
𝑁𝑜.𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛𝑠

𝑐𝑚2 𝑠𝑒𝑐
 ), the relationship of the 

scattering cross section with the mass attenuation 

coefficient 
𝜇

ρ𝑎
= 𝜌𝜎𝑎 where 𝜌 is electronic density 

and ρ𝑎 is mass density.  

In the time-dependent perturbation theory of the first 

order, the transition rate is described by Fermi’s 

Golden Rule [8] 

𝑊 =
2𝜋

ℏ
|𝑀𝑓𝑖|

2

⏟  
𝑚𝑎𝑡𝑟𝑖𝑥
𝑒𝑙𝑒𝑚𝑒𝑛𝑡

𝜌(𝐸𝑓)⏟  
𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓
𝑓𝑖𝑛𝑎𝑙 𝑠𝑡𝑎𝑡𝑒𝑠

  … . (16)  

Where 

𝑀𝑓𝑖 = ⟨𝑓|𝐻𝑖𝑛𝑡|𝑖⟩    … . (17 )  

Where 𝐻𝑖𝑛𝑡  is the Hamilton's effect of the photon 

interaction system with the electron 

𝐻 = 𝐻𝑒 + 𝐻𝑟𝑎𝑑 = 
�⃑�2

2𝑚
+ 𝐻𝑟𝑎𝑑  … . (18)   

Where 𝑝 the electron momentum in the 

electromagnetic field,  𝑝 → 𝑝− 𝑒𝐴 =
ℏ

𝑖
∇⃑⃑⃑ − 𝑒𝐴 , 

and 𝐴 the potential vector, the electric field of the 

wave is �⃑⃑� =
−𝜕�⃑�

𝜕𝑡
= −𝑖𝜔𝐴 = �̂�𝐸, So the 

𝐻 =  
�⃑�2

2𝑚
+ 𝐻𝑟𝑎𝑑 + 

𝑒

𝑚
𝐴⏟.𝑝 +

𝑒2�⃑�2

2𝑚

𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 
𝐻𝑎𝑚𝑖𝑙𝑡𝑜𝑛𝑖𝑎𝑛,𝐻𝑖𝑛𝑡

  … . (19)        

The first term of the Hamilton effect of the reaction is 

the absorption and the second term represents the 

Thomson scattering, The potential vector 𝐴 can be 

expressed through the following quantitative 

relationship [8] 

𝐴 = �̂�√
ℏ

2ℇ0𝑉𝜔
  (𝑎𝑘

+
⏟ 𝑒−𝑖�⃑⃑�.𝑟 +

𝑝ℎ𝑜𝑡𝑜𝑛
𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛

𝑎𝑘⏟  𝑒𝑖�⃑⃑�.𝑟

𝑖𝑛𝑛𝑖ℎ𝑖𝑙𝑎𝑡𝑖𝑜𝑛
𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟

)… . (20)  

Where 𝜔 is angular frequency, 𝑉 is potential, ℇ0 is 

permittivity of space and ℏ is planck's constant ,this 

relationship to the potential vector represents an 

expression similar to the general expression of the 

harmonic oscillator in the three-dimensional 

coordinates, where 𝑎𝑘
+ and 𝑎𝑘  are the effects of 

creation and annihilation affecting on the wave 

function of the photon, |𝑛𝑘⟩ 𝑎𝑛𝑑 𝑛𝑘 quantum number 

of photon with wave vector �⃑⃑�.  
For the absorption edge of the atomic shell K, the 

electrons in the atomic shell K are strongly connected 

to the nucleus where they can be well described by 

wave functions similar to hydrogen with a 

quantitative numbers (n,l,m = 1,0,0) where 

|𝑖⟩ = |𝑖⟩𝑝ℎ𝑜𝑡𝑜𝑛|𝑖⟩𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 = |1⟩Ψ100(𝑟) … . (21) 

The quantitative description of the oscillators can be 

obtained from the final cases of the photoelectrons 
|𝑓0 + Δ𝑓⟩ and it differs from the flat wave states of 

free electrons |𝑓0⟩ resulting from the scattering of the 

atoms surrounding the material, so the 

|𝑀𝑓𝑖|
2
= |⟨𝑓0 + Δ𝑓|𝐻𝑖𝑛𝑡|𝑖⟩|

2  … . (22) 

|𝑀𝑓𝑖|
2
=

 |⟨𝑓0|𝐻𝑖𝑛𝑡|𝑖⟩|
2⏟        

𝜎𝑎

+ ⟨𝛥𝑓|𝐻𝑖𝑛𝑡|𝑖⟩⟨𝑓0|𝐻𝑖𝑛𝑡|𝑖⟩⏟              
𝛿𝜎𝑎

  … . (23)  

