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ABSTRACT 

The study deals with the notion of an approximaitly primary 

submodules of unitary left 𝑅-module 𝑀 over a commutative ring 𝑅 with 

identity as a generalization of a primary submodules and approximaitly 

prime submodules, where a proper submodule 𝑁 of an 𝑅-module 𝑀 is 

called an approximaitly primary submodule of 𝑀, if whenever 𝑎𝑦 ∈ 𝑁, 

for 𝑎 ∈ 𝑅, 𝑦 ∈ 𝑀, implies that either 𝑦 ∈ 𝑁 + 𝑠𝑜𝑐(𝑀) or 𝑎𝑘𝑀 ⊆ 𝑁 +
𝑠𝑜𝑐(𝑀) for some positive integer 𝑘 of 𝑍. Several characterizations, basic 

properties of this concept are given. On the other hand the relationships 

of this concept with some classes of modules are studied. Furthermore, 

the behavior of approximaitly primary submodule under 𝑅-

homomorphism are discussed. 

 

1. Introduction 
The study deals with the concept of the prime 

submodule, which is one on the common concepts. 

The first to study and submit was by Dauns in 1978, 

“where a proper submodule 𝑁 of an 𝑅-module 𝑀 is 

called prime if whenever 𝑎𝑦 ∈ 𝑁, for 𝑎 ∈ 𝑅, 𝑦 ∈ 𝑀, 

implies that either 𝑦 ∈ 𝑀 or 𝑟 ∈ [𝑁:𝑅𝑀]” [1]. 

“Primary submodule, was introduced and studied by 

Lu in 1989 as generalization of prime submodules, 

where a proper submodule 𝑁 of an 𝑅-module 𝑀 is 

called primary if whenever 𝑎𝑦 ∈ 𝑁, for 𝑎 ∈ 𝑅, 𝑦 ∈
𝑀, implies that either 𝑦 ∈ 𝑁 or 𝑎𝑘𝑀 ⊆ 𝑁 for some 

positive integer 𝐾 of 𝑍” [2]. Recently several 

generalizations of primary submodules were 

introduced for example “Weakly primary 

submodules, Quasi-primary submodules, Nearly 

primary submodules,𝛹-primary submodules, 2-

absorbing primary submodules and pseudo primary-

2-absorbing submodules” see [3-8]. The study also 

focused on other generalization of primary 

submodule, which we called it an approximaitly 

primary submodule, this concept is also 

generalization of approximaitly prime submodules 

and approximaitly quasi-prime submodules see 

[9,10]. Several basic properties, examples and 

characterizations of approximaitly primary 

submodules are given. In this part of the paper we 

will recall some basic definitions, that we used them 

in the sequel. Recall that the socle   of a module 𝑀 

denoted by 𝑠𝑜𝑐(𝑀) is the intersection of all essential 

submodules of 𝑀 [11], where a non-zero submodule 

𝑁 of an 𝑅-module 𝑀 is called essential if 𝑁 ∩ 𝐾 ≠
(0) for each non-zero submodule 𝐾 of 𝑀 [11]. Recall 

that a proper submodule 𝑁 of an 𝑅-module 𝑀 is 

called an approximaitly prime if whenever 𝑎𝑦 ∈ 𝑁 

for 𝑎 ∈ 𝑅, y∈ 𝑀, implies that either 𝑦 ∈ 𝑁 + 𝑠𝑜𝑐(𝑀) 
or 𝑎 ∈ [𝑁 + 𝑠𝑜𝑐(𝑀):𝑅𝑀] [9], and a proper 

submodule 𝑁 of an 𝑅-module 𝑀 is called an 

approximaitly quasi-prime if whenever 𝑎𝑏𝑦 ∈ 𝑁 for 

𝑎, 𝑏 ∈ 𝑅, y∈ 𝑀, implies that either 𝑎𝑦 ∈ 𝑁 + 𝑠𝑜𝑐(𝑀) 
or 𝑏𝑦 ∈ 𝑁 + 𝑠𝑜𝑐(𝑀) [10]. If 𝐾 is a submodule of an 

𝑅-module 𝑀, and 𝐼 is an ideal of 𝑅, then [𝐾:𝑀 𝐼] =
{𝑥 ∈ 𝑀: 𝑥𝐼 ⊆ 𝐾} is a submodule of 𝑀 containing 𝐾 

[12] and [𝐾:𝑀 𝑅] = 𝐾 [13]. Recall that an 𝑅-module 

𝑀 is non-singular if 𝑀 = 𝑍(𝑀) = {𝑦 ∈ 𝑀: 𝑦𝐽 =
(0) for some essential 𝐽 of 𝑅} [11]. It is well-know 

that if 𝑀 is non-singular then 𝑠𝑜𝑐(𝑀) = 𝑠𝑜𝑐(𝑅)𝑀 

[11, Coro. 1.26]. recall that an 𝑅-module 𝑀 is 

multiplication if every submodule 𝐾 of 𝑀 is of the 

form 𝐾 = 𝐼𝑀 for some ideal 𝐼 of 𝑅. In particular 

𝐾 = [𝐾:𝑅𝑀]𝑀 [14]. Recall that an 𝑅-module 𝑀 is 

faithful if 𝑎𝑛𝑛𝑅(𝑀) = (0). It is well-know if 𝑀 is 

faithful multiplication then 𝑠𝑜𝑐(𝑀) = 𝑠𝑜𝑐(𝑅)𝑀 [14, 

Coro. 2.14]. 

2. Approximaitly Primary Submodules 
This section intrudes the definition of the notion of 

approximaitly primary submodule and discuss some 

of it is basic properties, and some characterizations of 

this are given. 
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Definition 2.1 : A proper submodule 𝑁of an 𝑅-

module 𝑀 is called an approximaitly primary (for 

short app-primary) submodule of 𝑀, if whenever 

𝑎𝑦 ∈ 𝐿, where 𝑎 ∈ 𝑅, 𝑦 ∈ 𝑀, implies that either 

𝑦 ∈ 𝑁 + 𝑠𝑜𝑐(𝑀) or 𝑎𝑛𝑀 ⊆ 𝑁 + 𝑠𝑜𝑐(𝑀) for some 

positive integer 𝑛 of 𝑍. And an ideal 𝐽 of a ring 𝑅 is 

called an app-primary ideal of 𝑅 if  𝐽 is an app-

primary submodule of an 𝑅-module 𝑅. 

