
Tikrit Journal of Pure Science 23 (8) 2018 ISSN: 1813 – 1662 (Print) 

E-ISSN: 2415 – 1726 (On Line) 
 

118 

 

 

Tikrit Journal of Pure Science 
 

Journal Homepage: http://main.tu-jo.com/ojs/index.php/TJPS/index 

 

 

ON THE INVERSE OF PATTERN MATRICES WITH APPLICATION 

TO STATISICAL MODELS 
Hiba Hani Abdullah 

Department of Mathematics , College of Education for Women , Tikrit University , Tikrit , Iraq 

 
 

A r t i c l e  i n f o. 
Article history: 

-Received: 22 / 10 / 2017 

-Accepted:  15 / 4 / 2018 

-Available online:  /   / 2018 

Keywords: patterned matrices,  

Toeplitz-type matrix, Jacobi-type 

matrix , Eigen values . 
 

Corresponding Author: 
 

Name: Hiba Hani Abdullah 
 

E-mail: hiba83sef@yahoo.com 
 

Tel: 
 

Abstract 

In this study the inverse of two patterned matrices has been 

investigated. First, for a Toeplitz-type matrix, it is proved that the exact 

number of independent cofactors is (n +2)/4 when n is even number 

and (𝒏 + 𝟏)𝟐/𝟒 when n is an odd. Second, when the matrix is reduced to 

a Jacobi-type matrix Bn , two equivalent formulae for its determinant are 

obtained, one of which in terms of the eigen values. Moreover, it is 

proved that the independent cofactors 𝑩𝒊𝒋 of 𝑩𝒏 are explicitly expressed 

as a product of the determinants of 𝑩𝒊−𝟏 and 𝑩𝒏−𝒋. So, the problem of 

finding the exact inverse of 𝑩𝒏 is reduced to that one of finding the 

determinants of 𝑩𝒊, i = 1, 2, …, n.  

 

1- Introduction  
One of the important problems involved in the 

analysis of such models is to find the exact inverse of 

these covariance matrices in explicit form which 

leads to the computation of determinants and other 

related characteristics such as their eigen values and 

spectral representation. Such computations are 

tedious especially when the order n of the matrix is 

large [2]. 

There is a large literature on inversion of covariance 

matrices (e.g. [3,2,4]). The problem has been 

approached either numerically to find fast algorithms 

or analytically to find explicit forms for the entries of 

the inverse. Naturally, analytical solution leads to 

numerical one. 

Now, let 𝐴𝑛 be an (n x n) symmetric, positive definite 

matrix. 𝐴𝑛 is said to be a patterned matrix if its 

entries exhibit a structured form, for example the 

Toeplitz matrix, the Jacobi matrix, …. These 

patterned matrices are frequently encountered as 

covariance matrices of structured dependent errors or 

observations in statistical models or autoregressive 

and moving average time series models as well as in 

many other stochastic models
 
[1]. 

The purpose of this work is divided to two parts. We 

first prove for a Toeplitz-type matrix that the number 

of independent cofactors is exactly 𝑛(𝑛 + 2) 4⁄  for n 

even and (𝑛 + 1)2 4⁄  for n odd. This reduces the 

number of distinct cofactors to a little bit greater than 

the quarter of the total number 𝑛2 of cofactors, which 

means that, practically, only these distinct entries of 

the adjoint matrix need to be calculated[5]. Further, 

these distinct elements have a certain arrangement 

along each diagonal on the upper half of the matrix. 

Second when the matrix is reduced to a Jacobi-type 

matrix 𝐵𝑛, two equivalent formulae for the 

determinant of 𝐵𝑛 are given, one of them in terms of 

the eigen values of the matrix. Moreover, it is proved 

that the independent cofactors 𝐵𝑖𝑗  of 𝐵𝑛 are exactly 

given by:  

𝐵𝑖𝑗 = (−1)𝑗=𝑖𝑏𝑗−𝑖𝑑𝑒𝑡(𝐵𝑖−1)𝑑𝑒𝑡(𝐵𝑛−𝑗),  

 𝑖 ≤ 𝑗 ≤ 𝑛 − 𝑖 + 1, 𝑖 = 1,2, … ,
𝑛+1

2
  

When n is odd or n/2 when n is even, and b is some 

entry of 𝐵𝑛. 

