

Tikrit Journal of Pure Science

ISSN: 1813 – 1662 (Print) --- E-ISSN: 2415 – 1726 (Online)

Journal Homepage: http://tjps.tu.edu.iq/index.php/j

Structures of Pseudo - BG Algebra and Sime pseudo - BG - Algebra

Shwan Adnan Bajalan, Rasti Raheem Mohammed Amin, Aram K. Bajalan

Department of Mathematics, College of Education, University of Garmian, Kurdistan Region , Iraq

https://doi.org/10.25130/tjps.v27i3.48

ARTICLE INFO.

Article history:

-Received: 28 / 3 / 2022 -Accepted: 19 / 5 / 2022

-Available online: / / 2022

Keywords: Pseudo - BG-algebra,
Pseudo Ideal, Pseudo Strong Ideal,

Sime Pseudo – BG- Algebra. **Corresponding Author:**

Name: Shwan Adnan Bajalan

E-mail:

shwan.adnan@garmian.edu.krd

Tel:

1 Introduction

BCK-algebras and BCI-algebras were introduced by Imai. and Iseki as two classes of abstract algebras in 1966 [1, 2]. It is known that the class of BCKalgebras is a proper subclass of BCI-algebras. In 1983, BCH-algebras as a wide class of abstract algebras were introduced by Hu and Li [3,4]. In their study, it is given that the class of BCI-algebras are proper subclasses of BCH-algebras. In 1999, the notion of d-algebras that is another useful generalization of BCK-algebras was introduced by Neggers and Kim [5]. In 2001, a new notion called a Q-algebras was introduced by J. Neggers, S. S. Ahn and H. S. Kim [6]. At the same time pseudo-BCKalgebras as an extension of BCK-algebras was introduced by G. Geordscu, and A. Iorgulescu [7] In pseudo-BCK-algebras as generalization of BCI-algebras and pseudo- BCKalgebras were introduced by W. A. Dudek and Y. B. Jun [8]. These algebras have also connections with other algebras of logics such as pseudo-MV-algebras and pseudo-BL-algebras defined by G. Georgesuc and A. Iorgulescu [9] and [10], respectively. As a generalization of many algebras, these pseudo algebras have been studied by many researchers [11, 12, 13, 14, 15]. Bajalan and Ozbal introduced Some properties and homomorphisms of pseudo-Q algebras [16]. In this paper, we introduced the notion new types of algebras pseudo BG- algebra, pseudo sub BG

ABSTRACT

In this paper, we introduced the notion new types of algebras pseudo BG- algebra, pseudo sub BG –algebra, Pseudo Ideal and pseudo strong Ideal of Pseudo-BG-Algebras. We state some Proposition and examples which determine the relationships between these notions and some types of ideal and we introduced the notion semi pseudo BG- algebra, pseudo sub BG –algebra, Pseudo Ideal and pseudo strong Ideal of semi pseudo-BG-Algebras. We investigated a new notion, of algebra called semi pseudo BG- algebra. We state some Proposition and examples which determine the relationships between these notions and some types of ideals defined minimal and homomorphism and kernel.

-algebra, Pseudo Ideal and pseudo strong Ideal of Pseudo-BG-Algebras.

2 Preliminaries

2.1 Definition [20]

A **BG**- algebra is a non-empty set X with a constant $\mathbf{0}$ and a binary operation "*" satisfying the following axioms:

I.
$$x * x = 0$$

II.
$$x * 0 = x$$

III.
$$(x * y) * (0 * y) = x$$
, For all $x, y \in X$

2.2 Definition [1]

2.3 A BH — algebra, we mean an algebra (X; *, 0) of type (2,0) satisfying the following conditions:

$$I. \quad x * x = 0,$$

II.
$$x * 0 = x$$
,

III.
$$x * y = 0$$
 and $y * x = 0$ imply $x = y \forall x, y \in X$.

2.4 Definition [2]

A pseudo BH-algebra is a non-empty set X with a constant 0 and two binary operations "*" and "° " satisfying the following axioms:

$$(P1) x * x = x \diamond x = 0;$$

(P2)
$$x * 0 = x \diamond 0 = x$$
;

(P3)
$$x * y = y \diamond x = 0$$
 imply $x = y$ for all $x, y \in X$.