Remarks and Examples 2.2 : 

1) It is clear that every primary submodule of an 𝑅-

module 𝑀is an app-primary submodule, but  not 

conversely. The following example explains that: 

Consider the 𝑍-module 𝑍12 , the submodule 𝑁 = 〈6̅〉 
is not primary submodule of  𝑍12 , Since 2. 3̅ ∈ 𝑁 for 

2 ∈ 𝑍, 3̅ ∈ 𝑍12 , but 3̅ ∉ 𝑁 and 2 ∉ √[〈6̅〉:𝑍 𝑍12] =

√6𝑍 = 6𝑍. While 𝑁 = 〈6̅〉 is an app-primary 

submodule of 𝑍12 since 𝑠𝑜𝑐(𝑍12) = 〈2̅〉 and for all 

𝑎 ∈ 𝑍, 𝑦 ∈ 𝑍12 such that 𝑎𝑦 ∈ 〈6̅〉  implies that either 

𝑦 ∈ 〈6̅〉  + 𝑠𝑜𝑐(𝑍12) = 〈6̅〉 + 〈2̅〉 = 〈2̅〉 or 𝑎 ∈

√[〈6̅〉 + 𝑠𝑜𝑐(𝑍12):𝑍 𝑍12]= 

√[〈6̅〉 + 〈2̅〉:𝑍 𝑍12] = √[〈2̅〉:𝑍 𝑍12] = √2𝑍 = 2𝑍. 

That is if 2. 3̅ ∈ 〈6̅〉, implies that 

2 ∈ √[〈6̅〉 + 𝑠𝑜𝑐(𝑍12):𝑍 𝑍12] = 2𝑍. 

2) It is clear that every approximaitly prime 

submodule of an 𝑅-module 𝑀 is an app-primary 

submodule, but the convers is not true in general. The 

following example shows that. 

Consider the 𝑍-module 𝑍, the submodule 𝑁 = 〈8̅〉 is 

not approximaitly-prime submodule of  𝑍, since  

2.4 ∈ 〈8̅〉 but 2 ∉ [〈8̅〉 + 𝑠𝑜𝑐(𝑍):𝑍 𝑍] =
[〈8̅〉 + (0):𝑍 𝑍] = 〈8̅〉 and 4 ∉ 〈8̅〉 + 𝑠𝑜𝑐(𝑍) = 〈8̅〉, 
while 𝑁 = 〈8̅〉 is an app-primary of the 𝑍-module 𝑍, 

since for all 𝑎 ∈ 𝑍, 𝑦 ∈ 𝑀 such that 𝑎𝑦 ∈ 𝑁 = 〈8̅〉, 
implies that either  𝑦 ∈ 𝑁 + 𝑠𝑜𝑐(𝑍) = 〈8̅〉 + (0) =

〈8̅〉 or 𝑎 ∈ √[𝑁 + 𝑠𝑜𝑐(𝑍):𝑍 𝑍] = √[〈8̅〉 + (0):𝑍 𝑍] =

√〈8̅〉 = 〈2̅〉. That is if 2. 4̅ ∈ 〈8̅〉, implies that 

2 ∈ √[〈8̅〉 + 𝑠𝑜𝑐(𝑍):𝑍 𝑍] = 〈2̅〉. 
3) It is clear that every approximaitly-quasi-prime 

submodule of an 𝑅-module 𝑀 is an app-primary 

submodule of 𝑀, but the convers is not true in general 

for the convers consider the following example.  

Let 𝑀 = 𝑍, 𝑅 = 𝑍, the submodule  𝑁 = 〈4̅〉  is not 

approximaitly-quasi-prime submodule of 𝑀, since 

2.2. 1̅ = 4 ∈ 〈4̅〉, but 2. 1̅ ∉ 〈4̅〉 + 𝑠𝑜𝑐(𝑍) = 〈4̅〉. But 

𝑁 = 〈4̅〉 is an app-primary submodule of 𝑀, since for 

all 𝑎 ∈ 𝑍, and 𝑦 ∈ 𝑍 such that 𝑎𝑦 ∈ 〈4̅〉, implies that 

either 𝑦 ∈ 〈4̅〉 + 𝑠𝑜𝑐(𝑍) = 〈4̅〉 or 

𝑎 ∈ √[〈4̅〉 + 𝑠𝑜𝑐(𝑍):𝑍 𝑍] = √[〈4̅〉:𝑍 𝑍] = √〈4̅〉 =
〈2̅〉. That is if 2.2 ∈ 〈4̅〉, then 

2 ∈ √[〈4̅〉 + 𝑠𝑜𝑐(𝑍):𝑍 𝑍] = 〈2̅〉. 
4) It is clear that every prime submodule of an 𝑅-

module 𝑀 is an app-primary submodule, but not 

conversely. Consider the following example for the 

converse:  

Let 𝑀 = 𝑍4 , 𝑅 = 𝑍, the submodule  𝑁 = 〈0̅〉 is not 

prime submodule of 𝑍4 , since 2. 2̅ = 0̅ ∈ 𝑁, for 

2 ∈ 𝑍, 2̅ ∈ 𝑍4 , but 2̅ ∉ 〈0̅〉 and 2 ∉ [〈0̅〉:𝑍  𝑍4 ] = 〈4̅〉. 

But 𝑁 = 〈0̅〉 is an app-primary submodule of 𝑍4 , 
since 𝑠𝑜𝑐(𝑍4 ) = 〈2̅〉 and for all 𝑎 ∈ 𝑍, 𝑦 ∈ 𝑍4  such 

that 𝑎𝑦 ∈ 〈0̅〉, implies that either 𝑦 ∈ 〈0̅〉 +

𝑠𝑜𝑐(𝑍4 ) = 〈2̅〉 or 𝑎 ∈ √[〈0̅〉 + 𝑠𝑜𝑐(𝑍4 ):𝑍 𝑍4 ] =

√[〈2̅〉:𝑍 𝑍4 ] = √〈2〉 = 〈2̅〉. That is if 2. 2̅ = 〈0̅〉, 
implies that either 2̅ ∈ 〈0̅〉 + 𝑠𝑜𝑐(𝑍4 ) = 〈2̅〉 or 

2 ∈ √[〈0̅〉 + 𝑠𝑜𝑐(𝑍4 ):𝑍 𝑍4 ] = 〈2̅〉. 
The following results are characterizations of app-

primary submodules. 

