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ABSTRACT 

The derivation of the Embedded pair Diagonally Implicit Type 

Runge-Kutta Method (EDITRKM) for solving 3rd special order ordinary 

differential equations (ODEs) is introduced in the current study. The 

EDITRKM techniques are the name of the approach. This approach in 

the present study has two types: EDITRKM 4(3) for order 4 and 3 of the 

first pair and EDITRKM 5(4) for orders 5 and 4 of the second pair. To 

investigate the current study, a variety of tests for five various initial 

value problems (IVPs) with different step sizes h were implemented. 

Then, a comparation of the present study between the EDITRKM 4(3) 

and EDITRKM 5(4) for five different problems are made. The 

numerical techniques elucidated as the qualification regarding the 

efficiency and decimal logarithm for highest the time curve against 

logarithm of number of the function call estimate. 

 

1. Introduction 
Third-order ODEs are used in neural network 

engineering and applied sciences, the dynamics of 

fluid flow, the ship's motion, and electric circuits, 

among other fields [1-6]. The starting value problem 

for third-order ODEs where the second derivative 

does not appear implicitly is addressed as 

  𝑦′′′(𝑥) = 𝑓(𝑥, 𝑦(𝑥))    with  𝑦(𝑥0) = 𝛼 , 𝑦′(𝑥0) =

𝛽      𝑎𝑛𝑑  𝑦′(𝑥0) = 𝛾 … . (1) 

The implicit methods are important because they can 

reach high orders of accuracy at the equivalent 

number of stages, which can be represented as an 

advantage that leads to the more accurate than the 

explicit approaches. This manufactures it easier to 

exist the solution to the difficulties of the problems. 

So, the implicit RK techniques play an important role 

for denomination the physical and mathematical 

problems, like a differential algebraic equation. The 

diagonal implicit RK (DIRK) techniques are also 

pointed to as semi-implicit approaches or semi 

explicit RK techniques since they obtained at 

minimum one value does not zero for the lowest of 

the triangular diagonal matrices. Therefore, to solve 

Eq. (1), two general strategies can be employed. The 

elementary way is to transfer the Eq. (1) into a 

problem with first-order then apply any pattern of the 

RK approach to it. Calvo M. et al. (1996) proposed 

novel of embedded pairs RK approaches particularly 

modified to the approximate computations of 1
st
 order 

sets of differential equations that supposed to get 

oscillating approximations are found [7]. The 

dispersion and dissipation orders besides the 

validation of accuracy, approximation of local error 

and analysis of the stability are studied according to 

Van der Houwen and Sommeijer (1989) [8]. The 

dispersion and dissipation of three nine stage 

embedded pairs of Runge-Kutta methods of algebraic 

7,5 and higher-orders that have various free 

parameters are examined [7]. Moreover, [9-10] 

developed a solution of the special third order for the 

ODEs directly by RK technique. Finally, Senu [11] 

and Fawzi et al. [12] constructed the embedded RK 

technique to solve third order for the ODEs. The 

explicit embedded pair Runge-Kutta (RK) method 

that known as TFRKF6 (5) is improved to compute 

the numerical solution of the initial value problems of 

first-order for oscillatory approximations. The 
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suggested approach has been studied a 1
st
 order IVPs 

via first decreasing higher order of IVPs to the 

identical system of 1
st
 order. The embedded 

techniques have algebraic 6 and 5-order according to 

Fawzi, F. A. et al. (2016) [13].  Therefore, Senu et al. 

[14] structted a novel embedded explicit RK method 

to solve special third order problems. Ismail, F. and et 

al. (2008) are purposed the Singly Embedded 

Diagonally Implicit Runge-Kutta (SDIRK) methods 

to combine Delay Differential Equations (DDEs) and 

the computational results are compared. The singly 

known as all the eigenvalues of the coefficient matrix 

A are equivalent and all the diagonal elements are 

same. He mentioned will use the expression loosely 

for the first diagonal element that equal to zero [15]. 

The set of test problems are studied using the singly 

diagonally implicit RK-Nystróm general (SDIRKNG) 

approach of 3
rd

 -order embedded in 4
th

 -order for the 

integration second-order IVPs according work of 

Ismail, F. et al. (2007) [16]. In this work, the special 

third order of the ordinary differential equations 

(ODE) of the form 𝑦′′′(𝑥) = 𝑓(𝑥, 𝑦(𝑥)) will be 

study. The first and the second order are not occurred 

as a perfect third order of the ODEs in the formula 

𝑦′′′(𝑥) = 𝑓(𝑥, 𝑦(𝑥), 𝑦′(𝑥), 𝑦′′(𝑥)). Results for 

special third order of ODE are implemented via the 

implicit embedded of DITRKM.  