So that the problem of finding the inverse of a Jacobi-

matrix is reduced to that of finding the determinant of 

𝐵𝑖 , i = 1,2, …, n. [6] 

2- The Adjoint of A Toeplitz-type matrix:  

Suppose 𝐴𝑛 = [𝑎𝑖𝑗] is a Toeplitz matrix of order n 

having the form:  

𝑎𝑖𝑗 = 𝑎𝑖−𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑛. [4] 

Let 𝑀𝑖𝑗 denote the submatrix of order n-1 obtained by 

deleting the ith row and the jth column of 𝐴𝑛, and let  

𝐴𝑖𝑗 = (−1)𝑖+𝑗𝑑𝑒𝑡(𝑀𝑖𝑗) be the cofactor of 𝑎𝑖𝑗 . It is 

well-known that the inverse 𝐴𝑛
−1 of 𝐴𝑛 is given by:  
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𝐴𝑛
−1𝑑𝑒𝑡(𝐴𝑛) = [𝐴𝑖𝑗]

𝑡
, where t denote the transpose of 

the matrix = [𝐴𝑖𝑗], by symmetry of 𝐴𝑛. 

This means that 𝐴𝑖𝑗 for all i > j are redundant. The 

following lemma proves that about the half of the 

remaining cofactors are redundant too.  

In all what follows 𝐽𝑛 denotes a reversing matrix of 

order n(secondary diagonal) , namely:  

𝐽𝑛 = [

0 0 … 0 1
0 0 … 1 0
⋮ ⋮ ⋮ ⋮
1 0 … 0 0

] 

Lemma 2.1: [3] 

Consider the matrix 𝐴𝑛 = [𝑎(𝑖−𝑗)]. Then for all 

1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛, 
𝐴𝑖𝑗 = 𝐴𝑛−𝑗+1,𝑛−𝑖+1. 

Proof:  

Let 𝛼1, 𝛼2, … , 𝛼𝑛 denote the row vectors of 𝐴𝑛, and 

𝛽1, 𝛽2, … , 𝛽𝑛 the column vectors. Then, by symmetry 

of 𝐴𝑛, 𝛼𝑖 = 𝛽−𝑖
𝑡 , and by the structured pattern of 𝐴𝑛, 

𝛼𝑖 = 𝛼𝑛−𝑖+1𝐽𝑛. It, thus follows that:  

𝛽𝑖 = (𝐽𝑛𝛽𝑛−𝑖+1)𝑡… (2.1) 

and  

𝛽𝑗 = (𝛼𝑛−𝑗+1𝐽𝑛)
𝑡
… (2.2) 

(2.1) and (2.2) imply immediately that,  

𝑀𝑖𝑗 = 𝐽𝑛−1𝑀𝑛−𝑗+1,𝑛−𝑖+1
𝑡 𝐽𝑛−1,  

from which,  

𝐴𝑖𝑗 = 𝐴𝑛−𝑗+1,𝑛−𝑖+1,   𝑓𝑜𝑟 𝑎𝑙𝑙 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛. 

Theorem 2.1: 

Consider the matrix 𝐴𝑛 = [𝑎|𝑖−𝑗|]. If K denotes the 

number of independent cofactors of 𝐴𝑛, then :  

𝐾 = {
(𝑛 + 1)2 4,     𝑛 𝑜𝑑𝑑⁄

𝑛(𝑛 + 2) 4,     𝑛 𝑒𝑣𝑒𝑛⁄
  

These independent cofactors are the elements 𝐴𝑖𝑗 

with 𝑖 ≤ 𝑗 ≤ 𝑛 − 𝑖 + 1, 𝑖 = 1,2, … ,
𝑛+1

2
 when n is odd 

or 
𝑛

2
 when n is even. [6] 

Proof:  

Suppose n is odd. Put n = 2r + 1 , r = 1, 2, …. . It 

results from( lemma 2.1) that the independent 

cofactors are the (i, j) elements 𝐴𝑖𝑗 with 𝑖 ≤ 𝑗 ≤ 𝑛 −

𝑖 + 1, 𝑖 = 1,2, … , 𝑟 + 1.  