Proposition 2.3 : Let 𝐾 be a proper submodule of an 

𝑅-module 𝑀. Then 𝐾 is an app-primary submodule of 

𝑀 if and only if  whenever 𝐽𝐿 ⊆ 𝐾, for 𝐿 is a 

submodule of 𝑀, 𝐽 is an ideal of 𝑅, implies that either 

𝐿 ⊆ 𝐾 + 𝑠𝑜𝑐(𝑀) or 𝐽 ⊆ √[𝐾 + 𝑠𝑜𝑐(𝑀):𝑅𝑀]. 
Proof : 

(
        
⇒ ) Assume that 𝐾 is an app-primary submodule of 

an 𝑅-module 𝑀 and 𝐽𝐿 ⊆ 𝐾, where 𝐽 is an ideal of 𝑅, 

𝐿 is a submodule of 𝑀, with 𝐿 ⊈ 𝐾 + 𝑠𝑜𝑐(𝑀), then 

there exists 𝑙 ∈ 𝐿 such that 𝑙 ∉ 𝐾 + 𝑠𝑜𝑐(𝑀). Now we 

have 𝐽𝐿 ⊆ 𝐾, then for any 𝑏 ∈ 𝐽 𝑏𝑙 ∈ 𝐾. But 𝐾 is an 

app-primary submodule of 𝑀, and 𝑙 ∉ 𝐾 + 𝑠𝑜𝑐(𝑀), 
it follows that 𝑏𝑛 ∈ [𝐾 + 𝑠𝑜𝑐(𝑀):𝑅𝑀] for some 

𝑛 ∈ 𝑍+, that is 𝐽𝑛 ⊆ [𝐾 + 𝑠𝑜𝑐(𝑀):𝑅𝑀] for some 

𝑛 ∈ 𝑍+. Hence 𝐽 ⊆ √[𝐾 + 𝑠𝑜𝑐(𝑀):𝑅𝑀]. 
    (

         
⇐  ) Assume that 𝑎𝑦 ∈ 𝐾, for 𝑎 ∈ 𝑅, 𝑦 ∈ 𝑀, then 

𝑎𝑦 = 〈𝑎〉〈𝑦〉, that is 𝐽𝐿 ⊆ 𝐾 where 𝐽 = 〈𝑎〉, 𝐿 = 〈𝑦〉, 
then by hypothesis either 𝐿 ⊆ 𝐾 + 𝑠𝑜𝑐(𝑀) or 

𝐽 ⊆ √[𝐾 + 𝑠𝑜𝑐(𝑀):𝑅𝑀], that is either 𝑎 ∈

√[𝐾 + 𝑠𝑜𝑐(𝑀):𝑅𝑀] or 𝑦 ∈ 𝐾 + 𝑠𝑜𝑐(𝑀). Thus 𝐾 is 

an app-primary submodule of an 𝑅-module 𝑀. 

    As a direct consequence of proposition (2.3) we get 

the following corollary. 

Corollary 2.4 : Let 𝐾 be a proper submodule of an 𝑅-

module 𝑀. Then 𝐾 is an app-primary submodule of 

𝑀 if and only if  whenever 𝑎𝐿 ⊆ 𝐾, for 𝑎 ∈ 𝑅, 𝐿 is a 

submodule of 𝑀, implies that either 𝐿 ⊆ 𝐾 + 𝑠𝑜𝑐(𝑀) 
or 𝑎𝑛 ∈ [𝐾 + 𝑠𝑜𝑐(𝑀):𝑅𝑀]. 
Proposition 2.5 : A zero submodule of a non-zero 𝑅-

module 𝑀 is an app-primary submodule of 𝑀 if and 

only if  𝑎𝑛𝑛𝑅(𝐿) ⊆ √[𝑠𝑜𝑐(𝑀):𝑅𝑀] for all non-zero 

submodule 𝐿 of 𝑀, with 𝐿 ⊈ 𝑠𝑜𝑐(𝑀). 
Proof : 

 (
        
⇒ ) Let 𝐿 be a non-zero submodule of 𝑀, such that 

𝐿 ⊈ 𝑠𝑜𝑐(𝑀), and let 𝑎 ∈  𝑎𝑛𝑛𝑅(𝐿), that is 𝑎𝐿 = (0) 
but (0) is an app-primary submodule of 𝑀 and 

𝐿 ⊈ 𝑠𝑜𝑐(𝑀) = (0) + 𝑠𝑜𝑐(𝑀), it follows by corollary 

(2.4) that 

𝑎 ∈ √[(0) + 𝑠𝑜𝑐(𝑀):𝑅𝑀] = √[𝑠𝑜𝑐(𝑀):𝑅𝑀]. That 

is  𝑎𝑛𝑛𝑅(𝐿) ⊆ √[𝑠𝑜𝑐(𝑀):𝑅𝑀]. 
(
         
⇐  ) Suppose that  𝑎𝐿 ⊆ (0), for 𝑎 ∈ 𝑅 and 𝐿 is a 

non-zero submodule of 𝑀, with 𝐿 ⊈ 𝑠𝑜𝑐(𝑀). It 

follows that 𝑎 ∈  𝑎𝑛𝑛𝑅(𝐿), by hypothesis 𝑎 ∈

√[𝑠𝑜𝑐(𝑀):𝑅𝑀], that is 𝑎 ∈ √[(0) + 𝑠𝑜𝑐(𝑀):𝑅𝑀]. 
Hence a zero submodule of an 𝑅-module 𝑀 is an app-

primary submodule of 𝑀. 
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Proposition 2.6 : Let 𝐾 be a proper submodule of an 

𝑅-module 𝑀. Then 𝐾 is an app-primary submodule of 

𝑀 if and only if for every 𝑦 ∈ 𝑀 [𝐾:𝑅 𝑦] ⊆

√[𝐾 + 𝑠𝑜𝑐(𝑀):𝑅𝑀] with 𝑦 ∉ 𝐾 + 𝑠𝑜𝑐(𝑀). 
Proof : 