Section 2 demonstrates the basic idea of construction 

and derivation of the DITRK system for addressing 

Initial Value Problems (IVPs). The DITRK 

technique's order conditions are outlined in Section 3. 

Section 4 describes Derivation Embedded DITRK 

Methods. In Section 5, the Test of Problems are 

presented. In Section 6, validation of the EDITRK 

approach with five IVPs are computed. The 

Discussion and Conclusion are given in Section 7.  

2. The Methodology of DITRK Techniques 
For solving IVPs in eq. (1), the prevalent formula of 

the implicit RK approach for the 𝑚 stage digit can be 

expressed as follows:[18] 

𝑦𝑛+1 = 𝑦𝑛 + ℎ 𝑦𝑛
′ +

ℎ2

2
𝑦𝑛

′′ + ℎ3 ∑ 𝑑𝑖
𝑚
𝑖=1 𝑘𝑖  ….(2) 

𝑦𝑛+1
′ = 𝑦𝑛

′ + ℎ 𝑦𝑛
′′ + ℎ2 ∑  𝑏𝑖

𝑚
𝑖=1 𝑘𝑖   …(3) 

𝑦𝑛+1
′′ = 𝑦𝑛

′′ + ℎ ∑  𝑔𝑖
𝑚
𝑖=1 𝑘𝑖 …..(4) 

𝑘1 = 𝑓(𝑥𝑛 , 𝑦𝑛)   … (5) 

𝑘𝑖 = 𝑓(𝑥𝑛 + 𝑐𝑖ℎ, 𝑦𝑛 + ℎ 𝑐𝑖𝑦𝑛
′ +

ℎ2

2
𝑐𝑖

2 𝑦𝑛
′′ +

ℎ3 ∑ 𝑎𝑖𝑗
𝑖−1
𝑗=1 𝑘𝑗) …(6) 

where 𝑖 = 2,3, … , 𝑚. The parameters of diagonal 

implicit RK type (DITRK) methods are presumed as 

 𝑐𝑖 , 𝑎𝑖𝑗 , 𝑑𝑖 ,  𝑏𝑖 ,  𝑔𝑖  where 𝑖, 𝑗 = 1, 2, 3 … , 𝑠 are real 

numbers. This scheme is known as diagonal implicit 

when 𝑎𝑖𝑗 ≠ 0 for 𝑗 > 𝑖. The last denomination 

includes the single DITRK techniques that 𝐴 indicate 

that the lower the triangular diagonal matric of 𝐴 

have same values with 𝑎𝑖𝑗 ≠ 0 where 𝑖 = 𝑗 at the 

diagonal. The DITRK approach proposed from the 

work of Butcher, as illustrated in Table 1 [17]. 

 
 

 

 

Table 1: Butcher form DITRK method. 

 
3. Order Conditions of the DITRK 

Technique 
According to Mechee et al. [18], the orders of 

algebraic criteria for RKD approached over order 6 

are as follow: 

Order conditions of 𝑦: 

order 3     ∑ 𝑑𝑖 =
1

6
  …. (7)                                                                       

order 4     ∑ 𝑑𝑖 𝑐𝑖 =
1

24
 …..(8) 

order 5     ∑ 𝑑𝑖 𝑐𝑖
2 =

1

60
   …. (9) 

order 6  ∑ 𝑑𝑖 𝑐𝑖
3 =

1

120
  and ∑ 𝑑𝑖 𝑎𝑖,𝑗 = 1/720. ….(10) 

Order conditions of 𝒚′: 

order 2     ∑ 𝑏𝑖 =
1

2
   ….(11)                                                                   

order 3     ∑ 𝑏𝑖 𝑐𝑖 =
1

6
   ….(12) 

order 4     ∑ 𝑏𝑖 𝑐𝑖
2 =

1

12
  …..(13) 

order 5     ∑ 𝑏𝑖 𝑐𝑖
3 =

1

20
      and  ∑ 𝑏𝑖 𝑎𝑖,𝑗 =

1

120
  ….(14) 

order 6  ∑ 𝑏𝑖 𝑐𝑖
4 =

1

30
 , ∑ 𝑏𝑖 𝑎𝑖,𝑗𝑐𝑗 =

1

720
  and   

∑ 𝑏𝑖 𝑐𝑖  𝑎𝑖,𝑗 =
1

180
  ….(15) 

