TJPS

TIKRIT JOURNAL OF PURE SCIENCE

Journal Homepage: http://main.tu-jo.com/ojs/index.php/TJPS/index

Some New Types of open Functions Via (l₀, m₁)-Fuzzy alpha^m- Closed Sets

Fatimah M. Mohammed , Safa H. Obaed Department of Mathematics , College of Education for Pure Sciences , Tikrit University, Tikrit , Iraq

Abstract

ARTICLE INFO.

Article history:

-Received: 19 / 9 / 2017 -Accepted: 16 / 1 / 2018

-Available online: / / 2018

Keywords: double fuzzy topology; $alpha^{m}$ -open function; $alpha^{m}$ closed function; α -irresolute; $alpha^{m}$ -neighborhood

Corresponding Author:

Name: Safa H. Obaed

E-mail: nafea y2011@yahoo.com

Tel:

1. Introduction

After the conference paper of Zadeh [1], the search of intuitionistic fuzzy sets started by Atanassove [2], [3] where he added another membership function to Zade's function and called it non-membership function, but the definition of the topology in Chang's sense gave by Coker [4] Later that, Samanta and Mondal [5] introduced the notion of intuitionistic gradation of openness of fuzzy sets. The expression "intuitionistic" evaporate used in literature until 2005, when Gutierrez Garcia and Rodabaugh [6] concluded that the most suited work under the name "double".

In this paper we discuss $alpha^m$ -continuous function and α -irresolute with $alpha^m$ -open function and $alpha^m$ -closed function. Also, discuss some characterization of the new concepts.

2. Preliminaries

Throughout this paper, $(X, \tau_{X1}, \tau_{X1}^*)$ and $(Y, \tau_{Y2}, \tau_{Y2}^*)$ represent to double fuzzy topological spaces. Suppose X be any non-empty set and $I_{l_0} = (0,1], I_{m1} = [0,1]$ which are subset of closed interval I = [0,1]. For any fuzzy set λ in $(X, \tau_{X1}, \tau_{X1}^*)$. 1- λ is denote the complement of λ in X.

Definition 2.1 [6]. Let X be a non-empty set and a double fuzzy topology (τ_X, τ_X^*) is a

In this paper, we derive more on $alpha^m$ -continuous functions and α irresolute functions with $alpha^m$ -open functions and $alpha^m$ -closed
functions in double fuzzy topological spaces via (l_0, m_1) -fuzzy alpha^mclosed sets. Also, we reached some relationships between these new
types of functions and compare them with their opposite with illustrative
examples in the same space.

pair of functions $\tau_X, \tau_X^*: I^x \to I$, which satisfies the following properties:

(01) $\tau_{X}(\lambda_{1}) \leq 1 - \tau_{X}^{*}(\lambda_{1})$ for each $\lambda_{1} \in I^{x}$.

(02) $\tau_{X}(\lambda_{1} \wedge \lambda_{2}) \geq \tau_{X}(\lambda_{1}) \wedge \tau_{X}(\lambda_{2})$ and $\tau_{X}^{*}(\lambda_{1} \wedge \lambda_{2}) \leq \tau_{X}^{*}(\lambda_{1}) \vee \tau_{X}^{*}(\lambda_{2})$ for each $\lambda_{1}, \lambda_{2} \in I^{X}$.

(03) $\tau_{X}(v_{i\in r}\lambda_{i}) \ge \Lambda_{i\in r} \tau_{X}(\lambda_{i})$ and $\tau_{X}^{*}(v_{i\in r}\lambda_{i}) \le v_{i\in r}\tau_{X}^{*}(\lambda_{i})$ for each, $\lambda_{i} \in I^{x}$, $i \in r$.

The triplex (X, τ_X, τ_X^*) is called a double fuzzy topological spaces (dfts, for short).

Definition 2.2 [6]. If (X, τ_X, τ_X^*) be a dfts. Then double fuzzy closure operator and double fuzzy interior operator of $\lambda_1 \in I^X$ are defined by:

$$\begin{split} & C_{\tau,\tau^*}(\lambda_1, \ l_0 \ , m_1) \ = \wedge \ \{\beta \in I^x, \lambda_1 \leq \beta, \ \tau(1-\beta) \geq \\ & l_0, \ \tau^* \ (1-\beta) \leq m_1 \}, \end{split}$$

$$\begin{split} I_{\tau,\tau^*}(\lambda_1, \ l_0, m_1) = \quad \forall \ \{\beta \in I^x, \ \beta \leq \lambda_1, \tau(\beta) \geq l_0, \tau^*(\beta) \leq m_1\}. \end{split}$$

Where $l_0 \in I_{10}$ and $m_1 \in I_{m1}$ with $l_0 + m_1 \le 1$.