 (
        
⇒ ) Suppose that 𝐾 is an app-primary submodule 

of 𝑀, and 𝑎 ∈ [𝐾:𝑅 𝑦], implies that 𝑎𝑦 ∈ 𝐾. Since 𝐾 

is an app-primary submodule of 𝑀. and 𝑦 ∉ 𝐾 +

𝑠𝑜𝑐(𝑀), then 𝑎 ∈ √[𝐾 + 𝑠𝑜𝑐(𝑀):𝑅𝑀]. Thus 

[𝐾:𝑅 𝑦] ⊆ √[𝐾 + 𝑠𝑜𝑐(𝑀):𝑅𝑀]. 
 (
         
⇐  ) Let  𝑎𝑦 ∈ 𝐾, for 𝑎 ∈ 𝑅, 𝑦 ∈ 𝑀, and suppose 

that 𝑦 ∉ 𝐾 + 𝑠𝑜𝑐(𝑀). It follows that 𝑎 ∈ [𝐾:𝑅 𝑦] by 

hypothesis 𝑎 ∈ √[𝐾 + 𝑠𝑜𝑐(𝑀):𝑅𝑀]. Thus 𝐾 is an 

app-primary submodule of 𝑀. 

Proposition 2.7 : Let 𝐾 be a proper submodule of an 

𝑅-module 𝑀 with 𝑠𝑜𝑐(𝑀) ⊆ 𝐾. Then 𝐾 is an app-

primary submodule of 𝑀 if and only if [𝐾:𝑅 𝐼] is an 

app-primary submodule of 𝑀 for each ideal 𝐼 of 𝑅. 

Proof : 

 (
        
⇒ ) Suppose that 𝐾 is an app-primary submodule 

of 𝑀, and 𝑎𝐿 ∈ [𝐾:𝑅 𝐼], for 𝑎 ∈ 𝑅, 𝐿 is a submodule 

of 𝑀, it follows that 𝑎𝐼𝐿 ⊆ 𝐾, but 𝐾 is an app-

primary submodule of 𝑀, then by corollary (2.4) 

either 𝐼𝐿 ⊆ 𝐾 + 𝑠𝑜𝑐(𝑀) or 𝑎 ∈ √[𝐾 + 𝑠𝑜𝑐(𝑀):𝑅𝑀]. 
Since 𝑠𝑜𝑐(𝑀) ⊆ 𝐾, then 𝐾 + 𝑠𝑜𝑐(𝑀) = 𝐾, it follows 

that 𝐼𝐿 ⊆ 𝐾 or 𝑎 ∈ √[𝐾:𝑅𝑀], hence 𝐿 ⊆ [𝐾:𝑅 𝐼] or 

𝑎𝑛𝑀 ⊆ 𝐾 for some 𝑛 ∈ 𝑍+. Thus either 𝐿 ⊆
[𝐾:𝑅 𝐼] ⊆ [𝐾:𝑅 𝐼] +𝑠𝑜𝑐(𝑀) or 𝑎𝑛𝑀 ⊆ 𝐾 ⊆ [𝐾:𝑅 𝐼] ⊆
[𝐾:𝑅 𝐼] +𝑠𝑜𝑐(𝑀) for some 𝑛 ∈ 𝑍+. Hence either 

𝐿 ⊆ [𝐾:𝑅 𝐼]  + 𝑠𝑜𝑐(𝑀) or 

𝑎 ∈ √[[𝐾:𝑅 𝐼] + 𝑠𝑜𝑐(𝑀):𝑅𝑀]. That is [𝐾:𝑅 𝐼] is an 

app-primary submodule of 𝑀. 

(
         
⇐  ) Follows by taking 𝐼 = 𝑅, and uasing the fact 

[𝐾:𝑅 𝑅] = 𝐾. 

Proposition 2.8 : Let 𝐾 be a proper submodule of an 

𝑅-module 𝑀. Then 𝐾 is an app-primary submodule of 

𝑀 if and only if [𝐾:𝑅 𝑎] ⊆ [𝐾 + 𝑠𝑜𝑐(𝑀):𝑅 𝑎
𝑛] for 

𝑎 ∈ 𝑅, 𝑛 ∈ 𝑍+. 

Proof : 

(
        
⇒ ) Suppose that 𝐾 is an app-primary submodule of 

𝑀, and let 𝑦 ∈ [𝐾:𝑅 𝑎], such that 𝑦 ∉ 𝐾 + 𝑠𝑜𝑐(𝑀). 
Since 𝑦 ∈ [𝐾:𝑅 𝑎] it follows that 𝑎𝑦 ∈ 𝐾. But 𝐾 is an 

app-primary submodule of 𝑀. and 𝑦 ∉ 𝐾 + 𝑠𝑜𝑐(𝑀), 
then 𝑎𝑛 ∈ [𝐾 + 𝑠𝑜𝑐(𝑀):𝑅𝑀] for some 𝑛 ∈ 𝑍+. That 

is 𝑎𝑛𝑀 ⊆ 𝐾 + 𝑠𝑜𝑐(𝑀), hence 𝑎𝑛𝑦 ∈ 𝐾 + 𝑠𝑜𝑐(𝑀) 
for all 𝑦 ∈ 𝑀, it follows that 𝑦 ∈ [𝐾 + 𝑠𝑜𝑐(𝑀):𝑅 𝑎

𝑛]. 
Thus [𝐾:𝑅 𝑎] ⊆ [𝐾 + 𝑠𝑜𝑐(𝑀):𝑅 𝑎

𝑛]. 
(
         
⇐  ) Let  𝑎𝑦 ∈ 𝐾, for 𝑎 ∈ 𝑅, 𝑦 ∈ 𝑀, and suppose 

that 𝑦 ∉ 𝐾 + 𝑠𝑜𝑐(𝑀). Since 𝑎𝑦 ∈ 𝐾 it follows that 

𝑦 ∈ [𝐾:𝑅 𝑎] ⊆ [𝐾 + 𝑠𝑜𝑐(𝑀):𝑅 𝑎
𝑛], implies that 

𝑦 ∈ [𝐾 + 𝑠𝑜𝑐(𝑀):𝑅 𝑎
𝑛], that is  𝑎𝑛𝑦 ∈ 𝐾 + 𝑠𝑜𝑐(𝑀) 

for all 𝑦 ∈ 𝑀, hence 𝑎𝑛𝑀 ⊆ 𝐾 + 𝑠𝑜𝑐(𝑀). That is 

𝑎𝑛 ∈ [𝐾 + 𝑠𝑜𝑐(𝑀):𝑅𝑀]. Therefor 𝐾 is an app-

primary submodule of 𝑀. 

