The M-Polynomial and Nirmala index of Certain Composite Graphs

Akar H. Karim ${ }^{1}$, Nabeel E. Arif ${ }^{2}$, Ayad M. Ramadan ${ }^{1}$
${ }^{1}$ Mathematics Department, College of Science, Sulaimani University, Sulaimaniya, Kurdistan Region of Iraq, Iraq
${ }^{2}$ Department of Mathematics, College of Computer Science and Mathematics, Tikrit University, Tikrit, Iraq
https://doi.org/10.25130/tjps.v27i3.45

ARTICLEINFO.

Article history:
-Received: 20/5/2022
-Accepted: 13 / 6 /2022
-Available online: / / 2022
Keywords: M-Polynomial, Nirmala Index, Join, Corona, Cluster graphs.

```
Corresponding Author:
Name: Akar H. Karim E-mail:
```

akar.karim@univsul.edu.iq

Tel:

Abstract

The M-Polynomial and Nirmala index are considered as two of the most recent found and important subjects in chemical graph theory. In this paper we drive and prove the computing formula of Nirmala index from the M-Polynomial, then compute the M-Polynomial for some certain composite graphs, and the Nirmala index via the computed MPolynomial. The composite graphs are new defined graphs $K_{n}\left(P_{t}\right) K_{m}$, $C_{n}(e) K_{n}$, and others obtained from simple graphs by certain graph operations such as join, corona, and cluster of any graph with some special graphs such as complete, path, ...etc.

1 Introduction

Let $G=(V, E)$ be a simple connected graph with vertex set $V(G)$ and edge set $E(G)$, where the order and size of G are $|V(G)|=n_{G}$ and $|E(G)|=m_{G}$ respectively[1]. The degree of a vertex u is the number of all edges incidence to u in G, which is denoted by $d_{G}(u)$ [1]. By pendent vertex we mean a vertex of degree one, and by i-vertex we mean the vertex v has degree i, and an edge joining an i-vertex to a j-vertex is denoted by (i, j)-edge [1, 2]. A u - v walk W_{n} in a connected graph G, is a sequence of vertices ($u=u_{1}, u_{2}, \ldots, u_{n-1}, u_{n}=v$) in G, such that consecutive vertices in W_{n} are adjacent in G. A path is just a walk in which no vertex is repeated, and a path with n vertices is denoted by P_{n}. A closed path is called cycle, and denoted by C_{n}. A graph in which every two vertices are adjacent is called complete graph and denoted by K_{n}. A star graph S_{n} is a graph that has $n+1$ vertices, one of them has degree of n which is called the center vertex and the other n vertices have degree of one which are called pendent vertices [1, 3, 4].
Let G and H be two graphs then the vertex gluing of G and H is a new graph that constructed from G and H by identifying a vertex between them [3], the vertex gluing of G and H is denoted by $G(\mathrm{o}) H$, which
is a new graph of order $n_{G}+n_{H}-1$ and size $m_{G}+m_{H}$ (see Figure 1).

Figure 1: $\boldsymbol{G}(\mathbf{o}) \boldsymbol{H}$
A graph in which a vertex is labeled in a special way so as to distinguish from other vertices is called a rooted graph, and the special vertex is called the root of it [5].The cluster of two graphs G and H is denoted by $G\{H\}$, which can be obtained by taking a copy of G and n_{G} copies of the rooted graph H such that we identify the root of the $i^{\text {th }}$ copy of H with the $i^{\text {th }}$ vertex of G for each $i \in\left\{1,2,3, \ldots, n_{G}\right\}[6]$. For instance, the cluster of the path P_{5} and the cycle C_{3} is shown in the Figure 2.

Figure 2: $P_{5}\left\{C_{3}\right\}$

The join (sum) of two graphs G and H is a new graph that denoted by $G+H$, with the vertex set $V(G+H)$ $=V(G) \cup V(H)$ and edge set $E(G+H)=E(G) \cup$ $E(H) \cup\{u v ; u \in V(G)$ and $v \in V(H)\}$ [4]. The corona product of G and H is obtained by taking a copy of G and n_{G} copies of H and join the $i^{\text {th }}$ vertex of
G with each vertex of the $i^{\text {th }}$ copy of H for each $i \in$ $\left\{1,2,3, \ldots, n_{G}\right\}$ and denoted by $G \odot H$ [6]. For instance, the join and corona product of the complete graph K_{3} and the path P_{2} are shown in the Figure 3 respectively [7].

Figure 3: $\boldsymbol{K}_{3}+\boldsymbol{P}_{\mathbf{2}}$ and $\boldsymbol{K}_{3} \odot \boldsymbol{P}_{2}$

A graph polynomial is a graph invariant whose values are polynomials. An important degree-based polynomial is the M-Polynomial which is defined by Deutsch and Klavžar in 2014 [8]. For a graph G, the M-Polynomial is defined by:
$M(G, x, y)=\sum_{i \leq j} m_{i j}(G) x^{i} y^{j}$
where $i, j \geq 1$ and $m_{i j}$ is the number of (i, j)-edges of G, such that $i=d_{G}(u)$, and $j=d_{G}(v)$ for some vertices $u, v \in G$.
We can see that the M-Polynomial for a graph G also can be represent as:
$M(G, x, y)=\sum_{e=u v \in E(G)} x^{d_{G}(u)} y^{d_{G}(v)}$ \qquad
(2)

Many studies have done about the M-Polynomial such as computation of M-polynomial book graph and starphene graph in [9,10]. Also Basavanagoud, and et al obtained the M-polynomial of some graph operations and cycle related graphs in [11].
A graph invariant is a number related to a graph which is structural invariant, fixed under graph
automorphisms. In chemistry these invariants are known as the topological indices [2]. As a chemical descriptor, the topological index has an integer attached to the graph which features the graph, and there is no change under graph automorphism [7]. A degree based topological index of the graph G is a graph invariant of the form:
$I(G)=\sum_{e=u v \in E(G)} f\left(d_{G}(u), d_{G}(v)\right)$
where f is a function appropriately selected for possible chemical applications [8]. Unlike the other graph polynomials through this polynomial, we can easily compute more than one degree based topological indices such as Atom bond connectivity index, Geometric connectivity index and some other indices by a certain derivative or integral or sometimes both. Some formula for computing those indices from the M-Polynomial are found in [8-14] as we illustrate some of these formulas in the following Table.