Definition 2.3[11] Let (X, τ_X, τ_X^*) be a dfts. A fuzzy point is defined by

$$x_t(y) = \begin{cases} t, & \text{if } y = x \\ , & \text{for } x \in X \text{ and } t \in I_0 \\ 0, & \text{if } y \neq x \end{cases}$$

Definition 2.4 [11] Let (X, τ_X, τ_X^*) be a dfts. $\lambda \in I^X, x_t \in p_t(x), l_0 \in I_{l_0}$ and $m_1 \in I_{m_1}$. A fuzzy set λ is called (l_0, m_1) -fuzzy neighborhood of x_t if $\tau(\lambda) \ge l_0, \tau^*(\lambda) \le m_1$ and $x_t q \lambda$.

Now, we introduce the following definitions :-

Definition 2.5 Let λ be a subset of a dfts (X, τ_X, τ_X^*) $l_0 \in I_{l0}$, $m_1 \in I_{m1}$ and $\lambda \in I^x$ is called:

1. An
$$(l_0, m_1)$$
-fuzzy α -open set[7] if $\lambda \leq L$

 $I_{\tau,\tau^*}(C_{\tau,\tau^*}(I_{\tau,\tau^*}(\lambda, l_0, m_1), l_0, m_1), l_0, m_1). \text{ And } an$ $(l_0, m_1) \text{-fuzzy} \qquad \alpha \text{-closed } set \qquad \text{if }$

 $C_{\tau,\tau^*}(I_{\tau,\tau^*}(\mathcal{L}_{\tau,\tau^*}(\lambda, l_0, m_1), l_0, m_1), l_0, m_1) \leq \lambda.$

2. An (l_0, m_1) -fuzzy $alpha^m$ -closed set [8] (briefly, (l_0, m_1) -f α^m -closed) if I_{τ,τ^*} (C_{τ,τ^*}

 $(\lambda, l_0, m_1), l_0, m_1) \leq \beta$, whenever $\lambda \leq \beta$ and β is (l_0, m_1) -f α -open.

3. An (l_0, m_1) -fuzzy $alpha^m$ -open set[8] (briefly, (l_0, m_1) -f α^m -open) iff 1- λ is (l_0, m_1) -

fuzzy α^{m} - closed.

Definition 2.6 [8] If (X, τ, τ^*) be a dfts. So, for each $\lambda, \mu \in I^x, l_0 \in I_{l_0}$ and $m_1 \in I_{m_1}$.

We have the double fuzzy α^m -Closure and double fuzzy α^m -Interior of λ is defined as:

 $\begin{aligned} \alpha^m \ C_{\tau,\tau^*}(\lambda, \mathbf{l}_0, \mathbf{m}_1) &= \Lambda \{ \ \beta \in \mathbf{I}^{\mathbf{X}} \colon \lambda < \beta \ , \ \beta \text{ is } (\mathbf{l}_0 \ , \mathbf{m}_1) \text{-} \\ f \alpha^m \text{-closed set} \}. \end{aligned}$

 $\alpha^{m} I_{\tau,\tau^{*}}(\lambda, l_{0}, m_{1}) = \bigvee \{\beta \in I^{X} : \beta < \lambda, \beta \text{ is } (l_{0}, m_{1}) \text{-} f\alpha^{m} \text{-open set} \}.$

Definition 2.7 Let $(X, \tau_{X1}, \tau_{X1}^*)$ and $(Y, \tau_{Y2}, \tau_{Y2}^*)$ be two dfts's. A function f: $(X, \tau_{X1}, \tau_{X1}^*) \rightarrow (Y, \tau_{Y2}, \tau_{Y2}^*)$ is called:

1. Double fuzzy irresolute [9] (briefly, df-irr) if $f^{-1}(\beta)$ is (l_0, m_1) -fs-open set for each $\beta \in I^Y$, $l_0 \in I_{l_0}$ and $m_1 \in I_{m_1}$.

2. Double fuzzy continuous [10] if $(f^{-1}(\gamma)) \ge \tau_{Y_2}(\gamma)$ and $\tau_{X_1}^*(f^{-1}(\gamma)) \le \tau_{Y_2}^*(\gamma)$ for each $\gamma \in I^Y$.