Order conditions of 𝒚′′: 

order 1     ∑ 𝑔𝑖 = 1     …. (16)   

order 2     ∑ 𝑔𝑖 𝑐𝑖 =
1

2
    ….(17)                                                           

order 3     ∑ 𝑔𝑖 𝑐𝑖
2 =

1

3
  ….(18)    

order 4     ∑ 𝑔𝑖 𝑐𝑖
3 =

1

4
    and  ∑ 𝑔𝑖 𝑎𝑖,𝑗 =

1

24
…..(19) 

order 5     ∑ 𝑔𝑖 𝑐𝑖
4 =

1

5
 , ∑ 𝑔𝑖 𝑎𝑖,𝑗𝑐𝑗 =

1

120
 and   

∑ 𝑔𝑖 𝑐𝑖  𝑎𝑖,𝑗 =
1

30
   …(20) 

order 6  ∑ 𝑔𝑖 𝑐𝑖
2𝑎𝑖,𝑗 =

1

36
 , ∑ 𝑔𝑖 𝑎𝑖,𝑗  𝑐𝑗

2 +

∑ 𝑔𝑖 𝑐𝑖𝑎𝑖,𝑗𝑐𝑗 =
7

720
 ,  

 ∑ 𝑔𝑖 𝑐𝑖
5 =

1

6
 , ∑ 𝑔𝑖 𝑎𝑖,𝑗  𝑐𝑗

2 = 
1

360
 , ∑ 𝑔𝑖 𝑐𝑖𝑎𝑖,𝑗𝑐𝑗 =

1

144
 & 

1

2
∑ 𝑔𝑖 𝑎𝑖,𝑗  𝑐𝑗

2 + ∑ 𝑔𝑖 𝑐𝑖𝑎𝑖,𝑗𝑐𝑗 =
1

120
 (21) 

4. Derivation Embedded DITRK Methods 

The general form of DITRK technique with m-stage 

for numerical solution of eq. (1) is provided. Then, 

there is the creation for embedded pair RK approach, 

which is active study topic that is always improving 

existing codes. The derivation of p(q) pairs of 

implicit DITRK techniques are employed in values of 

step size codes to give a minimum error estimation. 

They based on the order p method (C, A, d, b, g) and 
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order q method (C, A, 𝑑′, 𝑏′, 𝑔′) In Butcher Tabular, 

the embedded pair can be started as follows: 
 

Table 2: Butcher Tabular of the embedded pair DITRK 

Method. 

 
The primary proposes for constructing the embedded 

pair of implicit DITRK techniques is to get a lone 

cost error estimation for use in values of step size 

approach. The techniques are represented by 

improving the significant pairs and estimations of the 

local error that is employed via bounded the step size 

ℎ as follow  

ℎ𝑛+1 = 0.9ℎ𝑛 (
𝑇𝑜𝑙

𝐿𝑇𝐸
)

1

𝑞+1
… (22)  

where 0.9 is the achieve factor, local error estimation 

(LTE) computed at each step, and Tol refers to 

requirement of the accuracy. So, if LTE ≤ Tol that 

mean the step will accept and the technique of 

executing local extrapolation which refers to more 

accurate computations will be employed to progress 

the integration and ℎ can be improved utilizing in eq. 

(22) If LTE > Tol, the step will be refused and the 

step size ℎ, will be reduced by half. The EDITRKM 

technique has been developed as an embedded RK 

type approach for solving third-order ODEs. Order 4 

and 3 are found in the first pair, while orders 5 and 4 

are found the second these approaches are developed 

using factions that ensured the higher- order method 

were extremely accurate while the lower methods 

provided the most accurate error estimations. So, the 

step size ℎ effect to the obtain accurate results by 

doubling it. For this study, we have two derivations 

for Embedded DITRK 4(3) Method and Embedded 

DITRK 5(4) Method as illustrated in Table 3.  