Table 1: Formulas of computing some degree based topological indices from $M(G, x, y)$

Topological indices	$\boldsymbol{f (\boldsymbol { d } _ { \boldsymbol { G } } (\boldsymbol { u }) , \boldsymbol { d } _ { \boldsymbol { G } } (\boldsymbol { v }))}$	Derivation from $\boldsymbol{M}(\boldsymbol{G}, \boldsymbol{x}, \boldsymbol{y})$
Atom Bond Connectivity index	$\sum_{u v \in E(G)} \sqrt{\frac{d_{G}(u)+d_{G}(v)-2}{d_{G}(u) d_{G}(v)}}$	$\left.D_{x}^{1 / 2} Q_{(-2)}\right) S_{x}^{1 / 2} S_{y}^{1 / 2}[M(G, x, y)]_{x=1}[10,14]$
Geometric Arithmetic index	$\sum_{u v \in E(G)} \frac{2 \sqrt{d_{G}(u) d_{G}(v)}}{d_{G}(u)+d_{G}(v)}$	$2 S_{x} D_{x}^{1 / 2} D_{y}^{1 / 2}[M(G, x, y)]_{x=1} \quad[10,13,14]$
First Zagreb index	$\sum_{u v \in E(G)} d_{G}(u)+d_{G}(v)$	$\left(D_{x}+D_{y}\right)[M(G, x, y)]_{x=y=1} \quad[8,11,12]$
Second Zagreb index	$\sum_{u v \in E(G)} d_{G}(u) d_{G}(v)$	$\left(D_{x} D_{y}\right)[M(G, x, y)]_{x=y=1} \quad[8,11,12]$
Randic index	$\sum_{u v \in E(G)} \frac{1}{\sqrt{d_{G}(u) d_{G}(v)}}$	$\left(S_{x}^{1 / 2} S_{y}^{1 / 2}\right)[M(G, x, y)]_{x=y=1} \quad[8]$

where used operators are defined as[8-10,12-14]:

$$
\begin{gathered}
D_{x}=x \frac{\partial(M(G, x, y))}{\partial x}, D_{y}=y \frac{\partial(M(G, x, y))}{\partial y}, S_{x}=\int_{0}^{x} \frac{M(G, t, y)}{t} d t, S_{y}=\int_{0}^{y} \frac{M(G, x, t)}{t} d t, \\
D_{x}^{1 / 2}(M(G, x, y))=\sqrt{x \frac{\partial(M(G, x, y))}{\partial x}} \sqrt{M(G, x, y)}, D_{y}^{1 / 2}(M(G, x, y))=\sqrt{y \frac{\partial(M(G, x, y))}{\partial y}} \sqrt{M(G, x, y)} \\
S_{x}^{1 / 2}(M(G, x, y))=\sqrt{\int_{0}^{x} \frac{M(G, t, y)}{t}} d t \sqrt{M(G, x, y)}, S_{y}^{1 / 2}(M(G, x, y))=\sqrt{\int_{0}^{y} \frac{M(G, x, t)}{t}} d t \sqrt{M(G, x, y)} \\
J(M(G, x, y))=M(G, x, x), Q_{\alpha}(M(G, x, y))=x^{\alpha} M(G, x, y)
\end{gathered}
$$

One of the most recent defined degree based topological indices is Nirmala index defined by Kulli in 2021 [15], which is defined as follows:
$N(G)=\sum_{u v \in E(G)} \sqrt{d_{G}(u)+d_{G}(v)}$
where $d_{G}(u)$, and $d_{G}(v)$ are degrees of vertices u and v in G respectively. Recently, some mathematical properties of Nirmala index were studied in [16], also many studies have done on Nirmala index, such as the Nirmala index of Kragujevac trees in [17] by Ivan Gutman, and et al. Also more studies can be found, for instance different versions of Nirmala index in [18]. Also on multiplicative inverse Nirmala indices and Nirmala energy in [19, 20].
In the next section, the formula of computing Nirmala index from the M-Polynomial, some important results
about computing the M-Polynomial and next Nirmala index through the obtained polynomial are shown for certain graphs.

2 Results and Discussion

Theorem 2.1 For a graph G the formula of Nirmala index can be obtained from the M-Polynomial of G as follows:

$$
\begin{equation*}
N(G)=\left.\left(D_{x}^{1 / 2} J\right)[M(G, x, y)]\right|_{x=1} \tag{5}
\end{equation*}
$$

where the two operators $D_{x}^{1 / 2}$, and J are defined as above, and $M(G, x, y)$ is the M-Polynomial of the graph G.
Proof: Since $M(G, x, y)=\sum_{u v \in E(G)} x^{d_{G}(u)} y^{d_{G}(v)}$, then:

$$
\begin{aligned}
\left(D_{x}^{\frac{1}{2}} J\right)[M(G, x, y)] & =\left(D_{x}^{\frac{1}{2}} J\right)\left[\sum_{u v \in E(G)} x^{d_{G}(u)} y^{d_{G}(v)}\right] \\
& =\sum_{u v \in E(G)}\left(D_{x}^{\frac{1}{2}} J\right)\left[x^{d_{G}(u)} y^{d_{G}(v)}\right]=\sum_{u v \in E(G)} D_{x}^{\frac{1}{2}}\left[J\left(x^{d_{G}(u)} y^{d_{G}(v)}\right)\right] \\
& =\sum_{u v \in E(G)} D_{x}^{\frac{1}{2}}\left[x^{d_{G}(u)+d_{G}(v)}\right] \\
& =\sum_{u v \in E(G)} \sqrt{\left(d_{G}(u)+d_{G}(v)\right) x^{d_{G}(u)+d_{G}(v)} \sqrt{x^{d_{G}(u)+d_{G}(v)}}} \\
& =\sum_{u v \in E(G)} \sqrt{d_{G}(u)+d_{G}(v)}=N(G), \text { at } x=1, \text { which is the result (4). }
\end{aligned}
$$

