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1 Introduction

BCK-algebras and BCl-algebras were introduced by
Imai. and Iseki as two classes of abstract algebras in
1966 [1, 2]. It is known that the class of BCK-
algebras is a proper subclass of BCl-algebras. In
1983, BCH-algebras as a wide class of abstract
algebras were introduced by Hu and Li [3,4]. In their
study, it is given that the class of BCl-algebras are
proper subclasses of BCH-algebras. In 1999, the
notion of d-algebras that is another useful
generalization of BCK-algebras was introduced by
Neggers and Kim [5]. In 2001, a new notion called a
Q-algebras was introduced by J. Neggers, S. S. Ahn
and H. S. Kim [6]. At the same time pseudo-BCK-
algebras as an extension of BCK-algebras was
introduced by G. Geordscu, and A. lorgulescu [7] In
2008, pseudo-BCK-algebras as a  natural
generalization of BCl-algebras and pseudo- BCK-
algebras were introduced by W. A. Dudek and Y. B.
Jun [8]. These algebras have also connections with
other algebras of logics such as pseudo-MV-algebras
and pseudo-BL-algebras defined by G. Georgesuc
and A. lorgulescu [9] and [10], respectively. As a
generalization of many algebras, these pseudo
algebras have been studied by many researchers [11,
12, 13, 14, 15]. Bajalan and Ozbal introduced Some
properties and homomorphisms of pseudo-Q algebras
[16]. In this paper, we introduced the notion new
types of algebras pseudo BG- algebra, pseudo sub BG
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2 Preliminaries

2.1 Definition [20]

A BG- algebra is a non-empty set X with a constant
0 and a binary operation " x'" satisfying the
following axioms:
. x*x=0

. x+*x0=x

.  (x*xy)*(0+y)=x,Foralx,y eX

2.2 Definition [1]

23 A BH — algebra, we mean an algebra
(X; x,0) of type (2,0) satisfying the following
conditions:
. x*xx=0,

1. x*x0=x,

. x*xy=0and y*x=0 imply x=yVx,y€

X.

2.4 Definition [ 2]

A pseudo BH-algebra is a non-empty set X with a
constant 0 and two binary operations " " and "o "
satisfying the following axioms:
Pl)x*xx=x0x=0;

(P2) x*0=x00=x;

(P x*xy=yox=0implyx =yforallx,y € X.
2.5 Definition [2]

Let (X;#*00) be a pseudo BH-algebra and let
@+1<X.1is called a pseudo subalgebra of X if
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xxy,xoy €Il whenever x,y€el. | is called a
pseudo ideal of X if it satisfies:

l. 0€l,

1. x*xy,xoy €land y el imply x e,V x,y €
X.
3  Pseudo - BG algebra

3.1 Definition
A pseudo- BG algebra is a structure (X ,*,0,0),
where = and ¢ are two binary operation on a non-
empty set X and satisfying the following axioms: for
allx,y € X,
Pl x*0=x00=x
P2 x*xx=x0x=0
P3 (x*xy) 0 (0xy)=(x0y)* (00y)=x
3.2 Properties
Let (X;,0,0) be a pseudo — BG algebra then the
following holds:
. fx*xy =x0y=0thenx=yforanyx,y € X

I f(y*y) 0(0*xy)=(y 0y) (0 0 y) then
00y) =(0*y)
Proof: 1
If xxy=0 and x0y=0 then (x*y) 0 (0=
y)=(x0y)*(00y)ByP3
We have that 0 0 (0 *y)=0x*(0 ¢ y)then
@*xy) ¢ (0xy) =@ 0 y) * (00 y)we
obtionx =y
Proof: 11
If (yxy)0(0 xy)= (y0y)=*(00y).Hence by
(P2 00(0*xy)=0%x(00y) since yxy=y?
y=0then0 0 ((y*y) *xy)=0x* (y0y) ¢ ),
which impliesthat 0 ¢ y = 0x*y
3.3 Example
Let X= {0,1} we define the (X;*,0,0) as follows:
xxy=x+y—2x.y
And x 0y =[x —y|
Forall a,b € X satisfy P1,P2 and P3
Hence (X;*,0,0) is pseudo — BG - Algebra
3.4 Example
Let X= {0,1,2} we define the (X;*,0,0) as follows:
Leta * b = |a — b|(v/2)?la-PlIb-2] and a¢ b=

(abla-b])
la—b| (3—Db) G-b
Forall a,b € X satisfy P1,P2 and P3
Hence (X;*,0,0) Is pseudo — BG algebra
3.5 Properties
Let (X; *,0 0) be a pseudo BG-algebra. Then
I. the right cancellation law holds in X, i.e., x xy =

zoy impliesx = z,

. 0« (0=*x)=00¢ (00 x)= xforallxe X,

. If 0xx=00y,thenx =y,Vx,y €X,

V. (x * (0 *x)) ox =x,Vx,y €X.
Proof:
I.  Assumethatx * y = z o y. Then
x=@x*xy)o(0x*xy)=(z0y)*x(00y) =
Z.
1.
X, We

In axiom (P.3) for definition 3.1, replacing y by
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have that (x * x) o (0 * x) = (x o x) *
(0 ¢ x)= xsince by (P.2) 0o (0 *x)=0 =
(0 o x)=nux.