Thus  

𝐾 = ∑ ∑ 1(𝑖,𝑗)
𝑛−𝑖+1
𝑗=𝑖

𝑟+1
𝑖=1 = ∑ ∑ 1(𝑖,𝑠)

𝑛−2𝑖+1
𝑠=0

𝑟+1
𝑖=1   

= ∑ (𝑛 − 2𝑖 + 2)𝑟+1
𝑖=1   

= (𝑟 + 1)2  

=
(𝑛+1)2

4
  

Now, let n be even, n = 2r with r a positive integer. 

Then the independent cofactors are those 𝐴𝑖𝑗 with i = 

1,2, …, r, i j  n-i+1, so that  

𝐾 = ∑ ∑ 1(𝑖,𝑗)
𝑛−𝑖+1
𝑗=𝑖

𝑟
𝑖=1 = ∑ ∑ 1(𝑖,𝑠)   

𝑛−2𝑖+1
𝑠=0

𝑟
𝑖=1   

 𝑟 (𝑟 + 1) =
𝑛(𝑛+2)

4
  

Remark 2.1 

The independent cofactors are exactly the entries of 

the adjoint matrix indicated by the hachured area 

 

𝑐 =
𝑛+1

2
 or 

𝑛

2
 according to n odd or even, 

respectively.[7] 

3- The Jacobi-type matrix:[8] 

In all this section we suppose that the matrix 𝐴𝑛 =

[𝑎|𝑖−𝑗|] is now reduced to a Jacobi-type matrix where 

𝑎|𝑖−𝑗|=0 whenever |𝑖 − 𝑗| > 1. Precisely, we suppose 

a matrix 𝐵𝑛 = [𝑏𝑖𝑗] such that :  

𝑏𝑖𝑗 = {

𝑎, 𝑖 = 𝑗

𝑏, |𝑖 − 𝑗| = 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 … (3.1)  

3-1 The determinant of 𝑩𝒏: 

Let 𝐷𝑛 = 𝑑𝑒𝑡(𝐵𝑛). Then by expansion about the first 

column, it can be shown that 𝐷𝑛 satisfies the 

difference equation of second order:  

𝐷𝑛 = 𝑎𝐷𝑛−1 − 𝑏2𝐷𝑛−2 , n = 2,3, … 

with the two boundary conditions 𝐷0 = 1, 𝐷1 = 0.  
The roots of the auxiliary equation 𝑦2 − 𝑎𝑦 + 𝑏2 = 0 

are,  

𝑦1,2 =
𝑎±√𝑎2−4𝑏2

2
 which with the boundary conditions 

give the solution.  

𝐷𝑛 =
1

2𝑛+1√𝑎2−4𝑏2
 [(𝑎 + √𝑎2 − 4𝑏2)

𝑛+1
−

(𝑎 − √𝑎2 − 4𝑏2)
𝑛+1

], n0 … (3.2) 

Expanding the binominals in (3.2), 𝐷𝑛 reduced to :  

𝐷𝑛 = 2−𝑛 ∑ (
𝑛 + 1
𝑠 + 1

) 𝑥𝑠𝑎𝑛−𝑠𝑛
𝑠=0 , 𝑤𝑖𝑡ℎ 𝑥 =

 √𝑎2 − 4𝑏2  

= (
𝑎

2
)

𝑛
∑ (

𝑛 + 1
2𝑠 + 1

)
[

𝑛

2
]

𝑠=0 𝑎2𝑠 (1 − 4
𝑏2

𝑎2)
2

,   

𝑤𝑖𝑡ℎ [
𝑛

2
] 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑡ℎ𝑒 𝑔𝑟𝑒𝑎𝑡𝑒𝑠𝑡 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 ≤

𝑛

2
  

Expansion of the above binomial again yields.  

𝐷𝑛 = (
𝑎

2
)

𝑛
∑ ∑ (−1)𝑟 (

𝑛 + 1
2𝑠 + 1

) (
𝑠
𝑟

) (4
𝑏2

𝑎2)
𝑟

𝑠
𝑟=0

[
𝑛

2
]

𝑠=0   

𝐷𝑛 = (
𝑎

2
)

𝑛
∑ (−1)𝑟 (4

𝑏2

𝑎2)
𝑟

∑ (
𝑛 + 1

2𝑠 + 1
) (

𝑠
𝑟

)
[
𝑛

2
]

𝑠=𝑟

[
𝑛

2
]

𝑟=0   

The last summation can be proved to be exactly 

(
𝑛 − 𝑟

𝑟
) 2𝑛−2𝑟, which leads to the expression:  