Theorem 2.2 Let K_{n} and K_{m} be two complete graphs, then the M-Polynomial of the vertex gluing of them

$$
\begin{aligned}
& \text { is: } \quad \begin{array}{c}
d_{K_{n}(\mathrm{o}) K_{m}}(u)=d_{K_{n}(\mathrm{o}) K_{m}}(v)=m-1 . \\
M\left(K_{n}(\mathrm{o}) K_{m}, x, y\right) \quad=\binom{n-1}{2}(x y)^{n-1}+\binom{m-1}{2}(x y)^{m} \text { Cdse } 3 \text { If } e=u^{*} v \text { such that } v \in V\left(K_{n}\right), \text { then } \\
\end{array}
\end{aligned}
$$

Proof: The graph $K_{n}(0) K_{m}$ has $n+m-1$ vertices and $\binom{n}{2}+\binom{m}{2}$ edges.
Suppose that the vertex gluing point between them is u^{*}. Let $e=u v \in E\left(K_{n}(\mathrm{o}) K_{m}\right)$ then
$d_{K_{n}(0) K_{m}}(u)=d_{K_{n}(0) K_{m}}(v)=n-1$.
case 2 If $e=u v \in E\left(K_{m}\right)$ such that $u, v \neq u^{*}$ then:

Case 4 If $e=u^{*} v$ such that $v \in V\left(K_{m}\right)$, then

Case 1 If $e=u v \in E\left(K_{n}\right)$ such that $u, v \neq u^{*}$ then:

$$
\begin{aligned}
M\left(K_{n}(\mathrm{o}) K_{m}, x, y\right) & =\sum_{e=u v \in E\left(K_{n}(0) K_{m}\right)} x^{d_{K_{n}(0) K_{m}}(u)} y^{d_{K_{n}(0) K_{m}}(v)} \\
& =\sum_{e=u v \in E\left(K_{n}-u^{*}\right)} x^{(n-1)} y^{(n-1)}+\sum_{e=u v \in E\left(K_{m}-u^{*}\right)} x^{(m-1)} y^{(m-1)} \\
& +(n-1) x^{n+m-2} y^{n-1}+(m-1) x^{n+m-2} y^{m-1} \\
& =\left(\binom{n}{2}-(n-1)\right)(x y)^{n-1}+\left(\binom{m}{2}-(m-1)\right)(x y)^{m-1} \\
& +(n-1) x^{n+m-2} y^{n-1}+(m-1) x^{n+m-2} y^{m-1} \\
& =\binom{n-1}{2}(x y)^{n-1}+\binom{m-1}{2}(x y)^{m-1} \\
& +x^{n+m-2}\left[(n-1) y^{n-1}+(m-1) y^{m-1}\right] .
\end{aligned}
$$

From Theorems 2.1 and 2.2, we get the following result:
Corollary 2.1 The Nirmala index of the graph $K_{n}(o) K_{m}$ is given by:

Definition 2.1 Let K_{n}, K_{m} be two complete graphs and P_{t} be a path. We define a new graph $K_{n}\left(P_{t}\right) K_{m}$ by vertex gluing K_{n} and K_{m} to P_{t} at it's end points (see Figure 4).

$$
\begin{aligned}
N\left(K_{n}(\mathrm{o}) K_{m}\right) & =\binom{n-1}{2} \sqrt{2(n-1)}+\binom{m-1}{2} \sqrt{2(m-1)} \\
& +(n-1) \sqrt{2 n+m-3}+(m-1) \sqrt{n+2 m-3}
\end{aligned}
$$

Figure 4: $\boldsymbol{K}_{\boldsymbol{n}}\left(\boldsymbol{P}_{\boldsymbol{t}}\right) \boldsymbol{K}_{\boldsymbol{m}}$
Theorem 2.3 Let $K_{n}\left(P_{t}\right) K_{m}$ be defined as above. Then \quad The M-Polynomial of the graph $K_{n}\left(P_{t}\right) K_{m}$ is:

$$
\begin{aligned}
M\left(K_{n}\left(P_{t}\right) K_{m}, x, y\right) & =(x y)^{2}\left(y^{n-2}+y^{m-2}+t-3\right)+(n-1) x^{n} y^{n-1}+(m-1) x^{m} y^{m-1} \\
& +\binom{n-1}{2}(x y)^{n-1}+\binom{m-1}{2}(x y)^{m-1} .
\end{aligned}
$$

Proof: The graph $K_{n}\left(P_{t}\right) K_{m}$ has $n+m+t-2$ vertices and $\binom{n}{2}+\binom{m}{2}+t-1$ edges. For all vertex v of the graph $K_{n}\left(P_{t}\right) K_{m}$ there are the following possibilities of degree $v ; 2, n-1, n, m-1, m$. Let $e=u v \in$ $E\left(K_{n}\left(P_{t}\right) K_{m}\right)$ then based on this information we have the following illustration table (see Table 2).