HI. If 0 *x =090y, then x = (x * x) * (0 *
x) = (y xy) = (0 xy) =y by the axiom (P3)
for pseudo BG-algebra.

v. (x*(O*x))ox (x*(O*x))*

(0% (0 xx))==x by the axiom (P3) and
Proposition 3.5 - (11).

3.6 Pseudo Sub - BG algebra

Let X be pseudo BG- algebra then I is called a
pseudo sub BG-algebra of Xifl € X andx *
yorx 0y €1Iwhen ever x, yel.

3.7 Ideal Pseudo —-BG - algebras

In a pseudo — BG algebras, we have a set I and
@+ 1< Xthen I ispseudo ideal of X if it satisfies,
1. 0el

2. xx*y, x0yelandye€elimplyx € for all
x,y € X . Obviously {0} and X are pseudo ideal.

3.8 Definition

In pseudo -BG-algebras Define the relation "<" on X
by (x <y x*y=20) or(equivalent x ¢ y = 0).
3.9 Proposition

Let I be a pseudo ideal of a pseudo — BG algebra X,
ifxel andy < x,theny € I.

Proof: Assume thatx € Jand y < x.Theny *xx =0
andy ¢ x = 0. By definition (2.4) 0 € ;x*y,x ¢
y €landy elimplyxelfor allx,y eX , we
have y € I.

3.10 Proposition

If ] is a pseudo ideal of a pseudo — BG algebra X,
then

V X1,X3,X3 €EX,X1,X3 €] ,X3%Xx; < X1 =
X3 €].

Va,bc€X,a,be],cOb<a—-c€].
Proof: If ] is a pseudo ideal and let x;,x,,x3 € X .
Such that. x;,x, €] and x3 * x, < x;. Then (x5 *
x;) 0 x; =0 €. Since x; €] and we have x5 * x, €
J. Since x, € J and Jis a pseudo ideal of X, then
x3 €].
3.11 Proposition
Let A be pseudo ideal of a pseudo —BG algebra X.
If B is a pseudo ideal of A, then it is a pseudo ideal
of X.
Proof:
Since B is a pseudo ideal of A, we have 0 € B.Let
y,x*y,x 0y €B for some x € X. If € A4, then
x € B, since B is a pseudo ideal of A. If x € X — A4,
then y,x*y,x 0y € B € A and so x € A because
A is a pseudo ideal of X. Thus x € B since B is a
pseudo ideal of A.This competes the proof.
3.12 Definition
An element w of a pseudo — BG — algebra X is
called a pseudo a tom if for every x € X, x <w
implies x = w. Obviously, 0 is a pseudo atom of X.
3.13 Lemma
A non-zero element a € X is a pseudo atom of X if
{0, a}is a pseudo ideal of X.
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3.14 Definition

A non-empty subset A of a pseudo— BG —
algebra X is called a pseudo strong ideal of X if it
satisfies definition (3.6)

(PI3) (x*y)0z,y e Aimplyx x z € 4;

(PI3") (x0y)*xz,y € Aimply x,y,z € X.

Note that if Xis a pseudo-
BG — algebra satisfying x+y = x 0y for all
x,y € X, then the notation of a pseudo strong ideal
and a strong ideal consider .

3.15 Proposition

Every pseudo strong ideal is a pseudo ideal.

Proof: Putting z = 0 in by definition (3.14), we have
x*y,x0y,y € Aimplied x € A.

4 Sime Pseudo — BG algebra

4.1 Definition

Let Xis a non-empty set, "« and " ¢ " are two
binary operation satisfying the following axioms:

Pl x*xx=x0x=0

P2 x+0=x900=x

P3 (xxy) 0 (0xy)=(x0y)* (00y)

Then (X;*,0,0) is semi pseudo BG - algebra

4.2 Example

Let X= {0,1,2} we define the (X;=,0,0) as follows
* | 0|12 o |0 |12
0(0|1]2 0[0]0]2
1(1]0]1 1(1(0]1
2121210 212]10]0

Then it is easy to show that (X;*,0) and (X;¢ ,0) are
not BG-algebras and (X;*,0,0) is not a pseudo BG-

algebra because 2*x1D0O+*1)=201) =
(001) #2, but (X;%,0,0) is a semi pseudo BG-
algebra.

4.3 Lemma

Let (X;*,0,0) be a semi pseudo — BG — algebra if
y*y)e(0Oxy)=(yoy)*(0oy) then (0oy)=
0 =*y)

Proof: since (y xy) ¢ (0xy) = (yey)*(00y) by
P.lweget0o(0xy)=0=x(00y).

