Some New Types of open Functions Via $\left(\mathbf{l}_{0}, \mathrm{~m}_{1}\right)$-Fuzzy alpha ${ }^{\mathrm{m}}$ - Closed Sets

Fatimah M. Mohammed, Safa H. Obaed
Department of Mathematics, College of Education for Pure Sciences, Tikrit University, Tikrit, Iraq

ARTICLEINFO.

Article history:

-Received: 19 / 9 / 2017
-Accepted: 16 / 1 / 2018
-Available online: / / 2018
Keywords: double fuzzy topology; alpha ${ }^{m}$-open function; alpha ${ }^{m}$ closed function; α-irresolute; alpha ${ }^{m}$-neighborhood
Corresponding Author:
Name: Safa H. Obaed

E-mail:

nafea_y2011@yahoo.com
Tel:

1. Introduction

After the conference paper of Zadeh [1], the search of intuitionistic fuzzy sets started by Atanassove [2], [3] where he added another membership function to Zade's function and called it non-membership function, but the definition of the topology in Chang's sense gave by Coker [4] Later that, Samanta and Mondal [5] introduced the notion of intuitionistic gradation of openness of fuzzy sets. The expression "intuitionistic" evaporate used in literature until 2005, when Gutierrez Garcia and Rodabaugh [6] concluded that the most suited work under the name "double ".
In this paper we discuss $a l p h a^{m}$-continuous function and α-irresolute with alpha ${ }^{m}$-open function and alpha ${ }^{m}$-closed function. Also, discuss some characterization of the new concepts.

2. Preliminaries

Throughout this paper, ($\mathrm{X}, \tau_{\mathrm{X} 1}, \tau_{\mathrm{X} 1}{ }^{*}$) and ($\mathrm{Y}, \tau_{\mathrm{Y} 2}, \tau_{\mathrm{Y} 2}{ }^{*}$) represent to double fuzzy topological spaces. Suppose X be any non-empty set and $\mathrm{I}_{l_{0}}=(0,1], \mathrm{I}_{m 1}=[0,1)$ which are subset of closed interval $I=[0,1]$. For any fuzzy set λ in ($\mathrm{X}, \tau_{\mathrm{X} 1}, \tau_{\mathrm{X} 1}{ }^{*}$). 1- λ is denote the complement of λ in X.

Definition 2.1 [6]. Let X be a non-empty set and a double fuzzy topology $\left(\tau_{\mathrm{X}}, \tau_{\mathrm{X}}{ }^{*}\right)$ is a

Abstract

In this paper, we derive more on alpha ${ }^{m}$-continuous functions and α irresolute functions with $a l p h a^{m}$-open functions and alpha ${ }^{m}$-closed functions in double fuzzy topological spaces via (l_{0}, m_{1})-fuzzy alpha ${ }^{m}$ closed sets. Also, we reached some relationships between these new types of functions and compare them with their opposite with illustrative examples in the same space.

pair of functions $\tau_{\mathrm{X}}, \tau_{\mathrm{X}}{ }^{*}: \mathrm{I}^{x} \rightarrow \mathrm{I}$, which satisfies the following properties:
(O1) $\tau_{\mathrm{X}}\left(\lambda_{1}\right) \leq 1-\tau_{\mathrm{X}}{ }^{*}\left(\lambda_{1}\right)$ for each $\lambda_{1} \in \mathrm{I}^{x}$.
(O2) $\tau_{\mathrm{X}}\left(\lambda_{1} \wedge \lambda_{2}\right) \geq \tau_{\mathrm{x}}\left(\lambda_{1}\right) \wedge \tau_{\mathrm{x}}\left(\lambda_{2}\right)$ and $\tau_{\mathrm{X}}{ }^{*}\left(\lambda_{1} \wedge \lambda_{2}\right) \leq$ $\tau_{\mathrm{x}}{ }^{*}\left(\lambda_{1}\right) \vee \tau_{\mathrm{X}}{ }^{*}\left(\lambda_{2}\right)$ for each $\lambda_{1}, \lambda_{2} \in \mathrm{I}^{x}$.
(O3) $\tau_{\mathrm{X}}\left(\mathrm{v}_{i \in \mathrm{\Gamma}} \lambda_{i}\right) \geq \Lambda_{i \in \mathrm{\Gamma}} \tau_{\mathrm{X}}\left(\lambda_{i}\right)$ and $\quad \tau_{\mathrm{X}}{ }^{*}\left(\mathrm{v}_{i \in \mathrm{\Gamma}} \lambda_{i}\right) \leq$ $\mathrm{v}_{i \in \mathrm{r}} \tau_{\mathrm{X}}{ }^{*}\left(\lambda_{i}\right)$ for each, $\lambda_{i} \in \mathrm{I}^{x}, i \in \mathrm{r}$.
The triplex $\left(\mathrm{X}, \tau_{\mathrm{X}}, \tau_{\mathrm{x}}{ }^{*}\right)$ is called a double fuzzy topological spaces (dfts, for short).
Definition 2.2 [6]. If ($\mathrm{X}, \tau_{\mathrm{x}}, \tau_{\mathrm{X}}{ }^{*}$) be a dfts. Then double fuzzy closure operator and double fuzzy interior operator of $\lambda_{1} \in I^{\mathrm{X}}$ are defined by:
$C_{\tau, \tau^{*}}\left(\lambda_{1}, \mathrm{l}_{0}, \mathrm{~m}_{1}\right)=\wedge\left\{\beta \in I^{x}, \lambda_{1} \leq \beta, \tau(1-\beta) \geq\right.$ $\left.\mathrm{l}_{0}, \quad \tau^{*}(1-\beta) \leq \mathrm{m}_{1}\right\}$,
$\mathrm{I}_{\tau, \tau^{*}}\left(\lambda_{1}, \mathrm{l}_{0}, \mathrm{~m}_{1}\right)=\mathrm{V}\left\{\beta \in \mathrm{I}^{\mathrm{x}}, \beta \leq \lambda_{1}, \tau(\beta) \geq \mathrm{l}_{0}, \tau^{*}(\beta) \leq\right.$ $\left.\mathrm{m}_{1}\right\}$.
Where $\mathrm{l}_{0} \in \mathrm{I}_{10}$ and $\mathrm{m}_{1} \in \mathrm{I}_{\mathrm{m} 1}$ with $\mathrm{l}_{0}+\mathrm{m}_{1} \leq 1$.
Definition 2.3[11] Let ($\mathrm{X}, \tau_{\mathrm{X}}, \tau_{\mathrm{X}}{ }^{*}$) be a dfts. A fuzzy point is defined by
$x_{t}(y)=\left\{\begin{array}{ll}t, & \text { if } y=x \\ 0, & \text { if } y \neq x\end{array} \quad\right.$ for $x \in X$ and $t \in I_{0}$.
Definition 2.4 [11] Let $\left(X, \tau_{\mathrm{X}}, \tau_{\mathrm{X}}{ }^{*}\right)$ be a dfts. $\lambda \in I^{X}, x_{t} \in p_{t}(\mathrm{x}), l_{0} \in I_{l 0}$ and $m_{1} \in I_{m 1}$. A fuzzy set λ is called $\left(l_{0}, m_{1}\right)$-fuzzy neighborhood of x_{t} if $\tau(\lambda) \geq l_{0}, \tau^{*}(\lambda) \leq m_{1}$ and $x_{t} q \lambda$.
Now, we introduce the following definitions :-