Table 2: Edge partitions and number of edges in each partition based on degree of end vertices in each edges
of the graph $K_{n}\left(P_{t}\right) K_{m}$

of the graph $\boldsymbol{K}_{\boldsymbol{n}}\left(\boldsymbol{P}_{\boldsymbol{t}}\right) \boldsymbol{K}_{\boldsymbol{m}}$	
Type of edges	Number of edges
$(2,2)$	$t-3$
$(2, n)$	1
$(2, m)$	1
$(n, n-1)$	$n-1$
$(n-1, n-1)$	$\left.\begin{array}{c}n \\ 2\end{array}\right)-n+1$
$(m, m-1)$	$m-1$
$(m-1, m-1)$	$\binom{m}{2}-m+1$

Hence,

$$
\begin{aligned}
M\left(K_{n}\left(P_{t}\right) K_{m}, x, y\right) & =(t-3)(x y)^{2}+x^{2} y^{n}+x^{2} y^{m}+(n-1) x^{n} y^{n-1}+(m-1) x^{m} y^{m-1} \\
& +\left[\binom{n}{2}-n+1\right](x y)^{n-1}+\left[\binom{m}{2}-m+1\right](x y)^{m-1} \\
& =(x y)^{2}\left(y^{n-2}+y^{m-2}+t-3\right)+(n-1) x^{n} y^{n-1}+(m-1) x^{m} y^{m-1} \\
& +\binom{n-1}{2}(x y)^{n-1}+\binom{m-1}{2}(x y)^{m-1} .
\end{aligned}
$$

From Theorems 2.1 and 2.3, we get the following result:

Corollary 2.2 The Nirmala index of the graph $K_{n}\left(P_{t}\right) K_{m}$ is:

$$
\begin{aligned}
N\left(K_{n}\left(P_{t}\right) K_{m}\right) & =\binom{n-1}{2} \sqrt{2(n-1)}+\binom{m-1}{2} \sqrt{2(m-1)}+(n-1) \sqrt{2 n-1} \\
& +(m-1) \sqrt{2 m-1}+\sqrt{n+2}+\sqrt{n+2}+2(t-3) .
\end{aligned}
$$

Definition 2.2 Let K_{n} be a complete graph and C_{n} be a cycle. Suppose that we have n copies of K_{n} such that each copy of K_{n} intersects with C_{n} in only a unique edge and no two copies of K_{n} are intersected in their edges (see Figure 5), we denote the constructed graph by $C_{n}(e) K_{n}$.

Figure 5: $\boldsymbol{C}_{\boldsymbol{n}}(e) \boldsymbol{K}_{\boldsymbol{n}}$
Theorem 2.4 Let K_{n} be a complete graph and C_{n} be a cycle, and $C_{n}(e) K_{n}$ be defined as above, then the M Polynomial of the $C_{n}(e) K_{n}$ is:
$M\left(C_{n}(e) K_{n}, x, y\right)=n(x y)^{n-1}\left[(x y)^{n-1}+2(n-\right.$
2) $x^{n-1}+\binom{n-2}{2}$.

Proof: We see that ta graph $C_{n}(e) K_{n}$ has $n(n-1)$ vertices and $n\binom{n}{2}$ edges. If $e=u v \in E\left(C_{n}(e) K_{n}\right)$, then there are three possible cases for e :
Case 1 If $e=u v \in E\left(C_{n}\right)$ then $d_{C_{n}(e) K_{n}}(u)=$ $d_{C_{n}(e) K_{n}}(v)=2(n-1)$,
Case 2 If $e=u v_{i}$ such that $u \in V\left(K_{n}\right)$ for some copy of K_{n} then $d_{C_{n}(e) K_{n}}(u)=n-1$ and $d_{C_{n}(e) K_{n}}\left(v_{i}\right)=2(n-$ 1), for all $i \in\{1,2,3, \ldots, n\}$

Case 3 If $e=u v \in E\left(K_{n}\right)$ for some copy of K_{n} such that $u, v \neq v_{i}$ for all $i \in\{1,2,3, \ldots, n\}$ then $d_{C_{n}(e) K_{n}}(u)=$ $d_{C_{n}(e) K_{n}}(v)=n-1$.
Based on the above three cases we have the following table (see Table 3).

Table 3: Edge partitions and number of edges in each partition based on degree of end vertices in each edges of the graph $C_{n}(e) K_{n}$

of the graph $C_{\boldsymbol{n}}(\boldsymbol{e}) K_{\boldsymbol{n}}$	
Type of edges	Number of edges
$(2(n-1), 2(n-1))$	n
$(2(n-1), n-1)$	$2 n(n-2)$
$(n-1, n-1)$	$n\binom{n-2}{2}$
Sum of all edges	$n\binom{n}{2}$

Hence,

$$
\begin{aligned}
M\left(C_{n}(e) K_{n}, x, y\right) & =\sum_{e=u v \in E\left(C_{n}(e) K_{n}\right)} x^{d_{C_{n}(e) K_{n}}(u)} y^{d_{C_{n}(e) K_{n}}(v)} \\
& =n(x y)^{2(n-1)}+2 n(n-2) x^{2(n-1)} y^{n-1}+n\binom{n-2}{2}(x y)^{n-1} \\
& =n(x y)^{n-1}\left[(x y)^{n-1}+2(n-2) x^{n-1}+\binom{n-2}{2}\right] .
\end{aligned}
$$

From Theorems 2.1 and 2.4 , we get the following result:
Corollary 2.3 The Nirmala index of the graph $C_{n}(e) K_{n}$ is:

$$
N\left(C_{n}(e) K_{n}\right)=n \sqrt{n-1}\left[2+2(n-2) \sqrt{3}+\sqrt{2}\binom{n-2}{2}\right] .
$$

Theorem 2.5 Let G be any graph and K_{n} be the complete graph, then the M-Polynomial of the cluster graph of G and K_{n} is:
$M\left(G\left\{K_{n}\right\}, x, y\right)=(x y)^{n-1}\left[M(G, x, y)+(n-1) \sum_{u \in V(G)} x^{d_{G}(u)}+\right.$ $n_{G}\binom{n-1}{2}$.