44 Lemma

Let (X;*,0,0) be a semipseudo — BG — algebra
then

1. (xe0)o0=xand(x+x0)*x0=xVx€ELX.

2. If(0*x)=(0=xy)and (00x)=(00y), then
x=yVvxy€X.

3. (xx(0*x)*x=xand (xo(0ox)ox=x
Proof: it is clearer

4.5 Definition

I is called a semi pseudo sub BG-algebra of X ifI <
Xand x*yorx ¢y €I when ever x, yel.

4.6 Definition

In a semi pseudo — BG algebras, let @ # I € X then
I is pseudo ideal of X if it satisfies,

3. 0€el

4. xxy, x0y€elandy €]l implies x €[ forall
x,y € X . Obviously {0} and X are semi pseudo
ideal.
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The intersection two semi pseudo - BG — subalgebra
is also semi pseudo -BG- subalgebra.

Proof: let ] c¢ X and | ¢ X are semi Pseudo — BG —
Algebra

Since 0€l/&0€] then0€lIn] and I&JcX
theng #INnjeX.

Let xxy,xey€elInj then x*y,xoy€ I, and
xXxy,xoy€]

Since I and ] are ideal semi Pseudo — BG — Algebra
then yeland y €] impliesx €l and €] , then
yelnjandimpliesxeln].

4.8 Definition

In semi pseudo -BG-algebras Define the relation "<"
on X by x <y e x*xy=0) or (equivalent
x0y=0).

4.9 Theorem

Let (X,x,0,0) be a semi pseudo -BG-algebras. If
x*x(y*xz)=x0(yoz), Vx,y,z €X then 0*x =
x=00x, Vx €X.

Proof: Letx € X,where x =x*x0=x#*(x*x) =
(xxx)*xx=0=xx

and where 0o x = x.

4.10 Theorem

Every semi pseudo -BG-algebras (X,,0,0) satisfy
the associative law is a group under each operation
"x"and "o ",

Proof: Putting x =y =2z in the associative law
(x*xy)xz=xo(yoz)and using O*x =xx*x =
x. This means 0 € X,Vx € X has a sets inverse the
element of X itself by definition 3.1 P2. There for
(X,*) and (X,0) are a group.

4.11 Definition

An element a of a semi pseudo -BG-algebras. x is
said to be minimal if vx e Xthe following
implication x <a - x=a

4.12 Property

Let x be a semi pseudo -BG-algebras and let a € X.
If a is minimal then

xo(x*xa)=a and x*(xoa)=a
Proof: let a isminimal [by x <0 - x =0]
xo(x*xa)<a Vx € X. Since ais minimal
xo(x*xa)=a

5 Homomorphism

5.1 Definition

Let Xand ybe a semi pseudo BG-Algebra. A
mapping f: X — Y is called a homomorphism of semi
pseudo BG-Algebra if

fOxy) =f) = f(x) and f(xoy) = f(x)o
f), vx,yeX

Note that: if f:X — Y is homomorphism of semi
pseudo, then f(0x) = 0y, where 0x and Oy are zero
elements of x and y respectively

5.2 Example

Let (X,*,0,0) be a semi pseudo BG-Algebra then the
function f:X — Y such that f(x) = x=*0,for any
x € X is a homomorphism of semi pseudo BG-
Algebra

then
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fG)*f) =(@x*0)*(y*0)=(x*y)*0=
fGexy). And  f)ef(y) =(xx0)o(y*0)=
(xoy)=(xoy)*0=f(xoy).
5.3 Theorem

Let f:X — Y be a homomorphism of semi pseudo
BG-Algebra

I. If Bis a semi pseudo ideal of y — f~1(B) is a
pseudo ideal of x

If £ is surjective and I is a semi pseudo ideal of

x, then f(I) is a semi pseudo ideal of y.

Proof: 1. 0, €f (B), let y e f~*(B) and let
X1, %, € X be such that

X, *y € fY(B) and x,¢y € f1(B). To show
X,,%, € f7Y(B)?

x,*y€f X (B) —3b,eBand b, €EB such
that
f(x1*y) =by and f(x;ey) =Db, also y €
f~X(B),3beB
Such that
y=f7b) = f@) =b
fO)*fQ)=fl*xy) =by

b € B= f(x,) €EB
fO)of(y) =f(x0y) =b,
b, e B= f(x,) €EB
Since B is semi pseudo ideal

~f(x,)EB & f(x,)EBiIinY = x,€
fXB) & x, €fY(B) inX

f~1(B) is a semi pseudo ideal in X.

Il. Assume that f is surjective and let | be a semi
pseudo ideal of x obriousely, 0, € f(I). For every
y € f(I). Let a,b €Y besuchthata =y € f(I) and
boy € f(I), then there exist x,,x, € such that
fx,)=axy and f(x,)=bey. Since y € f(I)
there exist xy € I,y = f(x,). Also f is surjective.
Ax,x, €X such that f(x,) =a and f(x,) =
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