In EDITRKM 4(3), the A and C values is computed 

from the 4
th

 -order solution then derived the three-

stage 3
rd

-order embedded equation. The solving of the 

eqs. (7), (11), (12), (16-18) simultaneously then the 

solution for 𝑑𝑖
′ and 𝑏𝑖

′ while 𝑔𝑖
′ have the same values 

as the 4
th

 -order. The solutions are obtained as 

  𝑏1 = −10 + 25𝑏3 − 15𝑏3√3 +
35√3

6
, 𝑏2 =

−26𝑏3 + 15𝑏3√3 −
35

6
√3 +

21

6
, 𝑏3 = 𝑏3, 𝑑1 =

1

6
−

𝑑2 − 𝑑3, 𝑑2 = 𝑑2, 𝑑3 = 𝑑3, 𝑔1 = 0, 𝑔2 =
1

2
, 𝑔3 =

1

2
 

 According to [19], the free parameters can be 

computed via minimizing the LTE, from the 

minimize commend in Maple then obtained the 

values of the d2= 0.137801357104202, 

d3=0.931263538815273 and b3= 

0.105662432884725. For optimized value in 

fractional form then 𝑑3 =
9

10
   , 𝑑2 =

1

10
  𝑎𝑛𝑑    𝑏3 =

1

10
  are choose. 

Table 3: Table of EDITRKM 4(3) and EDITRKM 

5(4). 

 
 

The values of A and C is computed from the 5
th

 -

order solution then derive a three-stage order four 

embedded formula. solving the eqs. (8), (13), (20-21) 

simultaneously then the solution for 𝑑𝑖
′ and 𝑏𝑖

′ while 

𝑔𝑖
′ have the same as of  5

th
 -order. The solutions are 

obtained as 
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𝑏1 =
5

36
+

√15

36
, 𝑏2 =

2

9
, 𝑏3 = −

√15

36
+

5

36
, 𝑑1 = 𝑑3 +

√15

36
, 𝑑2 = −2𝑑3 +

1

6
−

√15

36
, 𝑑3 = 𝑑3, 𝑔1 =

15

8
,  

𝑔2 =
4

9
, 𝑔3 =

5

18
   

According to [19], the free parameters can be 

computed via minimizing the LTE from commend of 

minimize in Maple then the value of d3= 
0.00176412019109205 obtained. For optimized value 

in fractional formula then 𝑑3 =
17

10000
 is choose. 

Finally, the coefficients of 3
rd

 -stage embedded 

EDITRK 5(4) technique can be written (see Table 3) 

5. Test of Problems 
The approaches that demonstrated in section 4 tested 

with 5 various problems in this part. The numerical 

experiments were conducted using the following 

methods: 

Problem (1): Consider a nonhomogeneous linear 

ODE given in [20] 

𝑦′′′(𝑥) = 𝑦(𝑥) + cos(𝑥), with  𝑦(0) = 0, 𝑦′(0) =
0,  𝑦′′(0) = 1  where  𝑥 ∈ [0,1], 

and analytic solution  𝑦(𝑥) =
(e𝑥  −cos(𝑥)−sin (𝑥))

2
. 

Problem (2): Consider the nonhomogeneous 

nonlinear ODE 

 𝑦′′′(𝑥) = (𝑦(𝑥))2 + cos2(𝑥) − cos(𝑥) − 1, with 

𝑦(0) = 0, 𝑦′(0) = 1, 𝑦′′(0) = 0 where  0 ≤ 𝑥 ≤ 2,  

and the exact solution   𝑦(𝑥) = sin (𝑥). 
Problem (3): Nonhomogeneous nonlinear ODE, 

reads as 

  𝑦′′′(𝑥) = 8 (
𝑦2(𝑥)

𝑒2𝑥 )  with 𝑦(0) = 1, 𝑦′(0) = 2,

𝑦′′(0) = 4  where 0 ≤ 𝑥 ≤ 1, 

and analytic solution  𝑦(𝑥) = 𝑒2𝑥. 
Problem (4): The homogeneous nonlinear ODEs is 

considered as 

𝑦1
′′′(𝑥) = 𝑦2(𝑥), with  𝑦1(0) = 1, 𝑦1

′ (0) =
0, 𝑦1

′′(0) = 1    

 𝑦2
′′′(𝑥) = −𝑦1(𝑥) − 2 𝑦2(𝑥) + 2 𝑦3(𝑥) with   

𝑦2(0) = 0, 𝑦2
′ (0) =  1, 𝑦2

′′(0) = 0  

   𝑦3
′′′(𝑥) = 𝑦1(𝑥) + 𝑦2(𝑥) with  𝑦3(0) = 1,

𝑦3
′ (0) = 1, 𝑦3

′′(0) = 1 and 

analytic solution  𝑦1(𝑥) = cosh (𝑥), 𝑦2(𝑥) = sinh (𝑥) 