Proof: Clearly the graph $G\left\{K_{n}\right\}$ has $n n_{G}$ vertices and $m_{G}+n_{G}\binom{n}{2}$ edges, where m_{G} is the size of G.
Let $e=u v \in E\left(G\left\{K_{n}\right\}\right)$ then,
Case 1 If $e=u v \in E(G)$ then $d_{G\left\{K_{n}\right\}}(u)=d_{G}(u)+n-$ 1 and $d_{G\left\{K_{n}\right\}}(v)=d_{G}(v)+n-1$.
Case 2 If $e=u v \in E\left(K_{n}\right)$ such that u be one of the identified vertex and $v \in V\left(K_{n}\right)$, for some copy of K_{n}, then $d_{G\left\{K_{n}\right\}}(u)=d_{G}(u)+n-1$ and $d_{G\left\{K_{n}\right\}}(v)=n-1$.

$$
\begin{aligned}
& M\left(G\left\{K_{n}\right\}, x, y\right)=\sum_{e=u v \in E\left(G\left\{K_{n}\right\}\right)} x^{d_{G\left\{K_{n}\right\}}(u)} y^{d_{G\left\{K_{n}\right\}}(v)} \\
&= \sum_{e=u v \in E(G)} x^{d_{G}(u)+n-1} y^{d_{G}(v)+n-1} \\
&+n_{G} \sum_{e=u v \in E\left(K_{n}\right) ;} \sum_{\text {is the } i^{t h}} \sum_{\text {identified vertex }} x^{d_{G}(u)+n-1} y^{n-1} \\
&+n_{G} \sum_{e=u v \in E\left(K_{n}\right) ; u, v \text { are not the identified vertex }}(x y)^{n-1} \\
&=(x y)^{n-1} M(G, x, y)+(n-1) \sum_{u \in V(G)}^{d_{G}(u)+n-1} y^{n-1} \\
&+ n_{G}\left(\frac{n(n-1)}{2}-(n-1)\right)(x y)^{n-1} \\
&=(x y)^{n-1}\left[M(G, x, y)+(n-1) \sum_{u \in V(G)} x^{d_{G}(u)}+n_{G}\binom{n-1}{2}\right] .
\end{aligned}
$$

From Theorems 2.1 and 2.5, we get the following result:
Corollary 2.4 The Nirmala index of $G\left\{K_{n}\right\}$ is:
$N\left(G\left\{K_{n}\right\}\right)=\sum_{u v \in E(G)} \sqrt{d_{G}(u)+d_{G}(v)+2(n-1)}$ $+(n-1) \sum_{u \in V(G)} \sqrt{d_{G}(u)+2(n-1)}+n_{G}\binom{n-1}{2} \sqrt{2(n-\mathbb{C}}$ ase 2 If $e=u v \in E\left(P_{n}\right)$, for some copy of P_{n} such that u be the root vertex of P_{n}. Then $d_{G\left\{P_{n}\right\}}(u)=d_{G}(u)$ Theorem 2.6 Let G be any graph and $P_{n}(n \geq 3)$ be a $\quad+1$ and $d_{G\left\{P_{n}\right\}}(v)=2$. path such that one of it's end vertices be it's root. Then the M-Polynomial of the cluster graph $G\left\{P_{n}\right\}$ is:
$M\left(G\left\{P_{n}\right\}, x, y\right)=$
$(x y)\left[M(G, x, y)+y \sum_{u \in V(G)} x^{d_{G}(u)}+(n-\right.$
3) $\left.n_{G} x y+n_{G} x\right]$.

$$
\begin{aligned}
M\left(G\left\{P_{n}\right\}, x, y\right) & =\sum_{e=u v \in E\left(G\left\{P_{n}\right\}\right)} x^{d_{G\left\{P_{n}\right\}}(u)} y^{d_{G\left\{P_{n}\right\}}(v)} \\
& =\sum_{e=u v \in E(G)} x^{d_{G}(u)+1} y^{d_{G}(v)+1}+\sum_{u \in V(G)} x^{d_{G}(u)+1} y^{2} \\
& +n_{G}(n-3)(x y)^{2}+n_{G} x^{2} y \\
& =(x y)\left[M(G, x, y)+y \sum_{u \in V(G)} x^{d_{G}(u)}+(n-3) n_{G} x y+n_{G} x\right] .
\end{aligned}
$$

Proof: Let $e=u v \in E\left(G\left\{P_{n}\right\}\right)$, then there are three cases:
Case 1 If $e=u v \in E(G)$. Then $d_{G\left\{P_{n}\right\}}(u)=d_{G}(u)+1$ and $d_{G\left\{P_{n}\right\}}(v)=d_{G}(v)+1$.

Case 3 If $e=u v \in E\left(P_{n}\right)$ for some copy of P_{n} such that u, v are not root of P_{n}. Then $d_{G\left\{P_{n}\right\}}(u)=d_{G\left\{P_{n}\right\}}(v)$ $=2$ or $d_{G\left\{P_{n}\right\}}(u)=2, d_{G\left\{P_{n}\right\}}(v)=1$.
From the above cases,

From Theorems 2.1 and 2.6, we get the following result:
Corollary 2.5 The Nirmala index of $G\left\{P_{n}\right\}$ is:
$N\left(G\left\{P_{n}\right\}\right)=\sum_{e=u v \in E(G)} \sqrt{d_{G}(u)+d_{G}(v)+2}+$
$\sum_{u \in V(G)} \sqrt{d_{G}(u)+3}+n_{G}[2 n-6+\sqrt{3}]$

$$
\sum_{u \in V(G)} \sqrt{d_{G}}(u)+3+n_{G}[2 n-6+\sqrt{3}]
$$

Theorem 2.7 Let G be any graph and C_{n} be a cycle graph then the M-Polynomial of the cluster graph $G\left\{C_{n}\right\}$ is:
$M\left(G\left\{C_{n}\right\}\right)=$
$(x y)^{2}\left[M(G, x, y)+2 \sum_{u \in V(G)} x^{d_{G}(u)}+n_{G}(n-2)\right]$.