2.5 Definition [2]

Let (X; *, *, 0) be a pseudo *BH*-algebra and let $\emptyset \neq I \subseteq X$. *I* is called a *pseudo subalgebra* of *X* if

 $x * y, x \diamond y \in I$ whenever $x, y \in I$. I is called a *pseudo ideal* of *X* if it satisfies:

 $0 \in I$, I.

II. $x * y, x \diamond y \in I$ and $y \in I$ imply $x \in I, \forall x, y \in I$ Χ.

3 Pseudo – BG algebra

3.1 Definition

A pseudo- **BG** algebra is a structure $(X, *, \diamond, \mathbf{0})$, where * and * are two binary operation on a nonempty set X and satisfying the following axioms: for all $x, y \in X$,

P.1 $x * 0 = x \lozenge 0 = x$

P.2 $x * x = x \diamond x = 0$

P.3 $(x * y) \land (0 * y) = (x \land y) * (0 \land y) = x$

3.2 Properties

Let $(X; *, \emptyset, 0)$ be a pseudo – BG algebra then the following holds:

I. If $x * y = x \Diamond y = 0$ then x = y for any $x, y \in X$

II. If $(y * y) \lozenge (0 * y) = (y \lozenge y) * (0 \lozenge y)$ $(0 \diamond y) = (0 * y)$

Proof: I

If x * y = 0 and $x \lozenge y = 0$ then $(x * y) \lozenge (0 *$ $y) = (x \diamond y) * (0 \diamond y)$ By P3

We have that $0 \lozenge (0 * y) = 0 * (0 \lozenge y)$ then $(y * y) \lozenge (0 * y) = (y \lozenge y) * (0 \lozenge y)$ we obtion x = y

Proof: II

If $(y * y) \Diamond (0 * y) = (y \Diamond y) * (0 \Diamond y)$. Hence by (P.2) $0 \diamond (0 * y) = 0 * (0 \diamond y)$ since $y * y = y \diamond$ y = 0 then $0 \lozenge ((y * y) * y) = 0 * ((y \lozenge y) \lozenge y),$ which implies that $0 \diamond y = 0 * y$

3.3 Example

Let $X = \{0,1\}$ we define the $(X; *, \emptyset, 0)$ as follows:

x * y = x + y - 2x.y

And $x \lozenge y = |x - y|$

For all $a, b \in X$ satisfy P1, P2 and P3

Hence $(X;*,\emptyset,0)$ is pseudo -BG - Algebra

3.4 Example

Let $X = \{0,1,2\}$ we define the $(X;*,\emptyset,0)$ as follows:

Let $a * b = |a - b|(\sqrt{2})^{ab|a-b||b-2|}$ and a◊ *b*= $|a - b| (3 - b)^{\frac{(ab|a - b|)}{(3 - b)}}$

For all $a, b \in X$ satisfy P1, P2 and P3

Hence $(X;*,\emptyset,0)$ Is pseudo – BG algebra

3.5 Properties

Let $(X; *, \diamond 0)$ be a pseudo BG-algebra. Then

I. the right cancellation law holds in X, i.e., x * y = $z \diamond y$ implies x = z,

II. $0 * (0 * x) = 0 \diamond (0 \diamond x) = x \text{ for all } x \in X$,

III. If $0 * x = 0 \diamond y$, then $x = y, \forall x, y \in X$,

IV. $(x * (0 * x)) \diamond x = x, \forall x, y \in X$.

Proof:

Assume that $x * y = z \diamond y$. Then

 $x = (x * y) \diamond (0 * y) = (z \diamond y) * (0 \diamond y) =$

II. In axiom (P.3) for definition 3.1, replacing y by x, we

that $(x * x) \diamond (0 * x) = (x \diamond x) \star$ have $(0 \diamond x) = x$ since by (P.2) $0 \diamond (0 * x) = 0 *$ $(0 \diamond x) = x.$

III. If $0 * x = 0 \diamond y$, then x = (x * x) * (0 * x)(x) = (y * y) * (0 * y) = y by the axiom (P3) for pseudo BG-algebra.