3. Double fuzzy open function[2] (briefly, df-open) if $\tau_{Y2}(f(\lambda)) \ge \tau_{X1}(\lambda)$ and $\tau_{Y2}^*(f(\lambda)) \le \tau_{X1}^*(\lambda)$ for each $\lambda \in I^X$, $I_0 \in I_{10}$ and $m_1 \in I_{m1}$.

4. Double fuzzy closed[10] (briefly, df-closed) if $\tau_{Y2}\left(f(1-\lambda)\right) \geq \tau_{X1}\left(1-\lambda\right) \ \text{and} \ \tau_{Y2}^*\left(f(1-\lambda)\right) \leq \\ \tau_{X1}^*(1-\lambda) \ \text{for each} \ l_0 \in I_{l0} \ \text{and} \ m_1 \in I_{m1} \ .$

3. Double fuzzy α^{m} -open functions

In this part of the research, we generalized the definitions (2.5) but in the function, and used to find new results in dfts.

Definition 3.1 Let $(X, \tau_{X1}, \tau_{X1}^*)$ and $(Y, \tau_{Y2}, \tau_{Y2}^*)$ be two dfts's. $\lambda \in I^X$, $\beta \in I^Y$, $l_0 \in I_{l_0}$ and $m_1 \in I_{m_1}$. A function f: $(X, \tau_{X1}, \tau_{X1}^*) \rightarrow (Y, \tau_{Y2}, \tau_{Y2}^*)$ is called:

1. Double fuzzy *alpha^m*-open function (briefly, $df\alpha^{m}$ -open) if for each (l_0, m_1) -f α^{m} -open set λ , $f(\lambda)$ is (l_0, m_1) -f α^{m} open set.

2. Double fuzzy *alpha^m*-closed function (briefly, $df\alpha^{m}$ -closed) if for each (l_0, m_1) -f α^{m} -closed set λ , $f(\lambda)$ is (l_0, m_1) -f α^{m} -closed set.

3. Double fuzzy α -irresolute (briefly, df α -irr) if $f^{-1}(\gamma)$ is (l_0, m_1) -fuzzy α - closed in X for each (l_0, m_1) -fuzzy α -closed set γ in Y.

4. Double fuzzy *alpha^m*-continuous (briefly, df α^{m} -c) if $f^{-1}(\beta)$ is (l_0, m_1) -f α^{m} -open such that $\tau_{Y2}(\beta) \ge l_0$ and $\tau_{Y2}^*(\beta) \le m_1$.

Now, we introduce the following theorem (3.2) expensive the relation between $df\alpha^m$ -closed function and $df\alpha^m$ -open set under condition.

ISSN: 1813 – 1662 (Print) E-ISSN: 2415 – 1726 (On Line)

Theorem 3.2 Let $(X, \tau_{X1}, \tau_{X1}^*)$ and $(Y, \tau_{Y2}, \tau_{Y2}^*)$ be two dfts's. Then a function f: $(X, \tau_{X1}, \tau_{X1}^*) \rightarrow$ $(Y, \tau_{Y2}, \tau_{Y2}^*)$ is df α^{m} -closed function iff for each $\mu_Y \leq Y$ and $f^{-1}(\mu_Y) \leq \beta$, there is an (l_0, m_1) -df α^{m} open set γ in Y such that $\mu_Y \leq \gamma$ and $f^{-1}(\gamma) \leq \beta$.

Proof. Let f be df α^{m} -closed function and suppose that $\mu_Y \leq Y, \tau_{X1}(\beta) \geq l_0$ and $\tau_{X1}^*(\beta) \leq m_1$ whenever, $l_0 \in I_{l0}$ and $m_1 \in I_{m1}$ such that $f^{-1}(\mu_Y) \leq \beta$.

Then, $\gamma = 1 - f(1 - \beta)$ is an (l_0, m_1) -f α^m -open set containing μ_Y such that $f^{-1}(\gamma) \le \beta$.

Conversely, Let $1-\beta_x$ be an (l_0, m_1) -fuzzy closed set in X then, $f^{-1}(f(1-(1-\beta_x)) \leq \beta_x, \tau_{X1}(\beta_x) \geq l_0$ and $\tau_{X1}^*(\beta_x) \leq m_1$ by hypothesis, there exist $\gamma \in I^Y$ is an (l_0, m_1) -f α^m -open set such that $f(\beta_x) \leq \gamma$.