Any that 

𝛿𝜎𝑎 = ⟨Δ𝑓|𝐻𝑖𝑛𝑡|𝑖⟩⟨𝑓0|𝐻𝑖𝑛𝑡|𝑖⟩    … . (24)  
Where |𝑖⟩ wave function for electron pulp, the 

integration ⟨Δ𝑓|𝐻𝑖𝑛𝑡|𝑖⟩ is prominent for the 

background scattering of the photoelectron wave 

function of the original atom when 𝑟 = 0. 
By equation (15) and Equation (14) the following 

equations of the imaginary part of the atomic 

scattering factor were obtained in terms of the energy 

of the incident photon 𝜔 and the electron bond energy 

in the atom 𝜔𝑒 ,where the energy of an electron bond 

in the atom for each electronic level is 

Kshell=8.332KeV, Lshell=1.031KeV, Mshell=0.858KeV 
[16].  

𝑓2 = (
𝜔𝑒

𝜔−𝜔𝑒
)
2

        , 𝜔 ≤
1

2
𝜔𝑒   … . (25)  

𝑓2 = (
𝜔𝑒

𝜔−𝜔𝑒
)         , 𝜔 ≅ 𝜔𝑒   … . (26)  

𝑓2 = (
𝜔𝑒

𝜔−𝜔𝑒
)
1/2

        , 𝜔 ≥ 1.5𝜔𝑒 … . (27)  

Calculations 
To calculate the imaginary part values of the atomic 

scattering factor, equations (25), (26) and (27) were 

used by constructing a program using MATLAB 

programs for different values of incident photon 
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energy. table (1) shows the imaginary part values of 

the atomic scattering factor obtained as the falling 

photon energy changes. 

 
 

Table (1) The incident photon energies and imaginary part of atomic scattering factor values. 

f " 

( e/atom ) 

E (KeV) f " 

( e/atom ) 

E (KeV) f " 

( e/atom ) 

E (KeV) 