Remark 2.9 : If 𝐾 is an app-primary submodule of an 

𝑅-module 𝑀, then [𝐾:𝑅𝑀] need not to be an app-

primary ideal of 𝑅. The following example explain 

that: 

Let 𝑀 = 𝑍12 , 𝑅 = 𝑍, the submodule  𝐾 = 〈0̅〉 is an 

app-primary submodule of 𝑍12 , since 𝑠𝑜𝑐(𝑍12 ) =
〈2̅〉, hence for all 𝑎 ∈ 𝑍 and 𝑦 ∈ 𝑍12  such that 𝑎𝑦 ∈
𝐾 = 〈0̅〉, implies that either 𝑦 ∈ 𝐾 + 𝑠𝑜𝑐(𝑀) =

〈0̅〉 + 〈2̅〉 = 〈2̅〉 or 𝑎 ∈ √[𝐾 + 𝑠𝑜𝑐(𝑀):𝑍𝑀] =

√[〈0̅〉 + 〈2̅〉:𝑍 𝑍12 ] = √[〈2̅〉:𝑍 𝑍12 ] = √2𝑍 = 2𝑍. 

That is if 2. 6̅ ∈ 〈0̅〉, for 2 ∈ 𝑍, 6̅ ∈ 𝑍12 , implies that 

either 6̅ ∈ 〈0̅〉 + 𝑠𝑜𝑐(𝑍12 ) = 〈2̅〉 or 2 ∈

√[〈0̅〉 + 𝑠𝑜𝑐(𝑍12 ):𝑍𝑀] = 2𝑍. But [〈0̅〉: 𝑍12 ] = 12𝑍 

is not app-primary ideal of 𝑍 because 4.3 ∈ 12𝑍, for 

4,3 ∈ 𝑍, but 3 ∉ 12𝑍 + 𝑠𝑜𝑐(𝑍) = 12𝑍 + (0) = 12𝑍 

and 4 ∉ √[12𝑍 + 𝑠𝑜𝑐(𝑍):𝑍 𝑍] = √[12𝑍:𝑍 𝑍] =

√12𝑍 = 6𝑍. 

The following proposition shows that under certain 

condition the resudul of an app-primary submodule is 

an app-primary ideal. 

Proposition 2.10 : Let 𝐾 be an app-primary 

submodule of an 𝑅-module 𝑀 with 𝑠𝑜𝑐(𝑀) ⊆ 𝐾. 

Then [𝐾:𝑅𝑀] is an app-primary ideal of 𝑅. 

Proof : Let 𝑎𝐼 ∈ [𝐾:𝑅𝑀], for 𝑎 ∈ 𝑅, 𝐼 is an ideal of 

𝑅, implies that 𝑎𝐼𝑀 ⊆ 𝐾, but 𝐾 is an app-primary 

submodule of 𝑀, then by corollary (2.4) either 

𝐼𝑀 ⊆ 𝐾 + 𝑠𝑜𝑐(𝑀) or 𝑎𝑛 ∈ [𝐾 + 𝑠𝑜𝑐(𝑀):𝑅𝑀] for 

some 𝑛 ∈ 𝑍+, that is 𝑎𝑛𝑀 ⊆ 𝐾 + 𝑠𝑜𝑐(𝑀). But 

𝑠𝑜𝑐(𝑀) ⊆ 𝐾, then 𝐾 + 𝑠𝑜𝑐(𝑀) = 𝐾, it follows that 

either 𝐼𝑀 ⊆ 𝐾 or 𝑎𝑛𝑀 ⊆ 𝐾, so either 𝐼 ⊆ [𝐾:𝑅𝑀] ⊆
[𝐾:𝑅𝑀] + 𝑠𝑜𝑐(𝑅) or 𝑎𝑛 ∈ [𝐾:𝑅𝑀] ⊆ [𝐾:𝑅𝑀] +

𝑠𝑜𝑐(𝑅) = [[𝐾:𝑅𝑀] + 𝑠𝑜𝑐(𝑅): 𝑅]. Thus [𝐾:𝑅𝑀] is an 

app-primary ideal of 𝑅. 

Remark 2.11 : Let 𝐾 be a proper submodule of an 𝑅-

module 𝑀. If [𝐾:𝑅𝑀] is an app-primary ideal of 𝑅, 

then 𝐾 need not to be an app-primary submodule of 

𝑀. The following example shows that: 

Let 𝑀 = 𝑍⊕ 𝑍, 𝑅 = 𝑍, and  𝐾 = 〈0̅〉 ⊕ 2𝑍, then 
[𝐾:𝑅𝑀] = (0) which is a prime ideal of 𝑍 hence it is 

an app-primary submodule of Z by remarks and 

examples (2.2)(4). But 𝐾 is not app-primary 

submodule of 𝑀, since 2(0,3) = (0,6) ∈ 𝐾, for 

2 ∈ 𝑍, (0,3) ∈ 𝑍 ⊕ 𝑍, but (0,3) ∉ 𝐾 +
𝑠𝑜𝑐(𝑍 ⊕ 𝑍) = 〈0̅〉 ⊕ 2𝑍 + (0) = 〈0̅〉 ⊕ 2𝑍 

and 2 ∉ √[(〈0̅〉 ⊕ 2𝑍) + 𝑠𝑜𝑐(𝑍 ⊕ 𝑍):𝑍 𝑍 ⊕ 𝑍] =

√[〈0̅〉 ⊕ 2𝑍:𝑍 𝑍 ⊕ 𝑍] = √(0) = (0). 
Proposition 2.12 : Let 𝐾 be a proper submodule of 

faithful multiplication 𝑅-module 𝑀. Then 𝐾 is an 

app-primary submodule of 𝑀 if and only if [𝐾:𝑅𝑀] is 

an app-primary ideal of 𝑅. 