Definition 2.5 Let λ be a subset of a dfts (X, $\left.\tau_{\mathrm{X}}, \tau_{\mathrm{X}}{ }^{*}\right) \mathrm{l}_{0} \in \mathrm{I}_{10}, \mathrm{~m}_{1} \in \mathrm{I}_{\mathrm{m} 1}$ and $\lambda \in \mathrm{I}^{x}$ is called:

1. An $\left(\mathrm{l}_{0}, \mathrm{~m}_{1}\right)$-fuzzy α-open $\operatorname{set}[7]$ if $\lambda \leq$ $I_{\tau, \tau^{*}}\left(C_{\tau, \tau^{*}}\left(I_{\tau, \tau^{*}}\left(\lambda, \mathrm{l}_{0}, \mathrm{~m}_{1}\right), \mathrm{l}_{0}, \mathrm{~m}_{1}\right), \mathrm{l}_{0}, \mathrm{~m}_{1}\right)$. And an ($\mathrm{l}_{0}, \mathrm{~m}_{1}$)-fuzzy $\quad \alpha$-closed set if $C_{\tau, \tau^{*}}\left(I_{\tau, \tau^{*}}\left(C_{\tau, \tau^{*}}\left(\lambda, \mathrm{l}_{0}, \mathrm{~m}_{1}\right), \mathrm{l}_{0}, \mathrm{~m}_{1}\right), \mathrm{l}_{0}, \mathrm{~m}_{1}\right) \leq \lambda$.
2. An $\left(\mathrm{l}_{0}, \mathrm{~m}_{1}\right)$-fuzzy alpha ${ }^{m}$-closed set [8] (briefly, $\left(\mathrm{l}_{0}, \mathrm{~m}_{1}\right)$-f α^{m}-closed) if $I_{\tau, \tau^{*}}\left(C_{\tau, \tau^{*}}\right.$
$\left.\left(\lambda, \mathrm{l}_{0}, \mathrm{~m}_{1}\right), \mathrm{l}_{0}, \mathrm{~m}_{1}\right) \leq \beta$, whenever $\lambda \leq \beta$ and β is $\left(\mathrm{l}_{0}, \mathrm{~m}_{1}\right)$ - $\mathrm{f} \alpha$-open.
3. An $\left(\mathrm{l}_{0}, \mathrm{~m}_{1}\right)$-fuzzy $a l p h a^{m}$-open $\operatorname{set}[8]$ (briefly, $\left(l_{0}, \mathrm{~m}_{1}\right)$-f α^{m}-open) iff $1-\lambda$ is $\left(\mathrm{l}_{0}, \mathrm{~m}_{1}\right)$ -
fuzzy α^{m} - closed.
Definition 2.6 [8] If ($\mathrm{X}, \tau, \tau^{*}$) be a dfts. So, for each $\lambda, \mu \in \mathrm{I}^{x}, \mathrm{l}_{0} \in \mathrm{I}_{10}$ and $\mathrm{m}_{1} \in \mathrm{I}_{\mathrm{m} 1}$.
We have the double fuzzy α^{m}-Closure and double fuzzy α^{m}-Interior of λ is defined as:
$\alpha^{m} C_{\tau, \tau^{*}}\left(\lambda, \mathrm{l}_{0}, \mathrm{~m}_{1}\right)=\Lambda\left\{\beta \in \mathrm{I}^{\mathrm{X}}: \lambda<\beta, \beta\right.$ is $\left(\mathrm{l}_{0}, \mathrm{~m}_{1}\right)-$ $\mathrm{f} \alpha^{m}$-closed set $\}$.
$\alpha^{m} \mathrm{I}_{\tau, \tau^{*}}\left(\lambda, \mathrm{l}_{0}, \mathrm{~m}_{1}\right)=\mathrm{V}\left\{\beta \in \mathrm{I}^{\mathrm{X}}: \beta<\lambda, \beta\right.$ is $\left(\mathrm{l}_{0}, \mathrm{~m}_{1}\right)$ f α^{m}-open set $\}$.
Definition 2.7 Let ($\mathrm{X}, \tau_{\mathrm{X} 1}, \tau_{\mathrm{X} 1}{ }^{*}$) and ($\mathrm{Y}, \tau_{\mathrm{Y} 2}, \tau_{\mathrm{Y} 2}{ }^{*}$) be two dfts's. A function f: (X, $\left.\tau_{\mathrm{X} 1}, \tau_{\mathrm{X} 1}{ }^{*}\right) \rightarrow$ $\left(\mathrm{Y}, \tau_{\mathrm{Y} 2}, \tau_{\mathrm{Y} 2}{ }^{*}\right)$ is called:
4. Double fuzzy irresolute [9] (briefly, df-irr) if $\mathrm{f}^{-1}(\beta)$ is $\left(\mathrm{l}_{0}, \mathrm{~m}_{1}\right)$-fs-open set for each $\beta \in \mathrm{I}^{\mathrm{Y}}, \mathrm{l}_{0} \in$ I_{10} and $\mathrm{m}_{1} \in \mathrm{I}_{\mathrm{m} 1}$.
5. Double fuzzy continuous [10] if $\left(\mathrm{f}^{-1}(\gamma)\right) \geq$ $\tau_{\mathrm{Y} 2}(\gamma)$ and $\tau_{\mathrm{X} 1}{ }^{*}\left(\mathrm{f}^{-1}(\gamma)\right) \leq \tau_{\mathrm{Y} 2}{ }^{*}(\gamma)$ for each $\gamma \in \mathrm{I}^{\mathrm{Y}}$.
6. Double fuzzy open function[2] (briefly, df-open) if $\tau_{Y 2}(f(\lambda)) \geq \tau_{X 1}(\lambda)$ and $\tau_{Y 2}{ }^{*}(f(\lambda)) \leq \tau_{X 1}{ }^{*}(\lambda)$ for each $\lambda \in I^{X}, \mathrm{l}_{0} \in \mathrm{I}_{10}$ and $\mathrm{m}_{1} \in \mathrm{I}_{\mathrm{m} 1}$.
7. Double fuzzy closed[10] (briefly, df-closed) if $\tau_{\mathrm{Y} 2}(\mathrm{f}(1-\lambda)) \geq \tau_{\mathrm{X} 1}(1-\lambda)$ and $\tau_{\mathrm{Y} 2}{ }^{*}(\mathrm{f}(1-\lambda)) \leq$ $\tau_{\mathrm{X} 1}{ }^{*}(1-\lambda)$ for each $\mathrm{l}_{0} \in \mathrm{I}_{10}$ and $\mathrm{m}_{1} \in \mathrm{I}_{\mathrm{m} 1}$.