and  𝑦3(𝑥) = e𝑥  where 0 ≤ 𝑥 ≤ 1. 
Problem (5): linear system of the ODEs is presented 

as 

 𝑦1
′′′(𝑥) = 𝑦2(𝑥), with  𝑦1(0) = 1, 𝑦1

′ (0) =
0, 𝑦1

′′(0) = 1, 

 𝑦2
′′′(𝑥) = 𝑦1(𝑥) with  𝑦2(0) = 0, 𝑦2

′ (0) =
1, 𝑦2

′′(0) = 0, 

𝑦3
′′′(𝑥) = 𝑦1(𝑥) + 𝑦2(𝑥) − sinh(𝑥) with   𝑦3(0) =

1, 𝑦3
′ (0) = 0, 𝑦3

′′(0) = 1, 

and exact solutions  𝑦1(𝑥) = cosh(𝑥),  𝑦2(𝑥) =
sinh(𝑥) and 

 𝑦3(𝑥) = e𝑥 + 1 − 𝑐𝑜𝑠ℎ(𝑥) +
𝑥2

2
− 𝑥  where  

0 ≤ 𝑥 ≤ 1. 

6. Numerical Results 
The approximation result that are illustrated in the 

tables below for solving problems (2.7). Following 

abbreviations will be used in tables 

 Tol: Tolerance. 

 Method: method employed step sizes between two 

points or positions. 

 F. N: number of the function call. 

 STEP: The number of successful steps. 

 FSTEP: The number of failed steps. 

 Time: execution time. 

 EDITRKM4(3): The novel 4(3) pair derived in this 

study. 

 EDITRKM5(4): The new 5(4) pair embedded 

derived in current work. 
 

Table 4: Comparisons of number of function call and Time of EDITRKM 4(3) and EDITRKM 5(4) with 

𝒉 = 𝟏𝟎−𝟐, 𝟏𝟎−𝟒, 𝟏𝟎−𝟔 for the problem 1. 

FSTEP Step Time No. of Function Call Method TOL(h) 

2 13 0.076 43 EDITRKM 4(3) 
10−2 

0 5 0.032 15 EDITRKM 5(4) 

2 40 0.092 124 EDITRKM 4(3) 
10−4 

0 16 0.041 48 EDITRKM 5(4) 

2 128 0.121 388 EDITRKM 4(3) 
10−6 

1 72 0.054 218 EDITRKM 5(4) 
 

Table 5: Comparisons of number of function call and Time of EDITRKM 4(3) and EDITRKM 5(4) with 

𝒉 = 𝟏𝟎−𝟐, 𝟏𝟎−𝟒, 𝟏𝟎−𝟔 for the problem 2. 

FSTEP Step Time No. of Function Call Method TOL(h) 

0 7 0.077 21 EDITRKM 4(3) 
10−2 

0 3 0.051 9 EDITRKM 5(4) 

0 22 0.091 66 EDITRKM 4(3) 
10−4 

0 8 0.072 24 EDITRKM 5(4) 

0 69 0.122 207 EDITRKM 4(3) 
10−6 

1 29 0.094 89 EDITRKM 5(4) 
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Table 6: Comparisons of number of function call and Time of EDITRKM 4(3) and EDITRKM 5(4) with 

𝒉 = 𝟏𝟎−𝟐, 𝟏𝟎−𝟒, 𝟏𝟎−𝟔 for the problem 3. 

FSTEP Step Time No. of Function Call Method TOL(h) 

1 97 0.062 293 EDITRKM 4(3) 
10−2 

0 29 0.038 87 EDITRKM 5(4) 

1 315 0.075 947 EDITRKM 4(3) 
10−4 

1 152 0.047 458 EDITRKM 5(4) 

1 1260 0.115 3782 EDITRKM 4(3) 
10−6 

2 725 0.071 2179 EDITRKM 5(4) 

 

Table 7: Comparisons of number of function call and Time of EDITRKM 4(3) and EDITRKM 5(4) with 

𝒉 = 𝟏𝟎−𝟐, 𝟏𝟎−𝟒, 𝟏𝟎−𝟔 for the problem 4. 