Since, $\beta_x \leq f^{-1}(f(\beta_x))$ then, $\beta_x \leq f^{-1}(\gamma)$ So, 1- $\beta_x \leq 1 - (f^{-1}(\gamma))$ hence,

1- $\gamma \leq f(1-\beta_x) \leq f(1-f^{-1}(\gamma)) \leq 1-\gamma \Rightarrow f(1-\beta_x) = 1-\gamma.$

Since $1 - \gamma$ is (l_0, m_1) -f α^m -closed set then, $f(1-\beta_x)$ is (l_0, m_1) -f α^m -closed. Therefore, f is df α^m -closed function.

Proposition 3.3 Let $(X, \tau_{X1}, \tau_{X1}^*)$ and $(Y, \tau_{Y2}, \tau_{Y2}^*)$ be two dfts's. and f: $(X, \tau_{X1}, \tau_{X1}^*) \rightarrow (Y, \tau_{Y2}, \tau_{Y2}^*)$ is df α -irr and λ is an (l_0, m_1) -f α^m -closed in X. Then f (λ) is (l_0, m_1) -f α^m -closed in Y.

Proof. Suppose that β is an (l_0, m_1) -f α^m -open set in Y such that $f(\lambda) \leq \beta$ whenever, λ is (l_0, m_1) -f α^m -closed in X, $l_0 \in I_{l_0}$ and $m_1 \in I_{m_1}$.

Since f is df α -irr function $\lambda \leq f^{-1}(\beta)$ and $f^{-1}(\beta)$ is an (l_0, m_1) -f α^m -open set. Hence $C_{\tau,\tau^*}(\lambda, l_0, m_1) \leq f^{-1}(\beta)$ hence, λ is (l_0, m_1) -f α^m -closed. But, f $(C_{\tau,\tau^*}(\lambda, l_0, m_1))$ is an (l_0, m_1) -f α^m -closed contained in the (l_0, m_1) -f α -open set β , this implies that $C_{\tau,\tau^*}(f(C_{\tau,\tau^*}(\lambda, l_0, m_1), l_0, m_1)) \leq \beta$ and $C_{\tau,\tau^*}(f(\lambda), l_0, m_1) \leq \beta$.

 $\therefore f(\lambda)$ is an (l_0, m_1) -f α^m -closed set in Y.

Corollary 3.4 Let $(X, \tau_{X1}, \tau_{X1}^*)$, $(Y, \tau_{Y2}, \tau_{Y2}^*)$ and $(Z, \tau_{z3}, \tau_{z3}^*)$ be dfts's and the function f: $(X, \tau_{X1}, \tau_{X1}^*) \rightarrow (Y, \tau_{Y2}, \tau_{Y2}^*)$ is df α^m -closed and g: $(Y, \tau_{Y2}, \tau_{Y2}^*) \rightarrow (Z, \tau_{z3}, \tau_{z3}^*)$ is df α^m -closed and df α -irr function. Then, g o f: $(X, \tau_{X1}, \tau_{X1}^*) \rightarrow (Z, \tau_{z3}, \tau_{z3}^*)$ is df α^m -closed function.

Proof. Suppose λ is (l_0, m_1) -f closed set in X, whenever, $l_0 \in I_{10}$ and $m_1 \in I_{m1}$

by hypothesis f (λ) is an (l_0, m_1)-f α^m -closed set in Y. Since g is df α^m -closed and df α -irr by using Proposition 3.2, we get g(f(λ)) = (g of)(λ) is df α^m -closed in Z.

Then, we have g o f is $df\alpha^m$ -closed function.

Theorem 3.5 Let $(X, \tau_{X1}, \tau_{X1}^*)$, $(Y, \tau_{Y2}, \tau_{Y2}^*)$ and $(Z, \tau_{z3}, \tau_{z3}^*)$ be dfts's. f: $(X, \tau_{X1}, \tau_{X1}^*) \rightarrow (Y, \tau_{Y2}, \tau_{Y2}^*)$ and g: $(Y, \tau_{Y2}, \tau_{Y2}^*) \rightarrow (Z, \tau_{z3}, \tau_{z3}^*)$ be two functions, where f is continuous and surjective and g o f: $(X, \tau_{X1}, \tau_{X1}^*) \rightarrow (Z, \tau_{z3}, \tau_{z3}^*)$ is df α^m -closed function. Then, g is df α^m -closed function.