IV. $(x * (0 * x)) \diamond x = (x * (0 * x)) *$

(0 * (0 * x)) = x by the axiom (P3) and Proposition 3.5 - (II).

3.6 Pseudo Sub - BG algebra

Let X be pseudo BG- algebra then I is called a pseudo sub BG-algebra of X if $I \subseteq X$ and x * $y \text{ or } x \diamond y \in I \text{ when ever } x, y \in I.$

3.7 Ideal Pseudo -BG - algebras

In a pseudo -BG algebras, we have a set I and $\emptyset \neq I \subseteq X$ then I is pseudo ideal of X if it satisfies,

 $0 \in I$ 1.

x * y, $x \lozenge y \in I$ and $y \in I$ imply $x \in I$ for all 2. $x, y \in X$. Obviously $\{0\}$ and X are pseudo ideal.

3.8 Definition

In pseudo -**BG**-algebras Define the relation " \leq " on X by $(x \le y \leftrightarrow x * y = 0)$ or (equivalent $x \lozenge y = 0$).

3.9 Proposition

Let I be a pseudo ideal of a pseudo -BG algebra X, if $x \in I$ and $y \le x$, then $y \in I$.

Proof: Assume that $x \in I$ and $y \le x$. Then y * x = 0and $y \land x = 0$. By definition (2.4) $0 \in I$; $x * y, x \land x$ $y \in I$ and $y \in I$ imply $x \in I$ for all $x, y \in X$, we have $y \in I$.

3.10 Proposition

If J is a pseudo ideal of a pseudo - BG algebra X, then

 $\forall x_1, x_2, x_3 \in X, x_1, x_2 \in J, x_3 * x_2 \leq x_1 \rightarrow$ i. $x_3 \in J$.

 $\forall a, b \ c \in X, a, b \in J, c \land b \leq a \rightarrow c \in J.$ ii.

Proof: If J is a pseudo ideal and let $x_1, x_2, x_3 \in X$. Such that. $x_1, x_2 \in J$ and $x_3 * x_2 \le x_1$. Then $(x_3 *$ $(x_2) \lozenge x_1 = 0 \in J$. Since $(x_1 \in J)$ and we have $(x_3 * x_2 \in J)$ J. Since $x_2 \in J$ and J is a pseudo ideal of X, then $x_3 \in J$.

3.11 Proposition

Let A be pseudo ideal of a pseudo -BG algebra X. If B is a pseudo ideal of A, then it is a pseudo ideal of X.

Proof:

Since B is a pseudo ideal of A, we have $0 \in B$.Let $y, x * y, x \diamond y \in B$ for some $x \in X$. If $\in A$, then $x \in B$, since B is a pseudo ideal of A. If $x \in X - A$, then $y, x * y, x \land y \in B \subseteq A$ and so $x \in A$ because A is a pseudo ideal of X. Thus $x \in B$ since B is a pseudo ideal of A. This competes the proof.

3.12 Definition

An element w of a pseudo - BG - algebra X is called a pseudo a tom if for every $x \in X$, $x \le w$ implies x = w. Obviously, 0 is a pseudo atom of X.

3.13 Lemma

A non-zero element $a \in X$ is a pseudo atom of X if $\{0,a\}$ is a pseudo ideal of X.