Proof: Let $e=u v \in E\left(G\left\{C_{n}\right\}\right)$. Then
Case 1 If $e=u v \in E(G)$. Then $d_{G\left\{C_{n}\right\}}(u)=d_{G}(u)+2$ and $d_{G\left\{C_{n}\right\}}(v)=d_{G}(v)+2$.
Case 2 If $e=u v \in E\left(C_{n}\right)$, for some copy of C_{n} such that u be the root vertex of C_{n}. Then $d_{G\left\{C_{n}\right\}}(u)=$ $d_{G}(u)+2$ and $d_{G\left\{C_{n}\right\}}(v)=2$.

Case 3 If $e=u v \in E\left(C_{n}\right)$ for some copy of C_{n} such that u, v are not root of C_{n}. Then $d_{G\left\{C_{n}\right\}}(u)=d_{G\left\{C_{n}\right\}}$ (v) $=2$.
From the above cases,

$$
\begin{aligned}
M\left(G\left\{C_{n}\right\}, x, y\right) & =\sum_{e=u v \in E\left(G\left\{C_{n}\right\}\right)} x^{d_{G\left\{C_{n}\right\}}(u)} y^{d_{G\left\{C_{n}\right\}}(v)} \\
& =\sum_{e=u v \in E(G)} x^{d_{G}(u)+2} y^{d_{G}(v)+2} \\
& +n_{G} \sum_{e=u v \in E\left(C_{n}\right) ;} u \sum_{\text {is the root vertex of } C_{n}} x^{d_{G}(u)+2} y^{2} \\
& +n_{G} \sum_{e=u v \in E\left(C_{n}\right) ;} \sum_{u, v \text { are not root vertex of } C_{n}}(x y)^{2} \\
& =(x y)^{2} \sum_{e=u v \in E(G)} x^{d_{G}(u)} y^{d_{G}(v)}+2 \sum_{u \in V(G)} x^{d_{G}(u)+2} y^{2}+(n-2) n_{G}(x y)^{2} \\
& =(x y)^{2}\left[M(G, x, y)+2 \sum_{u \in V(G)} x^{d_{G}(u)}+n_{G}(n-2)\right] .
\end{aligned}
$$

From Theorems 2.1 and 2.7, we get the following $M(G\{S n\}, x, y)=$ result:
Corollary 2.6 The Nirmala index of $G\left\{C_{n}\right\}$ is:
$N\left(G\left\{C_{n}\right\}\right)=\sum_{e=u v \in E(G)} \sqrt{d_{G}(u)+d_{G}(v)+4}+$ $2\left[n_{G}(n-2)+\sum_{u \in V(G)} \sqrt{d_{G}(u)+4}\right]$.

Theorem 2.8 Let G be any graph and S_{n} be the star graph, such that the center vertex of S_{n} be it's root vertex. Then the M-Polynomial of the cluster graph $(x y)^{n} M(G, x, y)+n x^{n} y \sum_{u \in V(G)} x^{d_{G}(u)}$
Proof: Let $e=u v \in E\left(G\left\{S_{n}\right\}\right)$. Then
Case 1 If $e=u v \in E(G)$. Then $d_{G\left\{S_{n}\right\}}(u)=d_{G}(u)+n$ and $d_{G\left\{S_{n}\right\}}(v)=d_{G}(v)+n$.
Case 2 If $e=u v \in E\left(S_{n}\right)$, for some copy of S_{n} such that u be the root vertex of S_{n}. Then $d_{G\left\{S_{n}\right\}}(u)=d_{G}(u)$ $+n$ and $d_{G\left\{S_{n}\right\}}(v)=1$.
From the above cases, $G\left\{S_{n}\right\}$ is

$$
\begin{aligned}
M\left(G\left\{S_{n}\right\}, x, y\right) & =\sum_{e=u v \in E\left(G\left\{S_{n}\right\}\right)} x^{d_{G\left\{S_{n}\right\}}(u)} y^{d_{G\left\{S_{n}\right\}}(v)} \\
& =\sum_{e=u v \in E(G)} x^{d_{G}(u)+n} y^{d_{G}(v)+n}+\sum_{u \in V(G)} x^{d_{G}(u)+n}(n y) \\
& =(x y)^{n} M(G, x, y)+n x^{n} y \sum_{u \in V(G)} x^{d_{G}(u)} .
\end{aligned}
$$

From Theorems 2.1 and 2.8, we get the following result:
Corollary 2.7 The Nirmala index of $G\left\{S_{n}\right\}$ is:
$N\left(G\left\{S_{n}\right\}\right)=$
$\sum_{e=u v \in E(G)} \sqrt{d_{G}(u)+d_{G}(v)+2 n}+n \sum_{u \in V(G)} \sqrt{d_{G}(u)+n+1}$.
Theorem 2.9 Let G_{1} and G_{2} be two graphs with vertex sets $V\left(G_{1}\right), V\left(G_{2}\right)$, edge sets $E\left(G_{1}\right), E\left(G_{2}\right)$, and orders n_{1}, n_{2} respectively. Then the M-Polynomial of the join of G_{1} and G_{2} is
$M\left(G_{1}+G_{2}, x, y\right)=(x y)^{n_{2}} M\left(G_{1}, x, y\right)+(x y)^{n_{1}} M\left(G_{2}, x, y\right)$

$$
+x^{n_{2}} y^{n_{1}} \sum_{u \in V\left(G_{1}\right)} \sum_{v \in V\left(G_{2}\right)} x^{d_{G_{1}}(u)} y^{d_{G_{2}}(v)}
$$