Proof. Suppose that $\tau_{Y2}(1-\lambda) \ge l_0$ and $\tau_{Y2}^*(1-\lambda) \le m_1$ whenever, $l_0 \in I_{l0}$ and $m_1 \in I_{m1}$. Since f is

continuous so, $\tau_{X1}(1 - f^{-1}(\lambda)) \ge l_0$ and $\tau_{X1}^*(1 - f^{-1}(\lambda)) \ge l_0$ $f^{-1}(\lambda) \leq m_1$. Since g o f is df α^{m} -closed, (g o f $(f^{-1}(\lambda))$ is (l_0, m_1) -f α^m -closed in Z. That is, $g(\lambda)$ is (l_0, m_1) -f α^m -closed in Z, but f is surjective. So, we get g is a $df\alpha^m$ -closed function.

Proposition 3.6 Let $(X, \tau_{X1}, \tau_{X1}^*)$, $(Y, \tau_{Y2}, \tau_{Y2}^*)$ and $(Z, \tau_{z3}, \tau_{z3}^{*})$ be dfts's. And f: $(X, \tau_{X1}, \tau_{X1}^{*}) \rightarrow$ $(Y, \tau_{Y2}, \tau_{Y2}^{*})$ is df-closed function and $df\alpha^m$ -closed g: $(Y, \tau_{Y2}, \tau_{Y2}^*) \rightarrow (Z,$ au_{z3} , au_{z3}^{*}) function. Then, g o f: $(X, \tau_{X1}, \tau_{X1}^*) \rightarrow (Z, \tau_{Z3}, \tau_{Z3}^*)$ is $df\alpha^m$ -closed function.

Proof. Suppose $\tau_{X1}(1-\lambda) \ge l_0$ and $\tau_{X1}^*(1-\lambda) \le m_1$, whenever $l_0 \in I_{l_0}$ and $m_1 \in I_{m_1}$. Then, $\tau_{Y_1}(1 - f^{-1}(\lambda)) \ge l_0$ and and $\tau_{Y_1}^*(1 - f^{-1}(\lambda))$

 $\leq m_1$ by hypotheses, $g(f(\lambda))$ is $df\alpha^m$ -closed in Z, so $(g \circ f)(\lambda)$ is df α^{m} -closed in Z. That is, $g \circ f$ is df α^{m} - closed function.

Remark 3.7 Every df α^m -open function is df α^m continuous function, but the convers is not true and we can show that by the following example.

Example 3.8 Let $X = \{a_1, b_1, c_1\}$ and Y ={x, y, z}. define fuzzy sets λ_1 , λ_2 , β_1 as follows:

 $\lambda_1(a_1) = 0.4, \quad \lambda_1(b_1) = 0.3, \ \lambda_1(c_1) = 0.2,$

 $\lambda_2(a_1) = \beta_1(x) = 0.6, (b_1) = \beta_1(y) =$ 0.7. $\lambda_2(c_1) = \beta_1(z) = 0.8.$

And the dfts's ($X, \tau_{X1}, \tau_{X1}^*$) and $(Y, \tau_{Y2}, \tau_{Y2}^*)$ are define as follows:

$$\tau_{1}(\lambda) = \begin{cases} 1, & \text{if } \lambda = 0 \text{ or } 1 \\ \frac{1}{2}, & \text{if } \lambda = \lambda_{1} \\ 0, & \text{otherwise} \end{cases}$$

$$\tau_{1}^{*}(\lambda) = \begin{cases} 0, & \text{if } \lambda = 0 \text{ or } 1 \\ \frac{1}{2}, & \text{if } \lambda = \lambda_{1} \\ 1, & \text{otherwise} \end{cases}$$

$$\tau_{2}(\beta) = \begin{cases} 1, & \text{if } \beta = 0 \text{ or } 1 \\ \frac{1}{2}, & \text{if } \beta = \beta_{1} \\ 0, & \text{otherwise} \end{cases}$$

$$\tau_{2}^{*}(\beta) = \begin{cases} 0, & \text{if } \beta = 0 \text{ or } 1 \\ \frac{1}{2}, & \text{if } \beta = \beta_{1} \\ 1, & \text{otherwise} \end{cases}$$

The function f: $(X, \tau_{X_1}, \tau_{X_1}^*) \rightarrow (Y, \tau_{Y_2}, \tau_{Y_2}^*)$ define as:

$$\begin{split} f(a_1) &= x, \qquad f(b_1) = y, \qquad f(c_1) = z. \\ \text{So, since} \quad \beta_1 \text{ is an } (\frac{1}{2}, \quad \frac{1}{2}) \text{-} f \text{ open set and } f^{-1}(\beta_1) \end{split}$$
 $= \lambda_2 \quad \text{is an } (\frac{1}{2}, \frac{1}{2}) - f\alpha^m - c \text{-open set then,} \\ C_{\tau,\tau^*}(I_{\tau,\tau^*}(G_{\tau,\tau^*}(\beta, l_0, m_1), l_0, m_1), l_0, m_1) \leq \beta$ $\Rightarrow C_{\tau,\tau^*}(I_{\tau,\tau^*}\left(\left(\lambda_1^{c},\frac{1}{2},\frac{1}{2}\right),\frac{1}{2},\frac{1}{2}\right)$