Proof : 

 (
        
⇒ ) Suppose that 𝐾 is an app-primary submodule 

of 𝑀, and Let 𝑎𝐼 ⊆ [𝐾:𝑅𝑀], for 𝑎 ∈ 𝑅, 𝐼 is an ideal 

of 𝑅, it follows that  𝑎𝐼𝑀 ⊆ 𝐾. But 𝐾 is an app-

primary submodule of 𝑀, then by corollary (2.4) we 

have either 𝐼𝑀 ⊆ 𝐾 + 𝑠𝑜𝑐(𝑀) or 𝑎𝑛𝑀 ⊆ 𝐾 +
𝑠𝑜𝑐(𝑀) for some 𝑛 ∈ 𝑍+. Since 𝑀 is a faithful 
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multiplication, then 

𝑠𝑜𝑐(𝑀) = 𝑠𝑜𝑐(𝑅)𝑀 [14, 𝐶𝑜𝑟𝑜. 2.14]. Hence either 

𝐼𝑀 ⊆ [𝐾:𝑅𝑀]𝑀 + 𝑠𝑜𝑐(𝑅)𝑀 or 𝑎𝑛𝑀 ⊆ [𝐾:𝑅𝑀]𝑀 +
𝑠𝑜𝑐(𝑅)𝑀, it follows that either 𝐼 ⊆ [𝐾:𝑅𝑀] +
𝑠𝑜𝑐(𝑅) or 𝑎𝑛 ∈ [𝐾:𝑅𝑀] + 𝑠𝑜𝑐(𝑅) = [[𝐾:𝑅𝑀] +
𝑠𝑜𝑐(𝑅):𝑅 𝑅]. Hence [𝐾:𝑅𝑀]  is an app-primary ideal 

of 𝑅. 

 (
         
⇐  ) Suppose that [𝐾:𝑅𝑀] is an app-primary ideal 

of 𝑅, and let  𝑎𝐿 ⊆ 𝐾, for 𝑎 ∈ 𝑅, 𝐿 is a submodule of 

𝑀. Since 𝑀 is a multiplication then 𝐿 = 𝐽𝑀 for some 

ideal 𝐽 of 𝑅, that is 𝑎𝐽𝑀 ⊆ 𝐾, implies that 𝑎𝐽 ⊆
[𝐾:𝑅𝑀]. But [𝐾:𝑅𝑀]  is an app-primary ideal of 𝑅, 

then by corollary (2.4) either 𝐽 ⊆ [𝐾:𝑅𝑀] + 𝑠𝑜𝑐(𝑅) 
or 𝑎𝑛 ∈ [[𝐾:𝑅𝑀] + 𝑠𝑜𝑐(𝑅):𝑅 𝑅] = [𝐾:𝑅𝑀] +
𝑠𝑜𝑐(𝑅), hence either 𝐽𝑀 ⊆ [𝐾:𝑅𝑀]𝑀 + 𝑠𝑜𝑐(𝑅)𝑀 or 

𝑎𝑛𝑀 ⊆ [𝐾:𝑅𝑀]𝑀 + 𝑠𝑜𝑐(𝑅)𝑀. Since 𝑀 is a faithful 

multiplication, then by [14, 𝐶𝑜𝑟𝑜. 2.14] 𝑠𝑜𝑐(𝑀) =
𝑠𝑜𝑐(𝑅)𝑀. Thus either 𝐽𝑀 ⊆ 𝐾 + 𝑠𝑜𝑐(𝑀) or 𝑎𝑛𝑀 ⊆
𝐾 + 𝑠𝑜𝑐(𝑀). That is either 𝐿 ⊆ 𝐾 + 𝑠𝑜𝑐(𝑀) 
or 𝑎𝑛 ∈ [𝐾 + 𝑠𝑜𝑐(𝑀):𝑅𝑀]. Hence 𝐾 is an app-

primary submodule of 𝑀. 

Proposition 2.13 : Let 𝐾 be a proper submodule of a 

non-singular multiplication 𝑅-module 𝑀. Then 𝐾 is 

an app-primary submodule of 𝑀 if and only if 
[𝐾:𝑅𝑀] is an app-primary ideal of 𝑅. 

Proof : 

(
        
⇒ ) Suppose that 𝐾 is an app-primary submodule of 

𝑀, and Let 𝑎𝑠 ∈ [𝐾:𝑅𝑀], for 𝑎, 𝑠 ∈ 𝑅, it follows that  

𝑎𝑠𝑀 ⊆ 𝐾. But 𝐾 is an app-primary submodule of 𝑀, 

then by corollary (2.4) either  𝑠𝑀 ⊆ 𝐾 + 𝑠𝑜𝑐(𝑀) 
or 𝑎𝑛𝑀 ⊆ 𝐾 + 𝑠𝑜𝑐(𝑀). But 𝑀 is non-singular then 

by [11, 𝐶𝑜𝑟𝑜. 1.26] 𝑠𝑜𝑐(𝑀) = 𝑠𝑜𝑐(𝑅)𝑀, and since 

𝑀 is multiplication then 𝐾 = [𝐾:𝑅𝑀]𝑀. Hence either 

𝑠𝑀 ⊆ [𝐾:𝑅𝑀]𝑀 + 𝑠𝑜𝑐(𝑅)𝑀 or 𝑎𝑛𝑀 ⊆ [𝐾:𝑅𝑀]𝑀 +
𝑠𝑜𝑐(𝑅)𝑀, it follows that either 𝑠 ∈ [𝐾:𝑅𝑀] +
𝑠𝑜𝑐(𝑅) or 𝑎𝑛 ∈ [𝐾:𝑅𝑀] + 𝑠𝑜𝑐(𝑅) = [[𝐾:𝑅𝑀] +
𝑠𝑜𝑐(𝑅):𝑅 𝑅]. Hence [𝐾:𝑅𝑀]  is an app-primary ideal 

of 𝑅. 