3. Double fuzzy $\boldsymbol{\alpha}^{\mathrm{m}}$-open functions

In this part of the research, we generalized the definitions (2.5) but in the function, and used to find new results in dfts.
Definition 3.1 Let ($\mathrm{X}, \tau_{\mathrm{X} 1}, \tau_{\mathrm{X} 1}{ }^{*}$) and ($\mathrm{Y}, \tau_{\mathrm{Y} 2}, \tau_{\mathrm{Y} 2}{ }^{*}$) be two dfts's. $\lambda \in I^{X}, \beta \in I^{Y}, l_{0} \in I_{l 0}$ and $m_{1} \in I_{m 1}$. A function $\mathrm{f}:\left(\mathrm{X}, \tau_{\mathrm{X} 1}, \tau_{\mathrm{X} 1}{ }^{*}\right) \rightarrow\left(\mathrm{Y}, \tau_{\mathrm{Y} 2}, \tau_{\mathrm{Y} 2}{ }^{*}\right)$ is called:

1. Double fuzzy $a l p h a^{m}$-open function (briefly, $\mathrm{df} \alpha^{\mathrm{m}}$-open) if for each $\left(\mathrm{l}_{0}, \mathrm{~m}_{1}\right)$-f α^{m}-open set $\lambda, \mathrm{f}(\lambda)$ is $\left(l_{0}, m_{1}\right)$-f α^{m} open set.
2. Double fuzzy $a l p h a^{m}$-closed function (briefly, $\mathrm{df} \alpha^{\mathrm{m}}$-closed $)$ if for each $\left(\mathrm{l}_{0}, \mathrm{~m}_{1}\right)$-f α^{m}-closed set λ, $\mathrm{f}(\lambda)$ is $\left(\mathrm{l}_{0}, \mathrm{~m}_{1}\right)$-f α^{m}-closed set.
3. Double fuzzy α-irresolute (briefly, df α-irr) if $f^{-1}(\gamma)$ is $\left(\mathrm{l}_{0}, \mathrm{~m}_{1}\right)$-fuzzy α - closed in X for each $\left(\mathrm{l}_{0}, \mathrm{~m}_{1}\right)$-fuzzy α-closed set γ in Y.
4. Double fuzzy alpha ${ }^{m}$-continuous (briefly, $\mathrm{dfo}^{\mathrm{m}}$ c) if $f^{-1}(\beta)$ is $\left(l_{0}, m_{1}\right)$ - $f \alpha^{m}$-open such that $\tau_{\mathrm{Y} 2}(\beta) \geq$ l_{0} and $\tau_{\mathrm{Y} 2}{ }^{*}(\beta) \leq \mathrm{m}_{1}$.
Now, we introduce the following theorem (3.2) expensive the relation between $\mathrm{df} \alpha^{\mathrm{m}}$-closed function and df^{m}-open set under condition.