𝐷𝑛 = ∑ (−1)𝑟 (
𝑛 − 𝑟

𝑟
) 𝑏2𝑟𝑎𝑛−2𝑟

[
𝑛

2
]

𝑟=0 ,  

n  0 , [
𝑛

2
] the greatest integer ≤

𝑛

2
  … (3.3) 

3-2 The Eigen Values of 𝑩𝒏:  

If  is an Eigen value of 𝐵𝑛 if  satisfies the linear 

equation 𝐵𝑛𝑍 = 𝜆𝑍, with Z a nonzero column vector 

of dimension n, which is the Eigen vector 

corresponding to . To find the Eigen values of 𝐵𝑛 

we are motivated by the approach relating to this 

problem to the characteristic-value problem of a finite 
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homogeneous boundary difference system of 

equations (See [9]). 

In theorem 3.1 below we prove that the n eigen 

values of 𝐵𝑛 are exactly the ne eigen values of a 

system of ne difference equtions with two boundary 

conditions, and hence can be determined from the 

general solution of the system.  

Theorem 3.1:  

Let 𝐵𝑛 be the Jacobi-type matrix given in (3.1). The n 

eigen values 𝜆𝑚, m = 1,2, …, n of 𝐵𝑛 are exactly the 

n eigen values of the different equation:  

𝑏𝑍𝑚+1 + 𝑎𝑍𝑚 + 𝑏𝑍𝑚−1 = 𝜆𝑍𝑚, 𝑚 = 1,2, … , 𝑛  
with,  

𝑍0 = 0,    𝑍𝑛+1 = 0  

Hence,  

𝜆𝑚 = 𝑎 − 2𝑏 cos
𝑚𝜋

𝑛+1
, 𝑚 = 1,2, … , 𝑛.  

Proof:  

Let Z = (𝑧1, 𝑧2, … , 𝑧𝑛)𝑟. Write the equation 𝐵𝑛𝑍 = 𝜆𝑍 

in the expansion form 

az1 + bz2   = z1 

bz1 + az2 + bz3   = z2  

…………………………………… 

 + bzm-1 + azm + bzm+1  = zm  

…………………………………… 

bzn-1 + azn  = zn  

which is equivalent to the homogeneous system of 

different equations 

bzm+1 + azm + bzm-1 = zm ,  m = 1,2, … , n.  

with the two homogeneous boundary conditions z0 = 

0 , zm+1 = 0 .  

For such a system, no nonzero solution exists unless 

 takes on one of a set of eigen values 1, …, n 

which are exactly the required eigen values of Bn. In 

fact no nonzero solution to the above system exists 

unless |
𝑎−𝜆

2𝑏
| < 1 or equivalently unless  = a - 2b cos 

. In this case the general solution to the system is zm 

= c1 cos m . The condition z0 = 0 implies c1 = 0 , and 

the second condition zm+1 = 0 leads to c2 sin (n+1) = 

0, which unless  takes a value for which sin(n+1) = 

0, the only solution is c2 = 0, in which case zm = 0, m 

= 1,2, … , n.  

However, if (n+1) = m , m = 1,2, … , c2 is arbitrary 

and zm 0.  

Thus zm  0 whenever 𝜃 =
𝑚𝜋

𝑛+1
, m = 1,2, …, n for in 

fact, all the other values of m lead either to the trival 

solution. when m=0, n+1, 2(n+1), …, or to solutions 

identical to those obtained: when m takes on one of 

the integers in the intervals (n+1, 2(n+1), 3(n+1)), … 

etc.  

From all what preceeds , it follows that the required 

eigen values are :  

𝜆𝑚 = 𝑎 − 2𝑏 cos
𝑚𝜋

𝑛+1
,      𝑚 = 1,2, … , 𝑛.  

Corollary 3.1: 

It can be easily shown that :  

𝐷𝑛 = ∏ [𝑎 − 2𝑏 cos
𝑚𝜋

𝑛+1
]𝑛

𝑚=1 … (3.4)  

which is another expression of det (Bn).  