(
         
⇐  ) Suppose that [𝐾:𝑅𝑀] is an app-primary ideal 

of 𝑅, and let  𝐽𝐿 ⊆ 𝐾, for 𝐽 is an ideal of 𝑅 and 𝐿 is a 

submodule of 𝑀. Since 𝑀 is a multiplication then 

𝐿 = 𝐼𝑀 for some ideal 𝐼 of 𝑅, that is 𝐽𝐼𝑀 ⊆ 𝐾, 

implies that 𝐽𝐼 ⊆ [𝐾:𝑅𝑀]. But [𝐾:𝑅𝑀]  is an app-

primary ideal of 𝑅, then by proposition (2.3) either 

𝐼 ⊆ [𝐾:𝑅𝑀] + 𝑠𝑜𝑐(𝑅) or 𝐽𝑛 ⊆ [[𝐾:𝑅𝑀] +
𝑠𝑜𝑐(𝑅):𝑅 𝑅] = [𝐾:𝑅𝑀] + 𝑠𝑜𝑐(𝑅), for some 𝑛 ∈ 𝑍+, 

it follows that either 𝐼𝑀 ⊆ [𝐾:𝑅𝑀]𝑀 + 𝑠𝑜𝑐(𝑅)𝑀 or 

𝐽𝑛𝑀 ⊆ [𝐾:𝑅𝑀]𝑀 + 𝑠𝑜𝑐(𝑅)𝑀. Since 𝑀 is non-

singular, then by [11, 𝐶𝑜𝑟𝑜. 1.26] 𝑠𝑜𝑐(𝑀) =
𝑠𝑜𝑐(𝑅)𝑀, and since 𝑀 is multiplication then 

𝐾 = [𝐾:𝑅𝑀]𝑀. Hence either 𝐼𝑀 ⊆ 𝐾 + 𝑠𝑜𝑐(𝑀) 
or 𝐽𝑛𝑀 ⊆ 𝐾 + 𝑠𝑜𝑐(𝑀). That is either 𝐿 ⊆ 𝐾 +
𝑠𝑜𝑐(𝑀) or 𝐽𝑛 ∈ [𝐾 + 𝑠𝑜𝑐(𝑀):𝑅𝑀]. Hence 𝐾 is an 

app-primary submodule of 𝑀. 

Proposition 2.14 : Let 𝑀 be a faithful finitely 

generated multiplication 𝑅-module. If 𝐴 be an app-

primary ideal of 𝑅. Then 𝐴𝑀 is an app-primary 

submodule of 𝑀.  

Proof : Let  𝑎𝐿 ⊆ 𝐴𝑀, for 𝑎 ∈ 𝑅 , 𝐿 be a submodule 

of 𝑀. Since 𝑀 is a multiplication, then 𝐿 = 𝐼𝑀 for 

some ideal 𝐼 of 𝑅. That is 𝑎𝐼𝑀 ⊆ 𝐴𝑀. But 𝑀 is a 

finitely generated multiplication 𝑅-module, then by 

[15, Corollary Of Theo. 9], we have 𝑎𝐼 ⊆ 𝐴 +
𝑎𝑛𝑛𝑅(𝑀), but 𝑀 is faithful, then 𝑎𝑛𝑛𝑅(𝑀) = (0), it 
follows that 𝑎𝐼 ⊆ 𝐴. Now, by hypothesis 𝐴 is an app-

primary ideal of 𝑅, then by corollary (2.4) either 

𝐼 ⊆ 𝐴 + 𝑠𝑜𝑐(𝑅) or 𝑎𝑛 ∈ [𝐴 + 𝑠𝑜𝑐(𝑅):𝑅 𝑅] = 𝐴 +
𝑠𝑜𝑐(𝑅). That is either 𝐼𝑀 ⊆ 𝐴𝑀 + 𝑠𝑜𝑐(𝑅)𝑀 or 

𝑎𝑛𝑀 ⊆ 𝐴𝑀 + 𝑠𝑜𝑐(𝑅)𝑀, for some 𝑛 ∈ 𝑍+. But 𝑀 is 

faithful multiplication 𝑅-module then by [14, Coro. 

2.14] 𝑠𝑜𝑐(𝑅)𝑀 = 𝑠𝑜𝑐(𝑀). Hence either 𝐿 ⊆ 𝐴𝑀 +
𝑠𝑜𝑐(𝑀) or 𝑎𝑛𝑀 ⊆ 𝐴𝑀 + 𝑠𝑜𝑐(𝑀). Thus 𝐴𝑀 is an 

app-primary submodule of 𝑀. 

Proposition 2.15 : Let 𝑀 be a finitely generated 

multiplication non-singular 𝑅-module and 𝐵 is an 

app-primary ideal of 𝑅 with 𝑎𝑛𝑛𝑅(𝑀) ⊆ 𝐵. Then 𝐵𝑀 

is an app-primary submodule of 𝑀.  

Proof : Let  𝐽𝐾 ⊆ 𝐵𝑀, for 𝐽 is an ideal of 𝑅 and 𝐾 be 

a submodule of 𝑀. Since 𝑀 is a multiplication, then 

𝐾 = 𝐼𝑀 for some ideal 𝐼 of 𝑅. That is 𝐽𝐼𝑀 ⊆ 𝐵𝑀. 

But 𝑀 is a finitely generated multiplication, then by 

[15, Corollary of Theorem. 9]  𝐽𝐼 ⊆ 𝐵 + 𝑎𝑛𝑛𝑅(𝑀). 
But 𝑎𝑛𝑛𝑅(𝑀) ⊆ 𝐵, then 𝐵 + 𝑎𝑛𝑛𝑅(𝑀) = 𝐵, it 

follows that 𝐽𝐼 ⊆ 𝐵. Since 𝐵 an app-primary ideal of 

𝑅, then by proposition (2.3) either 𝐼 ⊆ 𝐵 + 𝑠𝑜𝑐(𝑅) or 

𝐽𝑛 ⊆ [𝐵 + 𝑠𝑜𝑐(𝑅):𝑅 𝑅] = 𝐵 + 𝑠𝑜𝑐(𝑅) for some 

𝑛 ∈ 𝑍+. Thus either 𝐼𝑀 ⊆ 𝐵𝑀 + 𝑠𝑜𝑐(𝑅)𝑀 or 

𝐽𝑛𝑀 ⊆ 𝐵𝑀 + 𝑠𝑜𝑐(𝑅)𝑀. But 𝑀 is non-singular then 

by [11, Corollary (1.26)] 𝑠𝑜𝑐(𝑅)𝑀 = 𝑠𝑜𝑐(𝑀). Hence 

either 𝐾 ⊆ 𝐵𝑀 + 𝑠𝑜𝑐(𝑀) or 𝑎𝑛𝑀 ⊆ 𝐵𝑀 + 𝑠𝑜𝑐(𝑀). 
Thus 𝐵𝑀 is an app-primary submodule of 𝑀. 