Proof: Let $G=G_{1}+G_{2}$, and $e=u v \in E(G)$. Then,
Case 1 If $e=u v \in E\left(G_{1}\right)$ then $d_{G}(u)=d_{G_{1}}(u)+$ n_{2} and $d_{G}(v)=d_{G_{1}}(v)+n_{2}$,
Case 2 If $e=u v \in E\left(G_{2}\right)$ then $d_{G}(u)=d_{G_{2}}(u)+$ n_{1} and $d_{G}(v)=d_{G_{2}}(v)+n_{1}$,
Case 3 If $e=u v$ such that $u \in V\left(G_{1}\right)$ and $v \in V\left(G_{2}\right)$ then $d_{G}(u)=d_{G_{1}}(u)+n_{2}$ and $d_{G}(v)=d_{G_{2}}(v)+$ n_{1}. From the above three cases,

$$
\begin{aligned}
M(G, x, y) & =\sum_{e=u v \in E(G)} x^{d_{G}(u)} y^{d_{G}(v)} \\
& =\sum_{e=u v \in E\left(G_{1}\right)} x^{d_{G}(u)} y^{d_{G}(v)}+\sum_{e=u v \in E\left(G_{2}\right)} x^{d_{G}(u)} y^{d_{G}(v)}+\sum_{u \in V\left(G_{1}\right)} \sum_{v \in V\left(G_{2}\right)} x^{d_{G}(u)} y^{d_{G}(v)} \\
& =\sum_{e=u v \in E\left(G_{1}\right)} x^{d_{G_{1}}(u)+n_{2}} y^{d_{G_{1}}(v)+n_{2}}+\sum_{e=u v \in E\left(G_{2}\right)} x^{d_{G_{2}(u)+n_{1}}} y^{d_{G_{2}}(v)+n_{1}} \\
& +\sum_{u \in V\left(G_{1}\right)} \sum_{v \in V\left(G_{2}\right)} x^{d_{G_{1}}(u)+n_{2}} y^{d_{G_{2}}(v)+n_{1}} \\
& =(x y)^{n_{2}} M\left(G_{1}, x, y\right)+(x y)^{n_{1}} M\left(G_{2}, x, y\right)+x^{n_{2}} y^{n_{1}} \sum_{u \in V\left(G_{1}\right)} \sum_{v \in V\left(G_{2}\right)} x^{d_{G_{1}}(u)} y^{d_{G_{2}}(v)} .
\end{aligned}
$$

From Theorems 2.1 and 2.9, we get the following result:

Corollary 2.8 The Nirmala index of the join graph $G_{1}+G_{2}$ is:

$$
\begin{aligned}
N\left(G_{1}+G_{2}\right) & =\sum_{e=u v \in E\left(G_{1}\right)} \sqrt{d_{G_{1}}(u)+d_{G_{1}}(v)+2 n_{2}}+\sum_{e=u v \in E\left(G_{2}\right)} \sqrt{d_{G_{2}}(u)+d_{G_{2}}(v)+2 n_{1}} \\
& +\sum_{u \in V\left(G_{1}\right)} \sum_{v \in V\left(G_{2}\right)} \sqrt{d_{G_{1}}(u)+d_{G_{2}}(v)+n_{1}+n_{2}} .
\end{aligned}
$$

Theorem 2.10 Let G_{1} and G_{2} be two graphs with vertex sets $V\left(G_{1}\right), V\left(G_{2}\right)$, edge sets $E\left(G_{1}\right), E\left(G_{2}\right)$, and orders $n_{1}, \quad n_{2}$ respectively. Then the M Polynomial of the corona product of G_{1} and G_{2} is: $M\left(G_{1} \odot G_{2}, x, y\right)=(x y)^{n_{2}} M\left(G_{1}, x, y\right)+n_{1} x y M\left(G_{2}, x\right.$, Case 3 If $e=u v$ such that $u \in V\left(G_{1}\right)$, and $v \in$

$$
+x^{n_{2}} y \sum_{u \in V\left(G_{1}\right)} \sum_{v \in V\left(G_{2}\right)} x^{d_{G_{1}}(u)} y^{d_{G}\left(v n_{2}\right)} \text { and } d_{G}(v)=d_{G_{2}}(v)+1
$$

Proof: Let $G=G_{1} \odot G_{2}$, and $e=u v \in E(G)$. Then there are the following cases, Case 1 If $e=u v \in E\left(G_{1}\right)$, then $d_{G}(u)=d_{G_{1}}(u)+$

$$
\begin{aligned}
M(G, x, y) & =\sum_{e=u v \in E(G)} x^{d_{G}(u)} y^{d_{G}(v)} \\
& =\sum_{e=u v \in E\left(G_{1}\right)} x^{d_{G}(u)} y^{d_{G}(v)}+n_{1} \sum_{e=u v \in E\left(G_{2}\right)} x^{d_{G}(u)} y^{d_{G}(v)}+\sum_{u \in V\left(G_{1}\right)} \sum_{v \in V\left(G_{2}\right)} x^{d_{G}(u)} y^{d_{G}(v)} \\
& =\sum_{e=u v \in E\left(G_{1}\right)} x^{d_{G_{1}}(u)+n_{2}} y^{d_{G_{2}}(v)+n_{2}}+n_{1} \sum_{e=u v \in E\left(G_{2}\right)} x^{d_{G_{2}}(u)+1} y^{d_{G_{2}}(v)+1} \\
& +\sum_{u \in V\left(G_{1}\right)} \sum_{v \in V\left(G_{2}\right)} x^{d_{G_{1}}(u)+n_{2}} y^{d_{G_{2}}(v)+1} \\
& =(x y)^{n_{2}} \sum^{e=u v \in E\left(G_{1}\right)} x^{d_{G_{1}}(u)} y^{d d_{G_{2}}(v)}+n_{1} x y \sum_{e=u v \in E\left(G_{2}\right)} x^{d_{G_{2}}(u)} y^{d_{G_{2}}(v)} \\
& +x^{n_{2}} y \sum_{u \in V\left(G_{1}\right)} \sum_{v \in V\left(G_{2}\right)}^{d_{G_{1}}(u)} y^{d_{G_{2}}(v)} \\
& =(x y)^{n_{2} M\left(G_{1}, x, y\right)+n_{1} x y M\left(G_{2}, x, y\right)+x^{n_{2}} y \sum_{u \in V\left(G_{1}\right)} \sum_{v \in V\left(G_{2}\right)} x^{d_{G_{1}}(u)} y^{d_{G_{2}}(v)} .} .
\end{aligned}
$$