 $C_{\tau,\tau^*}(\beta, \frac{1}{2}, \frac{1}{2}) = \lambda_1^c \leq \beta \Rightarrow \beta \text{ is an } \left(\frac{1}{2}, \frac{1}{2}\right) - f \alpha$ closed and $\lambda \leq \lambda^c \Rightarrow \beta$ is an $(\frac{1}{2}, \frac{1}{2})$ -f α^m -open. Since $f^{-1}(\beta_1) = \lambda_2$ and $\lambda_2 \notin (\tau_{X1}, \tau_{X1}^*)$ $\therefore f^{-1}(\beta_1) = \lambda_2 \text{ is an } (\frac{1}{2}, \frac{1}{2}) - f \alpha^m \text{-open}$

So, β is an $(\frac{1}{2}, \frac{1}{2})$ -f α^{m} -continuous But, f(β) is not α^{m} -open function.

ISSN: 1813 – 1662 (Print) E-ISSN: 2415 – 1726 (On Line)

introduce new concept $alpha^m$ we Now, neighborhood and theorem illustrates the important properties of $df\alpha^m$ -open function .

Definition 3.9 Let (X, τ_X, τ_X^*) be a dfts and $\lambda \in I^X$. A subset δ of X is called fuzzy $alpha^m$ neighborhood of λ (f α^{m} -nbhd, for short) if there exist an (l_0 , m_1)-f α^m -open set ρ_0 such that $\lambda \in \rho_0 \leq \delta$

Theorem 3.10 Let (X, τ_X, τ_X^*) be adfts's. λ is an (l_0, m_1) -f α^m -closed in X .Then *x* ∈ $\alpha^m C_{\tau,\tau^*}(\lambda, l_0, m_1)$ iff any fuzzy α^m -nbhd δ of x in X, $\delta \wedge \lambda \neq 0$.

Proof. Suppose that the fuzzy α^{m} -nbhd δ of $x \in I^{X}$ such that $\delta \wedge \lambda = 0$. So, there exist $\rho_0 \in I^X$ is an (l_0, m_1) -fuzzy α^m -open set such that $x \in \rho_0 \leq \delta$, whenever, $l_0 \in I_{10}$ and $m_1 \in I_{m1}$. So, we have $\rho_0 \wedge \lambda = 0$ and $x \in 1 - \rho_0$, then $\alpha^{m} C_{\tau,\tau^{*}}(\lambda, l_{0}, m_{1}) \in 1 - \rho_{0}.$

Therefore, $x \notin \alpha^m C_{\tau,\tau^*}(\lambda, l_0, m_1)$ which is contradiction to hypothesis $x \in \alpha^m C_{\tau,\tau^*}(\lambda, l_0, m_1)$ then, $\delta \wedge \lambda \neq 0$.

Conversely, Let $x \notin \alpha^m C_{\tau,\tau^*}(\lambda, l_0, m_1)$ then, there exist $\rho_0 \in I^X$ be an (l_0, m_1) -f α^m -closed set such that $\lambda \leq \rho_0$ and $x \notin \rho_0$. Then, $x \in 1-\rho_0$ and $1-\rho_0$ is (l_0, m_1) -f α^m -open set in X and hence 1- ρ_0 is fuzzy α^{m} -nbhd of $x \in I^{X}$. But $\lambda \wedge (1 - \rho_{0}) = 0$. which is a contradiction. Then, $x \in \alpha^m C_{\tau,\tau^*}(\lambda, l_0, m_1)$.