Theorem 3.2 Let $\left(\mathrm{X}, \tau_{\mathrm{X} 1}, \tau_{\mathrm{X} 1}{ }^{*}\right)$ and $\left(\mathrm{Y}, \tau_{\mathrm{Y} 2}, \tau_{\mathrm{Y} 2}{ }^{*}\right)$ be two dfts's. Then a function $\mathrm{f}:\left(\mathrm{X}, \tau_{\mathrm{X} 1}, \tau_{\mathrm{X} 1}{ }^{*}\right) \rightarrow$ ($\mathrm{Y}, \tau_{\mathrm{Y} 2}, \tau_{\mathrm{Y} 2}{ }^{*}$) is $\mathrm{df} \alpha^{\mathrm{m}}$-closed function iff for each $\mu_{Y} \leq Y$ and $f^{-1}\left(\mu_{Y}\right) \leq \beta$, there is an $\left(\mathrm{l}_{0}, \mathrm{~m}_{1}\right)$-df $\alpha^{\mathrm{m}}-$ open set γ in Y such that $\mu_{Y} \leq \gamma$ and $f^{-1}(\gamma) \leq \beta$.
Proof. Let f be $\mathrm{df} \alpha^{\mathrm{m}}$-closed function and suppose that $\mu_{Y} \leq Y, \tau_{\mathrm{X} 1}(\beta) \geq \mathrm{l}_{0} \quad$ and $\quad \tau_{\mathrm{X} 1}{ }^{*}(\beta) \leq \mathrm{m}_{1}$ whenever, $\mathrm{l}_{0} \in \mathrm{I}_{10}$ and $\mathrm{m}_{1} \in \mathrm{I}_{\mathrm{m} 1}$ such that $f^{-1}\left(\mu_{Y}\right) \leq \beta$.
Then, $\gamma=1-f(1-\beta)$ is an $\left(l_{0}, \mathrm{~m}_{1}\right)$-f f^{m}-open set containing μ_{Y} such that $f^{-1}(\gamma) \leq \beta$.
Conversely, Let $1-\beta_{x}$ be an $\left(l_{0}, \mathrm{~m}_{1}\right)$-fuzzy closed set in X then, $f^{-1}\left(f\left(1-\left(1-\beta_{x}\right)\right) \leq \beta_{x}, \tau_{\mathrm{X} 1}\left(\beta_{x}\right) \geq \mathrm{l}_{0}\right.$ and $\tau_{\mathrm{X} 1}{ }^{*}\left(\beta_{x}\right) \leq \mathrm{m}_{1}$ by hypothesis, there exist $\gamma \in I^{Y}$ is an $\left(l_{0}, \mathrm{~m}_{1}\right)$ - $\mathrm{f} \alpha^{\mathrm{m}}$-open set such that $\mathrm{f}\left(\beta_{x}\right) \leq \gamma$.
Since, $\beta_{x} \leq f^{-1}\left(f\left(\beta_{x}\right)\right)$ then, $\beta_{x} \leq f^{-1}(\gamma)$ So, 1$\beta_{x} \leq 1-\left(f^{-1}(\gamma)\right)$ hence,
1- $\gamma \leq f\left(1-\beta_{x}\right) \leq f\left(1-f^{-1}(\gamma) \leq 1-\gamma \Rightarrow \mathrm{f}(1-\right.$ $\left.\beta_{x}\right)=1-\gamma$.
Since $1-\gamma$ is $\left(l_{0}, \mathrm{~m}_{1}\right)$-f α^{m}-closed set then, $\mathrm{f}\left(1-\beta_{x}\right)$ is $\left(l_{0}, m_{1}\right)$-f α^{m}-closed. Therefore, f is $\mathrm{df} \alpha^{\mathrm{m}}$-closed function.
Proposition 3.3 Let $\left(\mathrm{X}, \tau_{\mathrm{X} 1}, \tau_{\mathrm{X} 1}{ }^{*}\right)$ and $\left(\mathrm{Y}, \tau_{\mathrm{Y} 2}, \tau_{\mathrm{Y} 2}{ }^{*}\right)$ be two dfts's. and $\mathrm{f}:\left(\mathrm{X}, \tau_{\mathrm{X} 1}, \tau_{\mathrm{X} 1}{ }^{*}\right) \rightarrow\left(\mathrm{Y}, \tau_{\mathrm{Y} 2}, \tau_{\mathrm{Y} 2}{ }^{*}\right)$ is $\mathrm{df} \alpha$-irr and λ is an $\left(\mathrm{l}_{0}, \mathrm{~m}_{1}\right)$-f α^{m}-closed in X . Then f (λ) is $\left(l_{0}, m_{1}\right)$-f α^{m}-closed in Y.
Proof. Suppose that β is an $\left(l_{0}, \mathrm{~m}_{1}\right)-\mathrm{f} \alpha^{\mathrm{m}}$-open set in Y such that $\mathrm{f}(\lambda) \leq \beta$ whenever, λ is $\left(\mathrm{l}_{0}, \mathrm{~m}_{1}\right)-\mathrm{f} \alpha^{\mathrm{m}}-$ closed in $X, \mathrm{l}_{0} \in \mathrm{I}_{10}$ and $\mathrm{m}_{1} \in \mathrm{I}_{\mathrm{m} 1}$.
Since f is $\mathrm{df} \alpha$-irr function $\lambda \leq f^{-1}(\beta)$ and $f^{-1}(\beta)$ is an $\left(\mathrm{l}_{0}, \mathrm{~m}_{1}\right)$-f α^{m}-open set. Hence $C_{\tau, \tau^{*}}\left(\lambda, \mathrm{l}_{0}, \mathrm{~m}_{1}\right) \leq$ $f^{-1}(\beta)$ hence, λ is $\left(l_{0}, \mathrm{~m}_{1}\right)$-f α^{m}-closed. But, $\mathrm{f}\left(C_{\tau, \tau^{*}}\left(\lambda, \mathrm{l}_{0}, \mathrm{~m}_{1}\right)\right)$ is an $\left(\mathrm{l}_{0}, \mathrm{~m}_{1}\right)$ - $\mathrm{f} \alpha^{\mathrm{m}}$-closed contained in the $\left(\mathrm{l}_{0}, \mathrm{~m}_{1}\right)$-f α-open set β, this implies that $C_{\tau, \tau^{*}}\left(\mathrm{f}\left(C_{\tau, \tau^{*}}\left(\lambda, \mathrm{l}_{0}, \mathrm{~m}_{1}\right), \mathrm{l}_{0}, \mathrm{~m}_{1}\right)\right) \leq \beta$ and $C_{\tau, \tau^{*}}(f(\lambda)$, $\left.\mathrm{l}_{0}, \mathrm{~m}_{1}\right) \leq \beta$.
$\therefore f(\lambda)$ is an $\left(l_{0}, \mathrm{~m}_{1}\right)$-f α^{m}-closed set in Y .
Corollary 3.4 Let (X, $\left.\tau_{\mathrm{X} 1}, \tau_{\mathrm{X} 1}{ }^{*}\right)$, $\left(\mathrm{Y}, \tau_{\mathrm{Y} 2}, \tau_{\mathrm{Y} 2}{ }^{*}\right)$ and ($\mathrm{Z}, \tau_{\mathrm{z} 3}, \tau_{\mathrm{z} 3}{ }^{*}$) be dfts's and the function $\mathrm{f}:(\mathrm{X}$, $\left.\tau_{\mathrm{X} 1}, \tau_{\mathrm{X} 1}{ }^{*}\right) \rightarrow\left(\mathrm{Y}, \tau_{\mathrm{Y} 2}, \tau_{\mathrm{Y} 2}{ }^{*}\right)$ is $\mathrm{df} \alpha^{\mathrm{m}}$-closed and $\mathrm{g}:\left(\mathrm{Y}, \tau_{\mathrm{Y} 2}, \tau_{\mathrm{Y} 2}{ }^{*}\right) \rightarrow\left(\mathrm{Z}, \tau_{\mathrm{z} 3}, \tau_{\mathrm{z} 3}{ }^{*}\right)$ is $\mathrm{df} \alpha^{\mathrm{m}}$-closed and $\mathrm{df} \alpha$-irr function. Then, g o f: $\left(\mathrm{X}, \tau_{\mathrm{X} 1}, \tau_{\mathrm{x} 1}{ }^{*}\right) \rightarrow(\mathrm{Z}$, $\tau_{\mathrm{z} 3}, \tau_{\mathrm{z} 3}{ }^{*}$) is df α^{m}-closed function.