3.8652 1.0976 5.3521 0.0808 1.3739 0.0100 

2.7877 1.1848 5.0802 0.0815 1.4066 0.0107 

2.1800 1.2720 4.8346 0.0822 1.4406 0.0114 

1.7898 1.3592 4.6116 0.0829 1.4758 0.0120 

1.5181 1.4464 4.4083 0.0835 1.5123 0.0127 

1.4230 1.7164 4.2222 0.0842 1.5502 0.0134 

1.2600 1.8080 4.0512 0.0849 1.5896 0.0141 

1.1305 1.8996 3.8934 0.0856 1.6304 0.0148 

1.0251 1.9913 3.7475 0.0863 1.6729 0.0154 

0.9377 2.0829 3.6122 0.0870 1.7170 0.0161 

0.8641 2.1745 3.4862 0.0876 1.7629 0.0168 

0.8012 2.2662 3.3688 0.0883 1.8107 0.0175 

0.7468 2.3578 3.2590 0.0890 1.8604 0.0182 

0.6993 2.4495 3.1561 0.0897 1.9122 0.0189 

0.6575 2.5411 3.0596 0.0904 1.9662 0.0195 

0.6204 2.6327 2.9687 0.0910 2.0225 0.0202 

0.5873 2.7244 2.8831 0.0917 2.0813 0.0209 

0.5575 2.8160 2.8024 0.0924 2.1427 0.0216 

0.5306 2.9076 2.7260 0.0931 2.2068 0.0223 

0.5062 2.9993 2.6536 0.0938 2.2739 0.0229 

0.4839 3.0909 2.5850 0.0944 2.3440 0.0236 

0.4636 3.1825 2.5199 0.0951 2.4175 0.0243 

0.4448 3.2742 2.4580 0.0958 2.4945 0.0250 

0.4275 3.3658 2.3990 0.0965 2.5752 0.0257 

0.4115 3.4575 2.3428 0.0972 2.6598 0.0263 

0.3967 3.5491 2.2892 0.0978 2.7488 0.0270 

0.3829 3.6407 2.2379 0.0985 2.8422 0.0277 

0.3700 3.7324 2.1889 0.0992 2.9406 0.0284 

0.3579 3.8240 2.1420 0.0999 3.0441 0.0291 

0.3467 3.9156 2.0971 0.1006 3.1531 0.0297 

0.3361 4.0073 2.0541 0.1013 3.2682 0.0304 

0.3261 4.0989 2.0127 0.1019 3.3896 0.0311 

0.3167 4.1905 1.9730 0.1026 3.5179 0.0318 

0.3079 4.2822 1.9348 0.1033 3.6537 0.0325 

0.2995 4.3738 1.8981 0.1040 3.7975 0.0332 

0.2915 4.4655 1.8627 0.1047 3.9500 0.0338 

0.2840 4.5571 1.8287 0.1053 10.3260 0.0747 

0.2769 4.6487 1.7958 0.1060 9.3595 0.0754 

0.2701 4.7404 1.7642 0.1067 8.5585 0.0761 

0.2636 4.8320 1.7336 0.1074 7.8838 0.0767 

0.2574 4.9236 1.7040 0.1081 7.3077 0.0774 

4.9976 9.9992 1.6755 0.1087 6.8100 0.0781 

2.4994 11.6660 5.4131 0.4000 6.3758 0.0788 

1.6664 13.3320 17.0310 0.9232 5.9937 0.0795 

1.2498 14.9980 6.3006 1.0104 5.6547 0.0801 
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Figure (1) shows the relationship between the imaginary 

part of the atomic scattering factor and the photon 

energy logarithm according to the equations  

(25,26 and 27). 
 

Fig (1) is important since it tries to identify  the 

behavior of the imaginary part of the atomic 

scattering factor, especially at the absorption edge .  

Results and discussion  

The current results of the imaginary part of the 

atomic scattering factor show the importance of 

specific values for energy that can be observed in fig 

(1), where we observe that at low energies when ω << 

ωe as well as at high energies when ω >> ωe, where ω 

the energy of the incident photon, and ωe the energy 

of electron bonding with the atom, the imaginary part 

is almost zero, this means that the electrons are 

strongly connected to the atom ,while we observe the 

area where ω ̴ ωe is, the imaginary part of the 

scattering is prominent and the electron becomes 

highly absorbent. 

When comparing the results that have been found in 

the imaginary part of the atomic scattering factor we 

found these in agreement with the behavior of the 

theoretical calculations reached by Chantler [17]. 

And Practical measurements by Henk [18]. The slight 

difference is due to the method used to solve the 

wave function, fig (2) explains that. 
 

 
Figure (2) The relationship between the photon energy 

and the imaginary part of atomic scattering factor for 

present study and literature review . 
 

Developed models do not give the need for better 

agreement than experimental values. The main 

differences between the results produced from the 

different theoretical bases used to calculate the wave 

function, each of which addresses the exchange, 

bonding and interference that occur in a different 

way, the differences resulted from the varied 

application of approximate methods and convergence 

criteria [19] . 

Conclusion  

In this study we conclude that the imaginary part 

calculated at low and high energies is close to zero, 

while at the values close to the absorption edge, the 

imaginary part is prominently clear, this rsfers to an 

interaction between radiation and matter, through this 

interaction it is possible to study the optical properties 

of metals, and to identify of the efficiency of the 

work of optical systems, especially the laser system . 
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 السينية في النيكلحساب الجزء الخيالي لعامل التشكل الذري للأشعة 
 محسن حسن علي,  احمد رحيم احمد

 ، تكريت ، العراق جامعة تكريت،  كلية التربية للعلوم الصرفة ، قسم الفيزياء
 

 الملخص
ايجاد الدالة في  قمنا بحساب المركبة الخيالية لعامل التشتت الذري للأشعة السينية للنيكل بالاعتماد على مبادئ ميكانيك الكم في الدراسة الحالية

ω لقيم المنخفضة للطاقةعند ا حننا, اذ لاالموجية التي تصف الحالة الالكترونية للذرات عن طريق الطرق التقريبية ≪ 𝜔eالعاليةقيم ، وعند ال 
ω للطاقة ≫ 𝜔e فيهاتكون  نطقة التيالذرة بشدة، بينما في المبمرتبطة  تكون  الالكترونات وهذا يعني انساوي صفر تقريباً، ي الجزء الخيالي ، ان 

ان الجزء الخيالي لعامل التشتت الذري يكون بارز ويصبح نلاحظ  ω ~ 𝜔eطاقة ربط الالكترون بالذرة  قيم طاقة الفوتون مساوية تقريبا الى 
السلوك الذي  بين ان هنالك توافق جيد بينكذلك ت (,%0.22 - %0.03ان الدقة النسبية تتراوح ضمن المدى) الإلكترون ذو امتصاص عالي،

 باستخدام نماذج اخرى. مع السلوك الذي حسبالذري  ء الخيالي لعامل التشتتللجز  توصلنا اليه
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