Theorem 3.11 Let $(X, \tau_{X1}, \tau_{X1}^*)$ and $(Y, \tau_{Y2}, \tau_{Y2}^*)$ be two dfts's and let f: $(X, \tau_{X1}, \tau_{X1}^*) \rightarrow (Y, \tau_{Y2}, \tau_{Y2}^*)$ be function. Then, the following statements are equivalent:

(1) f is df α^{m} -open function

X, f $(I_{\tau,\tau^*}(\lambda, l_0, m_1)) \leq$ subset of (2) λ $\alpha^{m} I_{\tau \tau^{*}}(f(\lambda), l_{0}, m_{1})).$

(3) $\forall x \in I^X$ and for each neighborhood β of x in X there exist, fuzzy α^m -nbhd δ of f(x) in Y such that $\delta \leq f(\beta).$

Proof. (1) \Rightarrow (2) Suppose f is df α^{m} -open function, whenever $l_0 \in I_{10}$ and $m_1 \in I_{m1}$ then, $I_{\tau,\tau^*}(\lambda, l_0, m_1)$ is open in X and so, f $(I_{\tau,\tau^*}(\lambda, l_0, m_1))$ is (l_0, m_1) -f α^m -open in Y. We have, $f(I_{\tau,\tau^*}(\lambda, l_0, m_1)) \le f(\lambda)$

 $f(I_{\tau \tau^*}(\lambda, l_0, m_1)) \le$ Then we get, $\alpha^{m} I_{\tau.\tau^{*}}(f(\lambda), l_{0}, m_{1}))$

(2) \Rightarrow (3) Assume (2) holds and let $x \in I^X$ and β be an neighborhood of x in X. Then, there exist an open set ρ_0 such that $x \in \rho_0 \leq \beta$.

By hypothesis, $f(\rho_0) = f(I_{\tau,\tau^*}(\rho_0, l_0, m_1)) \le$ $\alpha^{m} I_{\tau,\tau^{*}}(f(\rho_{0}), l_{0}, m_{1}))$

 $\Rightarrow f(\rho_0) = \alpha^m I_{\tau,\tau^*}(f(\rho_0), l_0, m_1))$

we have, $f(\rho_0)$ is an (l_0, m_1) -f α^m -open in Y. $f(x) \in f(\rho_0) \leq f(\beta)$ and so, (3) is holds by taking $\delta = f(\rho_0).$

(3) \Rightarrow (1) Assume (3) is hold and let $\tau_{X_1}(\beta) \ge l_0$ and $\tau_{X1}^*(\beta) \leq m_1, x \in \beta$ and

f(x) = y. Then, $y \in f(\beta)$ and by hypothesis there exist a fuzzy α^{m} -nbhd δ_{y} of y in Y such that $\delta_y \leq f(\beta)$. Since δ_y is fuzzy α^m -nbhd of y, so there exist γ_y is an (l_0, m_1) - f α^m -open set in Y such that $y \in \gamma_y \leq \delta_y$ then, $f(\beta) = \{\gamma_y : y \in f(\beta)\}$ is an (l_0, m_1) -f α^m -open set in Y, this implies that f is df α^m -open function.

Corollary 3.12 A function f: $(X, \tau_{X_1}, \tau_{X_1}^*) \rightarrow (Y, \tau_{Y_2}, \tau_{Y_2}^*)$ form a dfts $(X, \tau_{X_1}, \tau_{X_1}^*)$ into the dfts $(Y, \tau_{Y_2}, \tau_{Y_2}^*)$. Is a df α^m -open function iff $f^{-1}(\alpha^m C_{\tau,\tau^*}(\beta, l_0, m_1)) \leq C_{\tau,\tau^*}(f^{-1}(\beta), l_0, m_1)$, for each $\beta \in I^{\gamma}$.

Proof. Let f be $df\alpha^{m}$ -open function then, for any $\beta \leq Y$ whenever, $l_0 \in I_{l0}$ and $m_1 \in I_{m1}$, $f^{-1}(\beta) \leq C_{\tau,\tau^*}(f^{-1}(\beta), l_0, m_1)$, there exist $\gamma \in I^{Y}$ is (l_0, m_1) -f α^{m} -closed set such that $\beta \leq \gamma$ and $f^{-1}(\gamma) \leq C_{\tau,\tau^*}(f^{-1}(\beta), l_0, m_1)$.

References

[1] Zadeh, L. A.(1965)," Fuzzy Sets", Information and Contro, 18 (3): 338-353.

[2] Atanassov, K. "Intuitionistic Fuzzy Sets", Physica - Verlag, Heidelberg / New York, 1999.

[3] Atanassov, K. and Stoeva, S., (1983), "Intuitionistic fuzzy sets, in; Polish Symp.on Interval and Fuzzy Mathematics, (Poznan):.23-26.

[4] Coker, D., (1997), "An introduction to intuitionistic fuzzy topological spaces", fuzzy sets Syst., 88: 81-89.