Proof. Suppose λ is $\left(\mathrm{l}_{0}, \mathrm{~m}_{1}\right)$-f closed set in X, whenever, $\mathrm{l}_{0} \in \mathrm{I}_{10}$ and $\mathrm{m}_{1} \in \mathrm{I}_{\mathrm{m} 1}$
by hypothesis $\mathrm{f}(\lambda)$ is an $\left(\mathrm{l}_{0}, \mathrm{~m}_{1}\right)$ - $\mathrm{f} \alpha^{\mathrm{m}}$-closed set in Y. Since g is $\mathrm{df} \alpha^{\mathrm{m}}$-closed and $\mathrm{df} \alpha$-irr by using Proposition 3.2, we get $g(f(\lambda))=(g$ of $)(\lambda)$ is df α^{m} closed in Z.
Then, we have g of is $\mathrm{df} \alpha^{\mathrm{m}}$-closed function.
Theorem 3.5 Let ($\mathrm{X}, \tau_{\mathrm{X} 1}, \tau_{\mathrm{X} 1}{ }^{*}$), ($\mathrm{Y}, \tau_{\mathrm{Y} 2}, \tau_{\mathrm{Y} 2}{ }^{*}$) and (Z, $\quad \tau_{\mathrm{z} 3}, \tau_{\mathrm{z} 3}{ }^{*}$) be dfts's. f: $\quad\left(\mathrm{X}, \quad \tau_{\mathrm{X} 1}, \tau_{\mathrm{X} 1}{ }^{*}\right) \rightarrow$ $\left(\mathrm{Y}, \tau_{\mathrm{Y} 2}, \tau_{\mathrm{Y} 2}{ }^{*}\right)$ and $\mathrm{g}:\left(\mathrm{Y}, \tau_{\mathrm{Y} 2}, \tau_{\mathrm{Y} 2}{ }^{*}\right) \rightarrow\left(\mathrm{Z}, \tau_{\mathrm{z} 3}, \tau_{\mathrm{z} 3}{ }^{*}\right)$ be two functions, where f is continuous and surjective and $\mathrm{goof:}\left(\mathrm{X}, \tau_{\mathrm{x} 1}, \tau_{\mathrm{x} 1}{ }^{*}\right) \rightarrow\left(\mathrm{Z}, \tau_{\mathrm{z} 3}, \tau_{\mathrm{z} 3}{ }^{*}\right)$ is $\mathrm{df} \alpha^{\mathrm{m}}$-closed function. Then, g is $\mathrm{df} \alpha^{\mathrm{m}}$-closed function.
Proof. Suppose that $\tau_{Y 2}(1-\lambda) \geq l_{0}$ and $\tau_{Y 2}{ }^{*}(1-\lambda)$ $\leq m_{1}$ whenever, $l_{0} \in I_{10}$ and $m_{1} \in I_{m 1}$. Since f is
continuous so, $\tau_{X 1}\left(1-f^{-1}(\lambda)\right) \geq \mathrm{l}_{0}$ and $\tau_{\mathrm{X} 1}{ }^{*}(1-$ $\left.f^{-1}(\lambda)\right) \leq \mathrm{m}_{1}$. Since g o f is $\mathrm{df} \alpha^{\mathrm{m}}$-closed, (g o f $)\left(f^{-1}(\lambda)\right)$ is $\left(l_{0}, \mathrm{~m}_{1}\right)-\mathrm{f} \alpha^{\mathrm{m}}$-closed in Z . That is, $g(\lambda)$ is $\left(l_{0}, m_{1}\right)-f \alpha^{m}$-closed in Z, but f is surjective. So, we get g is a df α^{m}-closed function.
Proposition 3.6 Let $\left(\mathrm{X}, \tau_{\mathrm{X} 1}, \tau_{\mathrm{X} 1}{ }^{*}\right),\left(\mathrm{Y}, \tau_{\mathrm{Y} 2}, \tau_{\mathrm{Y} 2}{ }^{*}\right)$ and $\left(\mathrm{Z}, \tau_{\mathrm{z} 3}, \tau_{\mathrm{z} 3}{ }^{*}\right)$ be dfts's. And f: $\left(\mathrm{X}, \tau_{\mathrm{X} 1}, \tau_{\mathrm{X} 1}{ }^{*}\right) \rightarrow$ ($\mathrm{Y}, \tau_{\mathrm{Y} 2}, \tau_{\mathrm{Y} 2}{ }^{*}$) is df-closed function and $\mathrm{g}:\left(\mathrm{Y}, \tau_{\mathrm{Y} 2}, \tau_{\mathrm{Y} 2}{ }^{*}\right) \rightarrow\left(\mathrm{Z}, \quad \tau_{\mathrm{z} 3}, \tau_{\mathrm{z} 3}{ }^{*}\right) \quad \mathrm{df} \alpha^{\mathrm{m}}$-closed function. Then, g o f: $\left(\mathrm{X}, \tau_{\mathrm{X} 1}, \tau_{\mathrm{X} 1}{ }^{*}\right) \rightarrow\left(\mathrm{Z}, \tau_{\mathrm{z} 3}, \tau_{\mathrm{z} 3}{ }^{*}\right)$ is $\mathrm{df} \alpha^{\mathrm{m}}$-closed function.
Proof. Suppose $\tau_{X 1}(1-\lambda) \geq l_{0}$ and $\tau_{\mathrm{X} 1}{ }^{*}(1-\lambda) \leq \mathrm{m}_{1}$, whenever $\mathrm{l}_{0} \in \mathrm{I}_{10}$ and $\mathrm{m}_{1} \in \mathrm{I}_{\mathrm{m} 1}$.
Then, $\tau_{Y 1}\left(1-f^{-1}(\lambda)\right) \geq 1_{0}$ and and $\tau_{\mathrm{Y} 1}{ }^{*}\left(1-f^{-1}(\lambda)\right)$ $\leq \mathrm{m}_{1}$ by hypotheses, $\mathrm{g}(\mathrm{f}(\lambda))$ is df^{m}-closed in Z , so ($\mathrm{g} \circ \mathrm{f}$) (λ) is df α^{m}-closed in Z . That is, g of is df α^{m} - closed function.
Remark 3.7 Every $\mathrm{df} \alpha^{m}$-open function is df $\alpha^{m_{-}}$ continuous function, but the convers is not true and we can show that by the following example.
Example $3.8 \quad$ Let $X=\left\{a_{1}, b_{1}, c_{1}\right\}$ and $Y=$ $\{x, y, z\}$. define fuzzy sets $\lambda_{1}, \lambda_{2}, \beta_{1}$ as follows:
$\lambda_{1}\left(a_{1}\right)=0.4, \quad \lambda_{1}\left(b_{1}\right)=0.3, \quad \lambda_{1}\left(c_{1}\right)=0.2$,
$\lambda_{2}\left(a_{1}\right)=\beta_{1}(x)=0.6, \quad\left(b_{1}\right)=\beta_{1}(y)=0.7$,
$\lambda_{2}\left(c_{1}\right)=\beta_{1}(z)=0.8$.
And the dfts's ($\left.\mathrm{X}, \tau_{\mathrm{X} 1}, \tau_{\mathrm{X} 1}{ }^{*}\right)$ and $\left(Y, \tau_{\mathrm{Y} 2}, \tau_{\mathrm{Y} 2}{ }^{*}\right)$ are define as follows:

$$
\begin{gathered}
\tau_{1}(\lambda)= \begin{cases}1, & \text { if } \lambda=0 \text { or } 1 \\
\frac{1}{2}, & \text { if } \lambda=\lambda_{1} \\
0, & \text { otherwise }\end{cases} \\
\tau_{1}{ }^{*}(\lambda)=\left\{\begin{array}{cc}
0, & \text { if } \lambda=0 \text { or } 1 \\
\frac{1}{2}, & \text { if } \lambda=\lambda_{1} \\
1, & \text { otherwise }
\end{array}\right. \\
\tau_{2}(\beta)= \begin{cases}1, & \text { if } \beta=0 \text { or } 1 \\
\frac{1}{2}, & \text { if } \beta=\beta_{1} \\
0, & \text { otherwise }\end{cases} \\
\tau_{2}{ }^{*}(\beta)= \begin{cases}0, & \text { if } \beta=0 \text { or } 1 \\
\frac{1}{2}, & \text { if } \beta=\beta_{1} \\
1, & \text { otherwise }\end{cases}
\end{gathered}
$$

The function $\mathrm{f}:\left(\mathrm{X}, \tau_{\mathrm{X} 1}, \tau_{\mathrm{X} 1}{ }^{*}\right) \rightarrow\left(\mathrm{Y}, \tau_{\mathrm{Y} 2}, \tau_{\mathrm{Y} 2}{ }^{*}\right)$ define as:
$\mathrm{f}\left(\mathrm{a}_{1}\right)=\mathrm{x}, \quad \mathrm{f}\left(\mathrm{b}_{1}\right)=\mathrm{y}, \quad \mathrm{f}\left(\mathrm{c}_{1}\right)=\mathrm{z}$.
So, since β_{1} is an $\left(\frac{1}{2}, \frac{1}{2}\right)$-f open set and $f^{-1}\left(\beta_{1}\right)$ $=\lambda_{2} \quad$ is an $\left(\frac{1}{2}, \quad \frac{1}{2}\right)-\mathrm{f} \alpha^{\mathrm{m}}$-c-open set then, $\mathrm{C}_{\tau, \tau^{*}}\left(\mathrm{I}_{\tau, \tau^{*}}\left(\mathrm{C}_{\tau, \tau^{*}}\left(\beta, \mathrm{l}_{0}, \mathrm{~m}_{1}\right), \mathrm{l}_{0}, \mathrm{~m}_{1}\right), \mathrm{l}_{0}, \mathrm{~m}_{1}\right) \leq \beta$ $\Rightarrow \mathrm{C}_{\tau, \tau^{*}}\left(\mathrm{I}_{\tau, \tau^{*}}\left(\left(\lambda_{1}{ }^{\mathrm{c}}, \frac{1}{2}, \frac{1}{2}\right), \frac{1}{2}, \frac{1}{2}\right)\right.$
$\mathrm{C}_{\tau, \tau^{*}}\left(\beta, \frac{1}{2}, \frac{1}{2}\right)=\lambda_{1}{ }^{\mathrm{c}} \leq \beta \Rightarrow \beta$ is an $\left(\frac{1}{2}, \frac{1}{2}\right)$ - $\mathrm{f} \alpha-$ closed and $\lambda \leq \lambda^{c} \Rightarrow \beta$ is an $\left(\frac{1}{2}, \frac{1}{2}\right)$-f α^{m}-open. Since $\mathrm{f}^{-1}\left(\beta_{1}\right)=\lambda_{2}$ and $\lambda_{2} \notin\left(\tau_{\mathrm{X} 1}, \tau_{\mathrm{X} 1}{ }^{*}\right)$
$\therefore \mathrm{f}^{-1}\left(\beta_{1}\right)=\lambda_{2}$ is an $\left(\frac{1}{2}, \frac{1}{2}\right)$-f α^{m}-open
So, β is an $\left(\frac{1}{2}, \frac{1}{2}\right)$-f α^{m}-continuous But, $f(\beta)$ is not α^{m}-open function.