TJPS

3.14 Definition

A non-empty subset A of a pseudo - BG - algebra X is called a pseudo strong ideal of X if it satisfies definition (3.6)

 $(PI3) (x * y) \delta z, y \in A \text{ imply } x * z \in A;$

(PI3') $(x \land y) * z, y \in A imply x, y, z \in X.$

Note that if X is a pseudo- $BG-algebra\ satisfying\ x*y=x \ \ y$ for all $x,y\in X$, then the notation of a pseudo strong ideal and a strong ideal consider.

3.15 Proposition

Every pseudo strong ideal is a pseudo ideal.

Proof: Putting z = 0 in by definition (3.14), we have $x * y, x \diamond y, y \in A$ implied $x \in A$.

4 Sime Pseudo – BG algebra

4.1 Definition

Let X is a non-empty set, "*" and " \Diamond " are two binary operation satisfying the following axioms:

P.1 $x * x = x \diamond x = 0$

P.2 $x * 0 = x \diamond 0 = x$

P.3 $(x * y) \land (0 * y) = (x \land y) * (0 \land y)$

Then $(X;*,\emptyset,0)$ is semi pseudo BG – algebra

4.2 Example

Let $X = \{0,1,2\}$ we define the $(X;*,\emptyset,0)$ as follows

*	0	1	2	◊	0	1	2
0	0	1	2	0	0	0	2
1	1	0	1	1	1	0	1
2	2	2	0	2	2	0	0

Then it is easy to show that (X; *, 0) and $(X; \lozenge, 0)$ are not BG-algebras and $(X; *, \lozenge, 0)$ is not a pseudo BG-algebra because $(2 * 1) \lozenge (0 * 1) = (2 \lozenge 1) * (0 \lozenge 1) \neq 2$, but $(X; *, \lozenge, 0)$ is a semi pseudo BG-algebra.

4.3 Lemma

Let $(X; *, \emptyset, 0)$ be a semi pseudo -BG – algebra if $(y * y) \circ (0 * y) = (y \circ y) * (0 \circ y)$ then $(0 \circ y) = (0 * y)$

Proof: since $(y * y) \diamond (0 * y) = (y \diamond y) * (0 \diamond y)$ by P.1 we get $0 \diamond (0 * y) = 0 * (0 \diamond y)$.

4.4 Lemma

Let $(X;*,\emptyset,0)$ be a semi pseudo -BG – algebra then

1. $(x \diamond 0) \diamond 0 = x \text{ and } (x * 0) * 0 = x \forall x \in X.$

2. If (0 * x) = (0 * y) and (0 * x) = (0 * y), then $x = y \forall x, y \in X$.

3. $(x*(0*x)*x = x \text{ and } (x \diamond (0 \diamond x) \diamond x = x)$

Proof: it is clearer

4.5 Definition

I is called a semi pseudo sub *BG*-algebra of *X* if $I \subseteq X$ and x * y or $x \lozenge y \in I$ when ever $x, y \in I$.

4.6 Definition

In a semi pseudo -BG algebras, let $\emptyset \neq I \subseteq X$ then I is pseudo ideal of X if it satisfies,

3. $0 \in I$

4. x * y, $x \lozenge y \in I$ and $y \in I$ implies $x \in I$ for all $x, y \in X$. Obviously $\{0\}$ and X are semi pseudo ideal.

4.7 Theorem

The intersection two semi pseudo - BG - subalgebra is also semi pseudo -BG- subalgebra.

Proof: let $I \subset X$ and $J \subset X$ are semi Pseudo – BG – Algebra

Since $0 \in I \& 0 \in J$ then $0 \in I \cap J$ and $I \& J \subset X$ then $\emptyset \neq I \cap J \in X$.

Let $x * y, x \circ y \in I \cap J$ then $x * y, x \circ y \in I$, and $x * y, x \circ y \in J$

Since I and J are ideal semi Pseudo – BG – Algebra then $y \in I$ and $y \in J$ implies $x \in I$ and $y \in J$, then $y \in I \cap J$ and implies $x \in I \cap J$.