From Theorems 2.1 and 2.10, we get the following result:
$n_{2} \quad$ and $\quad d_{G}(v)=d_{G_{1}}(v)+n_{2}$,
Case 2 If $e=u v \in E\left(G_{2}\right)$ for some copies of G_{2}, then $d_{G}(u)=d_{G_{2}}(u)+1$ and $d_{G}(v)=d_{G_{2}}(v)+1$,
Case 3 If $e=u v$ such that $u \in V\left(G_{1}\right)$, and $v \in$

From the above three cases,

Corollary 2.9 The Nirmala index of the corona graph $G_{1} \odot G_{2}$ is:

$$
\begin{aligned}
N\left(G_{1} \odot G_{2}\right) & =\sum_{e=u v \in E\left(G_{1}\right)} \sqrt{d_{G_{1}}(u)+d_{G_{1}}(v)+2 n_{2}}+n_{1} \sum_{e=u v \in E\left(G_{2}\right)} \sqrt{d_{G_{2}}(u)+d_{G_{2}}(v)+2} \\
& +\sum_{u \in V\left(G_{1}\right)} \sum_{v \in V\left(G_{2}\right)} \sqrt{d_{G_{1}}(u)+d_{G_{2}}(v)+n_{2}+1}
\end{aligned}
$$

Conclusions

In conclusion, we studied the M-Polynomial and Nirmala index, in such away computing both concepts of some certain graphs. The exact

References

[1] Chartrand, G. and Zhang, P. (2008). Chromatic graph theory. Chapman and Hall/CRC: 483 pp.
[2] Alikhani, S.; Hasni, R. and Arif, N.E. (2014). On the atom-bond connectivity index of some families of dendrimers. Journal of Computational and Theoretical Nanoscience, 11(8):1802-1805.
[3] Dong, F.M.; Koah, K.M. and Teo, K.L. (2005). Chromatic polynomials and chromaticity of graphs. World Scientific: 356 pp.
[4] Vasudev, C. (2006). Graph theory with applications. New Age International: 466 pp.
[5] Zwillinger, D. (2018). CRC standard mathematical tables and formulas. chapman and hall/CRC: 858 pp .
[6] Stevanovic, D. (2001). Hosoya polynomial of composite graphs. Discrete mathematics, 235(1-3):237-244.
[7] Arif, N.E.; Karim, A.H. and Hasni, R. (2022). Sombor index of some graph operations. International Journal of Nonlinear Analysis and Applications, 13(1):2561-2571.
[8] Deutsch, E. and Klavžar, S. (2014).Mpolynomial and degree-based topological indices. arXiv preprint arXiv:1407.1592.
[9] Khalaf, A.J.M. et al. (2020). M-Polynomial and topological indices of book graph. Journal of Discrete Mathematical Sciences and Cryptography, 23(6):1217-1237.
[10] Chaudhry, F. et al. (2021). On computation of M-Polynomial and topological indices of starphene graph. Journal of Discrete Mathematical Sciences and Cryptography, 24(2):401-414.
[11] Basavanagoud, B.; Barangi, A.P. and Jakkannavar, P. (2019). M-polynomial of some graph
computational formulas are presented of them. These theoretical results are proved. Our results could be beneficial to compute other topological indices for the same studied graphs.
operations and cycle related graphs. Iranian Journal of Mathematical Chemistry, 10(2):127-150.
[12] Raza, Z. et al. (2020). M-polynomial and degree based topological indices of some nanostructures. Symmetry, 12(5):831.
[13] Afzal, F. et al. (2020). Some new degree based topological indices via m-polynomial. Journal of Information and Optimization Sciences, 41(4):10611076.
[14] Cancan, M, et al. (2020). Some new topological indices of silicate network via m-polynomial. Journal of Discrete Mathematical Sciences and Cryptography, 23(6):1157-1171.
[15] Kulli. V.R. (2021). Nirmala index. International Journal of Mathematics Trends and Technology, 67(3):8-12.
[16] Kulli. V.R. and Gutman, I. (2021). On some mathematical properties of nirmala index. Annals of pure and Applied Mathematics, 23(2):93-99.
[17] Gutman, I.; Kulli. V.R. and Redzepovic, I. (2021). Nirmala index of kragujevac trees. International Journal of Mathematics Trends and Technology, 67(6):44-49.
[18] Kulli. V.R. (2021). Different versions of nirmala index of certain chemical structures. International Journal of Mathematics Trends and Technology, 67(7):56-63.
[19] Kulli. V.R. (2021). On multiplicative inverse nirmala indices. Annals of Pure and Applied Mathematics, 23(2):57-61.
[20] Gutman, I. and Kulli, V.R. (2021). Nirmala energy. Open Journal of Discrete Applied Mathematics, 4(2):11-16.

متددة الحدود من النمط M ومؤثر نيرمالا لبيانات مركبة محددة

ئاكار حسن كريم¹ ، نبيل عزالدين عارف² ، اياد محمد رمضان1 ${ }^{1}$ ،
1 قسم الرياضيات ، كلية العلوم ، جامعة السلبيانية ، السليمانية ، العراق 2 قسم الرياضيات ، كلية علوم الحاسوب والرياضيات , جامعة تكريت , تكريت ، العرق

الملخص
متعددة الحدود من النمط M واحدة من متعددات الحدود المهمة والجديرة بالاهتمام في نظريـة البيان الكيميائية. في هذا البحث قمنا باحتساب متعددة الحدود من النمط M لبيانات مركبة محددة اضـافة الى احتساب مؤثر نيرمالا من خلال متعددة الحدود المذكورة. والبيانات المركبة هذه حصلنا عليها في هذا البحث من خلال اجراء عمليات الربط وكورونا والعنقودية لبيانات بسيطة معينة.