[5] Samanta, S. K. and Mondol T.K. (2002), "On intuitionistic gradation of openness", Fuzzy Sets and Systems, 131:323–336,

[6] Gutiérrez Garcia, J. and Rodabaugh, S. E. (2005),

"Ordertheoretic, topological, categorical redundancies of interval-valued sets, grey sets, vague sets. intervalvalued; intuitionistic sets, intuitionistic fuzzy sets and topologies", Fuzzy Sets and systems, 156 (3): 445-484.

ISSN: 1813 – 1662 (Print) E-ISSN: 2415 – 1726 (On Line)

Therefore, $f^{-1}(\alpha^m C_{\tau,\tau^*}(\beta, l_0, m_1)) \le f^{-1}(\gamma) \le C_{\tau,\tau^*}(f^{-1}(\beta), l_0, m_1),$

since γ is (l_0, m_1) -f α^m -closed set in Y.

Conversely; Suppose μ_Y is any subset of Y and $1-\rho_0$ is any closed set containing $f^{-1}(\mu_Y)$. Put $\gamma = \alpha^m C_{\tau,\tau^*}(\mu_Y, l_0, m_1)$ then, γ is an (l_0, m_1) -f α^m -closed set and $\mu_Y \leq \gamma$ so, by hypothesis

$$f^{-1}(\gamma) = f^{-1} \left(\alpha^{m} C_{\tau,\tau^{*}}(\mu_{Y}, l_{0}, m_{1}) \right)$$

$$\leq C_{\tau,\tau^{*}}(f^{-1}(\mu_{Y}), l_{0}, m_{1})$$

$$< 1 - o_{0}$$

Then, f is df α^{m} -open function.

[7] Kalamani, A D., Sakthivel, K. and Gowri, C.S. (2012), "Generalized alpha closed sets in intuitionistic fuzzy topological spaces", Applied Mathematical Sciences, 6(94): 4691-4700.

[8] Fatimah M.M.,SanaaI.,and Safa H.O. ,(2017), "(p,q)-Fuzzy Alpha^m-closed sets in double fuzzy topological spaces".(In press).

[9] A.M. Zahran, M.A. Abd. Allah. A. Ghareeb, (2011) "Several types of double fuzzy irresolute function", Int. J. comput cognit, 8(2): 19-23.

[10] Mohammed, F.M., Noorani, M. S. M. and Ghareeb, A. (2015), "Slightly double fuzzy continuous function", Journal of the Egyptian Math.Soc.23: 173-179.

[11] Abbas, S.E. (2012), "Several types of double fuzzy semiclosed set", .J. Fuzzy Math. soc. 20(1): 89-102.

[12] Abbas, E.S and Aygun, H. (2006), " Intuitionistic fuzzy semi regularization spaces", Information science. 176 (8): 745-757.

بعض انواع الدوال المفتوحة بالنسبة للمجموعة (l₀, m₁)-fuzzy alpha^m المغلقة

فاطمة محمود محمد ، صفا حجوب عبيد

قسم الرياضيات ، كلية التربية للعلوم الصرفة ، جامعة تكريت ، تكريت ، العراق

الملخص

في هذ البحث تطرقنا الى دراسة العديد من الدوال المستمرة من نوع -alpha^m, والدوال المحيرة α مع الدوال المفتوحة و المغلقة. alpha^m في هذ البحث تطرقنا الى دراسة العديد من الدوال المعنقرة و المغلقة. والمغلقة من نوع alpha^m في الفضاءات التبولوجية المزدوجة بالنسبة للمجموعات alpha^m (l₀, m₁)-fuzzy alpha^m في الفضاءات التبولوجية المزدوجة بالنسبة للمجموعات alpha^m, والدوال المحتوة و المغلقة من نوع alpha^m في الفضاءات التبولوجية المزدوجة بالنسبة للمجموعات alpha^m, والدوال المحتوة و المعلقة من نوع alpha^m في الفضاءات التبولوجية المزدوجة بالنسبة للمجموعات alpha^m, والدوال المحتوة والمعلقة من نوع alpha^m في الفضاءات التبولوجية المزدوجة بالنسبة للمجموعات alpha^m, والدوال المحتوة والمعلقة من نوع alpha^m في الفضاء التبولوجية المزدوجة بالنسبة المجموعات alpha^m, والمعلقة من نوع alpha^m في الفضاء التبولوجية المزدوجة بالنسبة المجموعات alpha^m معامة من نوع alpha^m في الفضاء التبولوجية المزدوجة بالنسبة المجموعات alpha^m, والمعلقة في نفس الفضاء .