4.8 Definition

In semi pseudo -**BG**-algebras Define the relation " \leq " on X by $(x \leq y \leftrightarrow x * y = 0)$ or (equivalent $x \diamond y = 0$).

4.9 Theorem

Let $(X,*,\diamond,0)$ be a semi pseudo -**BG**-algebras. If $x*(y*z)=x\diamond(y\diamond z), \ \forall \ x,y,z\in X$ then $0*x=x=0\diamond x, \ \forall \ x\in X$.

Proof: Let $x \in X$, where x = x * 0 = x * (x * x) = (x * x) * x = 0 * x

and where $0 \diamond x = x$.

4.10 Theorem

Every semi pseudo -**BG**-algebras $(X,*,\diamond,0)$ satisfy the associative law is a group under each operation "*" and " \diamond ".

Proof: Putting x = y = z in the associative law $(x * y) * z = x \circ (y \circ z)$ and using 0 * x = x * x = x. This means $0 \in X$, $\forall x \in X$ has a sets inverse the element of X itself by definition 3.1 P2. There for (X,*) and (X,\circ) are a group.

4.11 Definition

An element a of a semi pseudo -**BG**-algebras. x is said to be minimal if $\forall x \in X$ the following implication $x \le a \to x = a$

4.12 Property

Let x be a semi pseudo -**BG**-algebras and let $a \in X$. If a is minimal then

$$x \diamond (x * a) = a$$
 and $x * (x \diamond a) = a$

Proof: let a is minimal [by $x \le 0 \rightarrow x = 0$]

 $x \diamond (x * a) \le a \ \forall x \in X$. Since a is minimal then $x \diamond (x * a) = a$

5 Homomorphism

5.1 Definition

Let X and y be a semi pseudo BG-Algebra. A mapping $f: X \to Y$ is called a homomorphism of semi pseudo BG-Algebra if

$$f(x * y) = f(x) * f(x)$$
 and $f(x \diamond y) = f(x) \diamond$
 $f(y), \forall x, y \in X$

Note that: if $f: X \to Y$ is homomorphism of semi pseudo, then f(0x) = 0y, where 0x and 0y are zero elements of x and y respectively

5.2 Example

Let $(X,*,\diamond,0)$ be a semi pseudo BG-Algebra then the function $f:X\to Y$ such that f(x)=x*0, for any $x\in X$ is a homomorphism of semi pseudo BG-Algebra

f(x) * f(y) = (x * 0) * (y * 0) = (x * y) * 0 = f(x * y). And $f(x) \diamond f(y) = (x * 0) \diamond (y * 0) = (x \diamond y) = (x \diamond y) * 0 = f(x \diamond y)$.

5.3 Theorem

Let $f: X \to Y$ be a homomorphism of semi pseudo BG-Algebra

I. If *B* is a semi pseudo ideal of $y \rightarrow f^{-1}(B)$ is a pseudo ideal of x

II. If f is surjective and I is a semi pseudo ideal of x, then f(I) is a semi pseudo ideal of y.

Proof: I. $0_y \in f^{-1}(B)$, let $y \in f^{-1}(B)$ and let $x_1, x_2 \in X$ be such that

 $x_1 * y \in f^{-1}(B)$ and $x_2 \circ y \in f^{-1}(B)$. To show $x_1, x_2 \in f^{-1}(B)$?