FSTEP Step Time No. of Function Call Method TOL(h) 

1 72 0.085 218 EDITRKM 4(3) 
10−2 

0 22 0.058 66 EDITRKM 5(4) 

1 233 0.097 701 EDITRKM 4(3) 
10−4 

0 107 0.066 321 EDITRKM 5(4) 

1 760 0.121 2282 EDITRKM 4(3) 
10−6 

1 504 0.078 1514 EDITRKM 5(4) 

 

Table 8: Comparisons of number of function call and Time of EDITRKM 4(3) and EDITRKM 5(4) with 

𝒉 = 𝟏𝟎−𝟐, 𝟏𝟎−𝟒, 𝟏𝟎−𝟔 for the problem 5. 

FSTEP Step Time No. of Function Call Method TOL(h) 

1 45 0.065 137 EDITRKM 4(3) 
10−2 

0 12 0.049 36 EDITRKM 5(4) 

1 145 0.093 437 EDITRKM 4(3) 
10−4 

0 58 0.059 174 EDITRKM 5(4) 

1 460 0.112 1382 EDITRKM 4(3) 
10−6 

1 276 0.087 830 EDITRKM 5(4) 

 

 
Fig. 1: Accuracy curve for EDITRKM 4(3) and EDITRKM 5(4) with = 𝟏𝟎−𝟐, 𝟏𝟎−𝟒, 𝟏𝟎−𝟔 . 

 

7. Discussion and Conclusion 
Figure (1) show the improvement of the Embedded 

pair Diagonally Implicit Type Runge-Kutta Method 

(EDITRKM) created by charting of decimal 

logarithm for highest the time curve against logarithm 

of number of the function call estimate which are 
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obtained from the Tables (4-8). The comparative of 

the present study for the EDITRKM 4(3) and 

EDITRKM 5(4) with five different problems as 

mentioned in section 5. In this project, the logarithm 

of time curve is computed with different Tol  ℎ =
10−2, 10−4, 10−6 which is known in some literatures 

as the "Tol" (the given tolerance) for the five test 

problems. The numerical results that obtained from 

the Table (4-8) is used to create Figure (1), 

respectively. As well as, calculations of the numbers 

of the successful steps (Step) and the failed steps 

(FSTEP) as illustrated in Table (4-8). In the current 

study, the numerical results between the EDITRKM 

4(3) and EDITRKM 5(4) have a good comparison as 

shown in Figure (1). The current study was based on 

Runge-Kutta Method that has been analyzed earlier 

by [12, 13, 18], however, the research in hand 

expanded and improved the method from explicit to 

implicit and from directly to diagonally.  
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( للترتيب الثالث الخاص EDITRKMكوتا المضمنة من النوع الضمني قطريا )-طريقة رنج
 للمعادلات التفاضلية العادية

 مصطفى حسن  جمعة ، فراس عادل فوزي 
الرياضيات ، كلية علوم الحاسوب والرياضيات ، جامعة تكريت ، تكريت ، العراق قسم  

 

 الملخص
( لحمما المعمماالت التياضمملية العاايممة تات الترت ممب EDITRKMكوتمما   -ممما ال مموض الضممم ً قطريقمما طرييممة رو مم  ةتممم تيممايم اقممتياق المممو  المضممم 

 EDITRKM فمً الاراسمة الحاليمة لمع  وعماا  الطرييمة. همتا طرييمةهً اسمم ال EDITRKM( فً الاراسة الحالية. تي يات ODEsالخاص  الثالث 

للمو  الثا ً. للتحي ق فً الاراسة الحالية ، تمم ت ي مت مجموعمة بال سبة  4و  5 رتبلل EDITRKM 5(4)للمو  الأول و بال سبة  3و  4للرتبة  (3)4
لمممم بممم ا الاراسمممة الحاليمممة فمممً ميار مممة اجمممرا   تمممم. (h)( بأحجمممام خطممموات مختليمممة IVPsة  مختليمممبتاا يمممة قيممممة   سممما امت وعمممة مممما الختبمممارات لخمممم  م

EDITRKM 4(3) وEDITRKM 5(4) م توضمميا التي يممات العاايممة كممهمما فيممما  تعلممق بالكيمما ا واللو مماريتم العقممر  تمم. ت وعممةم سمما اخممم  مل
 .االةتيا ر استاعا  ال عاالأعلى م ح ى الوقت ميابا لو اريتم 

 