 

3-3 The Inverse of 𝑩𝒏:  

As proved in theorem 2.1, to find adj Bn it suffices to 

calculate the cofactors Bij, j = i, i+1, …., n-i+1, i = 1, 

2, …, 
𝑛+1

2
 for n odd or 

𝑛

2
 for n even. Observe that 

when deleting the ith row of Bn , for any fixed i , the 

obtained submatrix gives the following cofactors Bij , 

j = i, i+1, …, n-i+1, where,  

Bij = (-1)
2i

 det (Bi-1) det (Bn-i) , j = i , … (3.5) 

Bij = (-1)
i+j

 det (Cij) det (Bn-j), j = i+1, … , n-i+1  

with Cij a square matrix of order (j-1) satisfying the 

relation:  

det (Cij) = b det (Cij-1), j = i+1, …, n-i+1. … (3.6)  

det (Cij) = det (Bi-1), j=i  

(3.6) is clearly a first order different system of 

equations with boundary condition. It can be easily 

shown that:  

𝑑𝑒𝑡(𝐶𝑖𝑗) = 𝑏𝑖−𝑗𝑑𝑒𝑡(𝐵𝑗−1), 𝑗 = 𝑖, 𝑖 + 1, … , 𝑛 − 𝑖 + 1 

 … (3.7) 

Varying i, (3.5) together with (3.7) imply, thus, that:  

𝐵𝑖𝑗 = (−1)𝑖+𝑗𝑏𝑗−𝑖𝑑𝑒𝑡(𝐵𝑖−1)𝑑𝑒𝑡(𝐵𝑛−𝑗), 𝑖 ≤ 𝑗 ≤ 𝑛 −

𝑖 − 1,  

𝑖 = 1, … ,
𝑛+1

2
 𝑜𝑟 

𝑛

2
 as n odd or even.  

Clearly, this formula reflects the symmetry of 

cofactors proved before for the more general case by 

lemma 2.1. We can thus state the theorem:  

Theorem 3.2: 

For the matrix 𝐵𝑛 given in (3.1), the independent 

cofactors 𝐵𝑖𝑗 are exactly:  

𝐵𝑖𝑗 = (−1)𝑖+𝑗𝑏𝑗−𝑖𝑑𝑒𝑡(𝐵𝑖−1)𝑑𝑒𝑡(𝐵𝑛−𝑗), j = i, j+1, 

…, n-i+1,  

i = 1,2, …, 
𝑛+1

2
 or 

𝑛

2
 as n odd or even.  

Hence, if 𝐵𝑛
−1 = [𝐵𝑖𝑗] denotes the inverse of 𝐵𝑛, then  

𝐵𝑖𝑗 = (−1)𝑖+𝑗𝑏𝑗−𝑖𝑑𝑒𝑡(𝐵𝑖−1)𝑑𝑒𝑡(𝐵𝑛−𝑗)/𝑑𝑒𝑡(𝐵𝑛), 

j = i, …, n-i+1, i = 1,2, …, 
𝑛+1

2
 or 

𝑛

2
 as n odd or even.  

Remark 3.1: 

1- It follows from theorem 3.2 that, to find 𝐵−1 it 

suffices to calculate the determinants of B1, B2, … Bn 

which can be calculated using either formula (3.3) or 

(3.4).  

2- A statement similar to that of B
ij

 in the theorem but 

for the inverse of the covariance matrix of a first 

order moving average process has been observed 

before by Arato [7] and then used shaman 
 
[10]. 

4- Applications  

Below are two examples of statistical models for 

which the involved covariance matrix is of the 

Toeplitz of Jacobi types studied in this work.  

Example (1):  

Suppose y1, y2, … , yn is an observed time series 

generated by a stationary autoregressive process of 

order p given by:  

𝑦𝑖 = 𝜃1𝑦𝑖−1 + 𝜃2𝑦𝑖−2 + ⋯ 𝜃𝑝𝑦𝑖−𝑝 + 𝑒𝑖, with (𝑒𝑖) a 

white noise process, that is 𝐸(𝑒𝑖) = 0, ∀ 𝑖, 

𝐸(𝑒𝑖𝑒𝑗) = {
0

𝜎2

, 𝑖 ≠ 𝑗
, 𝑖 = 𝑗

  

This means that yi have bounded means and 

variances, precisely for all i,  
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𝐸(𝑦𝑖) = 0, 𝐸(𝑦𝑖𝑦𝑖+𝑘) = {
𝜎2

𝑎𝑘

, 𝑘 = 0
, 𝑘 ≠ 0

  