Now, we introduce new concept alpha ${ }^{m}$ neighborhood and theorem illustrates the important properties of df^{m}-open function .
Definition 3.9 Let (X, $\tau_{\mathrm{X}}, \tau_{\mathrm{X}}{ }^{*}$) be a dfts and $\lambda \in I^{X}$. A subset δ of X is called fuzzy alpha ${ }^{m}$ neighborhood of λ (f α^{m}-nbhd, for short) if there exist an $\left(l_{0}, \mathrm{~m}_{1}\right)$-f α^{m}-open set ρ_{0} such that $\lambda \in \rho_{0} \leq \delta$
Theorem 3.10 Let ($\mathrm{X}, \tau_{\mathrm{x}}, \tau_{\mathrm{X}}{ }^{*}$) be adfts's. λ is an $\left(\mathrm{l}_{0}, \mathrm{~m}_{1}\right)$-f α^{m}-closed in $\mathrm{X} \quad$.Then $\quad x \in$ $\alpha^{\mathrm{m}} C_{\tau, \tau^{*}}\left(\lambda, \mathrm{l}_{0}, \mathrm{~m}_{1}\right)$ iff any fuzzy α^{m}-nbhd δ of x in $\mathrm{X}, \delta \wedge \lambda \neq 0$.
Proof. Suppose that the fuzzy α^{m}-nbhd δ of $x \in I^{X}$ such that $\delta \wedge \lambda=0$. So, there exist $\rho_{0} \in I^{X}$ is an $\left(\mathrm{l}_{0}, \mathrm{~m}_{1}\right)$-fuzzy α^{m}-open set such that $x \in \rho_{0} \leq \delta$, whenever, $\mathrm{l}_{0} \in \mathrm{I}_{\mathrm{l} 0}$ and $\mathrm{m}_{1} \in \mathrm{I}_{\mathrm{m} 1}$. So, we have $\rho_{0} \wedge \lambda=0 \quad$ and $\quad x \in 1-\rho_{0}$, then $\alpha^{\mathrm{m}} C_{\tau, \tau^{*}}\left(\lambda, \mathrm{l}_{0}, \mathrm{~m}_{1}\right) \in 1-\rho_{0}$.
Therefore, $\quad x \notin \alpha^{\mathrm{m}} C_{\tau, \tau^{*}}\left(\lambda, \mathrm{l}_{0}, \mathrm{~m}_{1}\right) \quad$ which is contradiction to hypothesis $x \in \alpha^{\mathrm{m}} C_{\tau, \tau^{*}}\left(\lambda, 1_{0}, \mathrm{~m}_{1}\right)$ then, $\delta \wedge \lambda \neq 0$.
Conversely, Let $x \notin \alpha^{\mathrm{m}} C_{\tau, \tau^{*}}\left(\lambda, \mathrm{l}_{0}, \mathrm{~m}_{1}\right)$ then, there exist $\rho_{0} \in I^{X}$ be an $\left(\mathrm{l}_{0}, \mathrm{~m}_{1}\right)$-f α^{m}-closed set such that $\lambda \leq \rho_{0}$ and $x \notin \rho_{0}$. Then, $x \in 1-\rho_{0}$ and $1-\rho_{0}$ is $\left(l_{0}, m_{1}\right)-\mathrm{f} \alpha^{\mathrm{m}}$-open set in X and hence $1-\rho_{0}$ is fuzzy α^{m}-nbhd of $x \in I^{X}$. But $\lambda \wedge\left(1-\rho_{0}\right)=0$. which is a contradiction. Then, $x \in \alpha^{\mathrm{m}} C_{\tau, \tau^{*}}\left(\lambda, \mathrm{l}_{0}, \mathrm{~m}_{1}\right)$.
Theorem 3.11 Let ($\mathrm{X}, \tau_{\mathrm{X} 1}, \tau_{\mathrm{X} 1}{ }^{*}$) and ($\mathrm{Y}, \tau_{\mathrm{Y} 2}, \tau_{\mathrm{Y} 2}{ }^{*}$) be two dfts's and let $\mathrm{f}:\left(\mathrm{X}, \tau_{\mathrm{X} 1}, \tau_{\mathrm{X} 1}{ }^{*}\right) \rightarrow\left(\mathrm{Y}, \tau_{\mathrm{Y} 2}, \tau_{\mathrm{Y} 2}{ }^{*}\right)$ be function. Then, the following statements are equivalent:
(1) f is $\mathrm{df} \alpha^{\mathrm{m}}$-open function
(2) λ subset of $X, \quad f \quad\left(I_{\tau, \tau^{*}}\left(\lambda, l_{0}, m_{1}\right)\right) \leq$ $\left.\alpha^{\mathrm{m}} I_{\tau, \tau^{*}}\left(\mathrm{f}(\lambda), \mathrm{l}_{0}, \mathrm{~m}_{1}\right)\right)$.
(3) $\forall x \in I^{X}$ and for each neighborhood β of x in X there exist, fuzzy ${ }^{\mathrm{m}}$-nbhd δ of $\mathrm{f}(\mathrm{x})$ in Y such that $\delta \leq f(\beta)$.
Proof. (1) \Rightarrow (2) Suppose f is df^{m}-open function, whenever $\mathrm{l}_{0} \in \mathrm{I}_{10}$ and $\mathrm{m}_{1} \in \mathrm{I}_{\mathrm{m} 1}$ then, $I_{\tau, \tau^{*}}\left(\lambda, \mathrm{l}_{0}, \mathrm{~m}_{1}\right)$ is open in X and so, $\mathrm{f}\left(I_{\tau, \tau^{*}}\left(\lambda, \mathrm{l}_{0}, \mathrm{~m}_{1}\right)\right)$ is $\quad\left(\mathrm{l}_{0}, \mathrm{~m}_{1}\right)$-f α^{m}-open in Y . We have, $\mathrm{f}\left(I_{\tau, \tau^{*}}\left(\lambda, \mathrm{l}_{0}, \mathrm{~m}_{1}\right)\right) \leq \mathrm{f}(\lambda)$
Then we get, $\mathrm{f}\left(I_{\tau, \tau^{*}}\left(\lambda, \mathrm{l}_{0}, \mathrm{~m}_{1}\right)\right) \leq$ $\left.\alpha^{\mathrm{m}} I_{\tau, \tau^{*}}\left(\mathrm{f}(\lambda), \mathrm{l}_{0}, \mathrm{~m}_{1}\right)\right)$
(2) \Rightarrow (3) Assume (2) holds and let $x \in I^{X}$ and β be an neighborhood of x in X . Then, there exist an open set ρ_{0} such that $x \in \rho_{0} \leq \beta$.
By hypothesis, $\quad \mathrm{f}\left(\rho_{0}\right)=\mathrm{f}\left(I_{\tau, \tau^{*}}\left(\rho_{0}, \mathrm{l}_{0}, \mathrm{~m}_{1}\right)\right) \leq$ $\left.\alpha^{\mathrm{m}} I_{\tau, \tau^{*}}\left(\mathrm{f}\left(\rho_{0}\right), \mathrm{l}_{0}, \mathrm{~m}_{1}\right)\right)$
$\left.\Rightarrow \quad \mathrm{f}\left(\rho_{0}\right)=\alpha^{\mathrm{m}} I_{\tau, \tau^{*}}\left(\mathrm{f}\left(\rho_{0}\right), \mathrm{l}_{0}, \mathrm{~m}_{1}\right)\right)$
we have, $\mathrm{f}\left(\rho_{0}\right)$ is an $\left(l_{0}, \mathrm{~m}_{1}\right)$-f α^{m}-open in Y . $\mathrm{f}(\mathrm{x}) \in f\left(\rho_{0}\right) \leq f(\beta)$ and so, (3) is holds by taking $\delta=f\left(\rho_{0}\right)$.
(3) \Rightarrow (1) Assume (3) is hold and let $\tau_{\mathrm{X} 1}(\beta) \geq \mathrm{l}_{0}$ and $\tau_{\mathrm{X} 1}{ }^{*}(\beta) \leq \mathrm{m}_{1}, x \in \beta$ and
$\mathrm{f}(\mathrm{x})=\mathrm{y}$. Then, $\mathrm{y} \in f(\beta)$ and by hypothesis there exist a fuzzy α^{m}-nbhd δ_{y} of y in Y such that $\delta_{y} \leq f(\beta)$. Since δ_{y} is fuzzy α^{m}-nbhd of y , so there exist γ_{y} is an $\left(\mathrm{l}_{0}, \mathrm{~m}_{1}\right)-\mathrm{f} \alpha^{\mathrm{m}}$-open set in Y such that
$\mathrm{y} \in \gamma_{y} \leq \delta_{y}$ then, $\quad f(\beta)=\left\{\gamma_{y}: y \in f(\beta)\right\} \quad$ is \quad an $\left(l_{0}, \mathrm{~m}_{1}\right)-\mathrm{f} \alpha^{\mathrm{m}}$-open set in Y , this implies that f is df α^{m}-open function.
Corollary 3.12 A function f: $\left(\mathrm{X}, \tau_{\mathrm{X} 1}, \tau_{\mathrm{X} 1}{ }^{*}\right) \rightarrow$ ($\mathrm{Y}, \tau_{\mathrm{Y} 2}, \tau_{\mathrm{Y} 2}{ }^{*}$) form a dfts ($\mathrm{X}, \tau_{\mathrm{X} 1}, \tau_{\mathrm{X} 1}{ }^{*}$) into the dfts $\left(\mathrm{Y}, \tau_{\mathrm{Y} 2}, \tau_{\mathrm{Y} 2}{ }^{*}\right)$. Is a df α^{m}-open function iff $f^{-1}\left(\alpha^{\mathrm{m}} C_{\tau, \tau^{*}}\left(\beta, \mathrm{l}_{0}, \mathrm{~m}_{1}\right)\right) \leq C_{\tau, \tau^{*}}\left(f^{-1}(\beta), \mathrm{l}_{0}, \mathrm{~m}_{1}\right)$, for each $\beta \in I^{Y}$.
Proof. Let f be $\mathrm{df} \alpha^{\mathrm{m}}$-open function then, for any $\beta \leq Y$ whenever, $\mathrm{l}_{0} \in \mathrm{I}_{10}$ and $\mathrm{m}_{1} \in \mathrm{I}_{\mathrm{m} 1}, f^{-1}(\beta) \leq$ $C_{\tau, \tau^{*}}\left(f^{-1}(\beta), \mathrm{l}_{0}, \mathrm{~m}_{1}\right)$, there exist $\gamma \in I^{Y}$ is $\left(\mathrm{l}_{0}, \mathrm{~m}_{1}\right)$ $\mathrm{f} \alpha^{\mathrm{m}}$-closed \quad set such that $\beta \leq \gamma$ and $f^{-1}(\gamma) \leq$ $C_{\tau, \tau^{*}}\left(f^{-1}(\beta), \mathrm{l}_{0}, \mathrm{~m}_{1}\right)$.