 $x_1 * y \in f^{-1}(B) \longrightarrow \exists b_1 \in B \text{ and } b_1 \in B \text{ such that}$

 $f(x_1 * y) = b_1$ and $f(x_2 \diamond y) = b_2$ also $y \in f^{-1}(B), \exists b \in B$

Such that

 $y = f^{-1}(b) \implies f(y) = b$ $f(x_1) * f(y) = f(x_1 * y) = b_1$ $b_1 \in B \implies f(x_1) \in B$ $f(x_2) \diamond f(y) = f(x_2 \diamond y) = b_2$ $b_2 \in B \implies f(x_2) \in B$

Since *B* is semi pseudo ideal

: $f(x_1) \in B \& f(x_2) \in B \text{ in } Y \implies x_1 \in f^{-1}(B) \& x_2 \in f^{-1}(B) \text{ in } X$ $f^{-1}(B) \text{ is a semi pseudo ideal in } X.$

II. Assume that f is surjective and let I be a semi pseudo ideal of x obviousely, $0_y \in f(I)$. For every $y \in f(I)$. Let $a, b \in Y$ be such that $a * y \in f(I)$ and $b \diamond y \in f(I)$, then there exist $x_*, x_\diamond \in I$ such that $f(x_*) = a * y$ and $f(x_\diamond) = b \diamond y$. Since $y \in f(I)$ there exist $xy \in I$, $y = f(x_y)$. Also f is surjective. $\exists x_a, x_b \in X$ such that $f(x_a) = a$ and $f(x_b) = a$

References

[1] K. Iseki, On BCI-algebras, Math. Sem. Notes Kobe Univ.1 (1980), 125-130.

MR 81k:06018a. Zbl 0434.03049.

[2] K. Iseki, S. Tanaka, An introduction to the theory of BCK-algebras, Math.

Japon.1 (1978),1-26. MR 80a:03081. Zbl 385.03051.

[3] Q. L. Hu, X. Li, On BCH-algebras, Math. Sem. Notes Kobe Univ.2 (1983),part 2, 313-320. MR 86a:06016. Zbl 579.03047.

[4] Y. H. Kim, K. S. So, On minimality in pseudo-BCI-algebras, Commun. Korean Math. Soc.27 (2012), 7-13. doi:10.4134/CKMS.2012.27.1.007.

[5] Q. P. Hu and X. Li, On proper BCH-algebras, Math. Japon.4 (1985), 659-661. MR 87d:06042. Zbl 583.03050.

[6] N. Joseph, S. A. Sun, S.K. Hee, ON Q-ALGEBRAS, Hindawi Publishing Corp, IJMMS.27:12 (2001), 749-757 PII.S0161171201006627. http://ijmms.hindawi.com.

[7] G. Georgescu, A. Iorgulescu, Pseudo-BCK algebras, an extension of BCK algebras, in: Proc. of

b, $f(x_a * x_y) = f(x_a) * f(x_y) = a * y \in f(I)$ and $f(x_b * x_y) = f(x_b) * f(x_y) = b * y \in f(I)$

Which implies that $x_a * x_y \in I$ and $x_b \circ x_y \in I$, since I is semi pseudo ideal of X we get $x_a, x_b \in I$ and $a = f(x_a)$, $b = f(x_b) \in f(I)$ f(I) is semi pseudo ideal of X.

5.4 Corollary

Let $f: X \to Y$ be a homomorphism of semi pseudo ideal. Then $\ker(f) = \{x \in X; f(x) = 0\}$ is a semi pseudo ideal of X.

5.5 Property

Let $f: (X, *_1, \circ_1, 0) \rightarrow (Y, *_2, \circ_2, 0)$ be a homomorphism of semi pseudo BG-Algebra. Then $x *_1 y, x \circ_1 y \in \ker(f)$ if $f(x) = f(y), \forall x, y \in X$ **Proof:** Assume that f(x) = f(y). Then $f(x) *_2 f(y) = f(x *_1 y) = 0$ and $f(x) \circ_2 f(y) = f(x \circ_1 y) = 0$ Hence $x *_1 y, x \circ_1 y \in \ker(f)$.

5.6 Theorem

Let $f: X \to Y$ is homomorphism of Semi pseudo ideal. Then f is monomorphism if f ker $(f) = \{0\}$.