Put,  

𝑌𝑝 = (𝑦𝑝+1 … … 𝑦𝑛)
𝑡
  

𝑋𝑝 = [

𝑦𝑝 𝑦𝑝+1 … 𝑦1

𝑦𝑝−1 𝑦𝑝 … 𝑦2

⋮ ⋮ ⋮
𝑦𝑛−1 𝑦𝑛−2 … 𝑦𝑛−𝑝

] 

Θ𝑝 = (𝜃1 … … 𝜃𝑝)
𝑡
  

Then, given y1, ……., yp, the least squares estimate of 

Θ𝑝 is given by,  

Θ𝑝̂ = (𝑋𝑝
𝑡𝑋𝑝

−1)
−1

𝑋𝑝
𝑡𝑌𝑝, which, under the Gaussian 

assumption of the process, is consistent, 

asymptotically normally distributed, namely:  

𝑛(Θ̂𝑝 − Θ𝑝)
𝐷
→ 𝑁𝑝(0, 𝜎2𝐴𝑝

−1), where,  

Ap = [ ai-j ] , which can be consistently estimated by 

𝑋𝑝
𝑡𝑋𝑝.  

Ap is obviously a matrix of the Eoeplitz-type studied 

in section 2.  

It is well-known that 
 
[1] the asymptotic theory is not 

altered if 𝑋𝑝
𝑡𝑋𝑝 is replaced by the matrix 𝐴𝑝

∗ =

[𝑎|𝑖−𝑗|
∗ ] with 𝑎𝑘

∗ =
1

𝑛
∑ 𝑦𝑟𝑦𝑟+𝑘

𝑛−𝑘
𝑟=1 , k = 0,1, …, p-1, in 

which 𝐴𝑝
∗  is again of the same pattern as Ap. [11] 

,[12]. 

Lemma 2.1 and theorem 2.1 are useful in calculating 

the inverse of 𝐴𝑝
∗  which is indispensable for making 

any inference concerning Θ𝑝.  

Example (2):  

We consider the stationary normal first order moving 

average stochastic process which is very common in 

time series analysis.  

Here, if xi, i =1, …, n, is an observed finite series, 

then  

𝑥𝑖 = 𝑒𝑖 + 𝛽𝑒𝑖−1, with 𝑒𝑖 a gaussian white noise, and 

𝛽, |𝛽|𝜏 < 1, is the parameter to be estimated.  

Put X = (xi, …., xn)
t
. Then, var X = Bn a matrix of the 

Jacobi type as given in section 3 , with a = 𝜎2(1 +
𝛽2), b = 𝜎2𝛽 and 𝜎2 = 𝑣𝑎𝑟(𝑒𝑖) ∀𝑖. 
The log-likelihood function is thus:  

𝐿(𝛽, 𝑋) =
1

2
𝑙𝑜𝑔2𝜋𝜎 −

1

2
𝑛𝑋𝑡𝛽𝑛

−1𝑋𝑛.  

Clearly, the exact estimation of  is not an easy 

problem as long as the exact inverse of Bn is not 

available. Theorem 3.2 together with corollary 3.1 

can be applied to obtain 𝐵𝑛
−1.  
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 معكوس المصفوفات النمطية مع تطبيقات على النماذج الإحصائية
 هبه هاني عبدالله

 ، تكريت ، العراق للبنات ، جامعة تكريتقسم الرياضيات ، كلية التربية 

 الملخص  
وهذا النوع يثبت فيه العدد الدقيق او   Toeplitz قد بحثنا في البداية انعكاس نوعين من المصفوفات النمطية : النوع الاول هو المصفوفات من نوع 

𝑛)عدد وزجي و nعندما تكون   4/(n +2)المضبوط من المعاملات المستقلة ويساوي  + عدد فردي. اما النوع الثاني هو   nعندما تكون   2/4(1
وقد برهنا في  النوع الذي يظهر عند تخفيض المصفوفة الى مصفوفة من نوع جاكوبي, وهناك صيغتين متكافئة في الحصول على المحددات.

لذلك قد انخفضت مشكلة ايجاد المعكوس  بصورة دقيقة الى  𝐵𝑛−𝑗و  𝐵𝑖−1عبر عنه ظاهريا بدلالة   𝐵𝑛من  𝐵𝑖𝑗دراستنا على ان العامل المستقل 
 .𝐵 𝑖, i=1,…,nواحد من النتائج لمجموع العناصر  الناتجة ل 

 