References

[1] Zadeh, L. A.(1965)," Fuzzy Sets", Information and Contro, 8 (3): 338-353.
[2] Atanassov, K. "Intuitionistic Fuzzy Sets", Physica - Verlag, Heidelberg / New York, 1999.
[3] Atanassov, K. and Stoeva, S., (1983), "Intuitionistic fuzzy sets, in; Polish Symp.on Interval and Fuzzy Mathematics, (Poznan):.23-26.
[4] Coker, D., (1997), "An introduction to intuitionistic fuzzy topological spaces", fuzzy sets Syst ., 88: 81-89.
[5] Samanta, S. K. and Mondol T.K. (2002), "On intuitionistic gradation of openness", Fuzzy Sets and Systems, 131:323-336,
[6] Gutiérrez Garcia, J. and Rodabaugh, S. E. (2005),
"Ordertheoretic, topological, categorical redundancies of interval-valued sets, grey sets, vague sets. intervalvalued; intuitionistic sets, intuitionistic fuzzy sets and topologies", Fuzzy Sets and systems, 156 (3): 445-484.

Therefore, $\quad f^{-1}\left(\alpha^{\mathrm{m}} C_{\tau, \tau^{*}}\left(\beta, \mathrm{l}_{0}, \mathrm{~m}_{1}\right)\right) \leq f^{-1}(\gamma) \leq$ $C_{\tau, \tau^{*}}\left(f^{-1}(\beta), \mathrm{l}_{0}, \mathrm{~m}_{1}\right)$, since γ is $\left(\mathrm{l}_{0}, \mathrm{~m}_{1}\right)$-f α^{m}-closed set in Y.
Conversely; Suppose μ_{Y} is any subset of Y and 1- ρ_{0} is any closed set containing $f^{-1}\left(\mu_{Y}\right)$. Put $\gamma=$ $\alpha^{\mathrm{m}} C_{\tau, \tau^{*}}\left(\mu_{Y}, \mathrm{l}_{0}, \mathrm{~m}_{1}\right)$ then, γ is an $\left(\mathrm{l}_{0}, \mathrm{~m}_{1}\right)$-f α^{m}-closed set and $\mu_{Y} \leq \gamma$ so, by hypothesis

$$
\begin{aligned}
f^{-1}(\gamma)=f^{-1} & \left(\alpha^{\mathrm{m}} C_{\tau, \tau^{*}}\left(\mu_{Y}, \mathrm{l}_{0}, \mathrm{~m}_{1}\right)\right) \\
& \leq C_{\tau, \tau^{*}}\left(f^{-1}\left(\mu_{Y}\right), \mathrm{l}_{0}, \mathrm{~m}_{1}\right) \\
& \leq 1-\rho_{0}
\end{aligned}
$$

Then, f is $\mathrm{df} \alpha^{\mathrm{m}}$-open function.
[7] Kalamani, A D. , Sakthivel, K. and Gowri, C.S. (2012), "Generalized alpha closed sets in intuitionistic fuzzy topological spaces", Applied Mathematical Sciences, 6(94): 4691-4700.
[8] Fatimah M.M.,SanaaI.,and Safa H.O. ,(2017), "(p,q)-Fuzzy Alpha ${ }^{\text {m}}$-closed sets in double fuzzy topological spaces".(In press).
[9] A.M. Zahran, M.A. Abd. Allah. A. Ghareeb, (2011) "Several types of double fuzzy irresolute function", Int. J. comput cognit, 8(2): 19-23.
[10] Mohammed, F.M., Noorani, M. S. M. and Ghareeb, A. (2015), "Slightly double fuzzy continuous function", Journal of the Egyptian Math.Soc.23: 173-179.
[11] Abbas, S.E. (2012), "Several types of double fuzzy semiclosed set", J. Fuzzy Math. soc. 20(1): 89-102.
[12] Abbas, E.S and Aygun, H. (2006), Intuitionistic fuzzy semi regularization spaces", Information science. 176 (8): 745-757.

بعض انواع الاوال المفتوحة بالنسبة للمجموعة (l ${ }_{0}$, m1)-fuzzy alpha)
 قسم الرياضيات ، كلية التربية للعلوم الصرفة ، فحمد ، صفا حجعة تكوب عبيت ، تكريت ، العرق

Abstract

الملخص في هذ البحث تطرقنا الى دراسة العديد من الدوال المستمرة من نوع -alpham, والدوال المحيرة α مع الدوال المفتوحة و المغقة. alpham والمغلقة من نوع alpham ${ }^{m}$ (lo, m1)-fuzzy alpha ${ }^{m}$ ايضا توصلنا الى بعض العلاقات بين هذه الانواع الجديدة من الدوال ومن ثم قمنا بأجراء بعض المقارنات بين الدوال المختلفة في نسس الفضاء.