5.7 Theorem

Let X,Y,Z be a Semi pseudo ideal and $h:X \to Y$ be an onto homomorphism of Semi ideal and $g:Y \to Z$ be a homomorphism of semi pseudo BG-algebra. If $\ker(h) \subseteq \ker(g)$, \exists a unique homomorphism of Semi pseudo ideal $f:X \to Z$ satisfy $f \circ h = g$.

Conclusion

we introduced the notion new types of algebras pseudo BG- algebra, pseudo sub BG -algebra, Pseudo Ideal and pseudo strong Ideal of Pseudo-BG-Algebras. We state some Proposition and examples which determine the relationships between these notions and some types of ideal and we introduced the notion semi pseudo BG- algebra, pseudo sub BG-algebra, Pseudo Ideal and pseudo strong Ideal of semi pseudo-BG-Algebras.

DMTCS01: Combinatorics, Computability and Logic, Springer, London. (2001) 97-114.

[8] W. A. Dudek, Y. B. Jun, Pseudo-BCI-algebras, East Asian Math. J.24 (2008), 187-190.

[9] G. Georgescu, A. Iorgulescu, Pseudo-MV-algebras, a non-commutative extension of MV algebras, in: The Proc. of the Fourth International Symp. on Economic Informatics, Bucharest, Romania, May.1999 1999, 961-968.

[10] G. Georgescu, A. Iorgulescu, Pseudo-BL-algebras, a non-commutative extension of BL algebras, in: Abstracts of the Fifth International Conference FSTA; Slovakia, February. (2000), 90-92.

[11] G. Dymek, Atoms and ideals of pseudo-BCI-algebras, Comment. Math.52 (2012), 73-90.

[12] G. Dymek, p-semisimple pseudo-BCI-algebras, J. Mult.-Valued Logic Soft Comput.19 (2012), 461-474.

[13] Y. B. Jun, E. H. Roh and H. S. Kim, *On BH-algebras*, Sci. Math. Japon., 1(1998), 347-354.

[14] K. J. Lee, Ch. H. Park, Some ideals of pseudo-BCI-algebras, J.Appl.Informatics.27 (2009), 217-231. [15] Y. B. Jun, H. S. Kim, J. Neggers, Pseudo-dalgebras, Information Sciences.179 (2009), 1751-1759. doi:10.1016/j.ins.2009.01.021.

[16] Sh. A. Bajalan, S. A. OZBAL, Some properties and homomorphisms of pseudo-Q algebras. J. Cont. Appl. Math. V. 6, p (3-17) (2017).

[17] J. Neggers, H.S. Kim, On B-algebras, in preparation.

[18] M. A. Chaudhry, On BCH-algebras, Math. Japonica.36 (1991), 665-676.

[19] S. S. Ahn, H. S. Kim On QS-algebras, J. Chungcheong Math. Soc. 12. (1999), 33-41.

[20] C. B. Kim and H. S. Kim, ON BG-ALGEBRAS, Demonstratio Mathematica, Vo. XLI, no. 3, (2008)

تركيب الجبر الزائف - BG و الجبر شبة الزائف - BG

ارام خليل ابراهيم باجلان باجلان , راستي رحيم محمدامين, شوان عدنان علي قسم الرياضيات ، كلية التربية ، جامعة كرمان ،

الملخص

في هذا البحث ، قدمنا مفهوم أنواع جديدة من الجبر الزائف -BG الجبر ، الجبر شبه الزائف BG، الجبر المثالي الزائف والمثال القوي الزائف. نذكر بعض المقترحات والأمثلة التي تحدد العلاقات بين هذه المفاهيم وبعض أنواع المثالية وقدمنا فكرة شبه زائفة -BG الجبر، شبه زائف —BG الجبر. مثالي شبه زائف -BG - الجبر. لقد بحثنا في مفهوم جديد للجبر يسمى شبه الجبر الزائف -BG. نذكر بعض المقترحات والأمثلة التي تحدد العلاقات بين هذه المفاهيم وبعض أنواع المثل العليا المحددة الحد الأدنى وتماثل الشكل والنواة.