Proposition 2.16 : Let 𝐾 be a proper submodule of 

faithful finitely generated multiplication 𝑅-module 

𝑀. Then the following statements are equivalent. 

1) 𝐾 is an app-primary submodule of 𝑀. 

2) [𝐾:𝑅𝑀] is an app-primary ideal of 𝑅. 

3) 𝐾 = 𝐴𝑀 for some app-primary ideal 𝐴 of 𝑅. 

Proof : 

(1) 
          
⇐  (2) It follows by proposition (2.12). 

(2) 
        
⇒  (3) Suppose that [𝐾:𝑅𝑀] is an app-primary 

ideal of 𝑅, and since 𝑀 is multiplication 𝐾 =
[𝐾:𝑀]𝑀 = 𝐴𝑀 implies that 𝐴 = [𝐾:𝑅𝑀] is an app-

primary ideal of 𝑅. 

(3) 
        
⇒  (2) Suppose that 𝐾 = 𝐴𝑀 for some app-

primary ideal 𝐴 of 𝑅. Since 𝑀 is a multiplication, 

then 𝐾 = [𝐾:𝑀]𝑀 = 𝐴𝑀. But 𝑀 is faithful finitely 

generated multiplication, implies that 𝐴 = [𝐾:𝑅𝑀], 
hence [𝐾:𝑅𝑀] is an app-primary ideal of 𝑅. 

Proposition 2.17 : Let 𝐻 be a proper submodule of 

non-singular finitely generated multiplication 𝑅-

module 𝑀. Then the following statements are 

equivalent: 

1) 𝐻 is an app-primary submodule of 𝑀. 

2) [𝐻:𝑅𝑀] is an app-primary ideal of 𝑅. 

3) 𝐻 = 𝐵𝑀 for some app-primary ideal 𝐵 of 𝑅 with 

𝑎𝑛𝑛𝑅(𝑀) ⊆ 𝐵. 
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Proof : 

(1) 
          
⇐  (2) It follows by proposition (2.13). 

(2) 
        
⇒  (3) Suppose that [𝐻:𝑅𝑀] is an app-primary 

ideal of 𝑅, and 𝐻 = [𝐻:𝑅𝑀]𝑀 for 𝑀 is a 

multiplication, then 𝐻 = 𝐵𝑀 and 𝐵 = [𝐻:𝑅𝑀] is an 

app-primary ideal of 𝑅 such that  𝑎𝑛𝑛𝑅(𝑀) =
[(0):𝑅𝑀] ⊆ [𝐻:𝑅𝑀]. 
(3) 

        
⇒  (2) Suppose that 𝐻 = 𝐵𝑀 for some app-

primary ideal 𝐵 of 𝑅 such that 𝑎𝑛𝑛𝑅(𝑀) ⊆ 𝐵. But 𝑀 

is a multiplication, 𝐻 = [𝐻:𝑅𝑀]𝑀, since 𝑀 is finitely 

generated multiplication with 𝑎𝑛𝑛𝑅(𝑀) ⊆ 𝐵 and 
[𝐻:𝑅𝑀]𝑀 = 𝐵𝑀, implies that  [𝐻:𝑅𝑀] = 𝐵 +
𝑎𝑛𝑛𝑅(𝑀) = 𝐵 because 𝑎𝑛𝑛𝑅(𝑀) ⊆ 𝐵, implies that 

𝐵 + 𝑎𝑛𝑛𝑅(𝑀) = 𝐵. Hence [𝐻:𝑅𝑀] is an app-

primary ideal of 𝑅. 

Remark 2.18 : The intersection of two app-primary 

submodules of an 𝑅-module 𝑀 need not to be app-

primary submodule of 𝑀. The following example 

shows that: 

Let 𝑀 = 𝑍, 𝑅 = 𝑍, and  𝐾 = 2𝑍, 𝐿 = 3𝑍  are app-

primary submodules of 𝑀, but 𝐾 ∩ 𝐿 = 2𝑍 ∩ 3𝑍 =
6𝑍 is not app-primary submodule of 𝑀, since 

2.3 ∈ 6𝑍, but 3 ∉ 6𝑍 + 𝑠𝑜𝑐(𝑍) = 6𝑍 + (0) = 6𝑍 

and 2 ∉ √[6𝑍 + 𝑠𝑜𝑐(𝑍): 𝑍] = √[6𝑍: 𝑍] = √6𝑍 =
6𝑍. 

Proposition 2.19 : Let 𝐾 and 𝐿 be two app-primary 

submodule of an 𝑅-module 𝑀 such that 𝑠𝑜𝑐(𝑀) ⊆ 𝐿 

or 𝑠𝑜𝑐(𝑀) ⊆ 𝐾. Then 𝐾 ∩ 𝐿 is an app-primary 

submodule of 𝑀. 

Proof : Since 𝐾 ∩ 𝐿 ⊆ 𝐿 and 𝐿 is a propoer 

submodule of 𝑀, then 𝐾 ∩ 𝐿 is a proper submodule of 

𝑀. Now, let 𝑎𝑦 ∈ 𝐾 ∩ 𝐿, for 𝑎 ∈ 𝑅, 𝑦 ∈ 𝑀, and 

suppose that 𝑎𝑛 ∉ [𝐾 ∩ 𝐿 + 𝑠𝑜𝑐(𝑀):𝑀] for some 

𝑛 ∈ 𝑍+, that is 𝑎𝑛𝑀 ⊈ 𝐾 ∩ 𝐿 + 𝑠𝑜𝑐(𝑀), it follows 

that 𝑎𝑛𝑀 ⊈ 𝐾 + 𝑠𝑜𝑐(𝑀) and 𝑎𝑛𝑀 ⊈ 𝐿 + 𝑠𝑜𝑐(𝑀). 
Since 𝑎𝑦 ∈ 𝐾 ∩ 𝐿 implies that 𝑎𝑦 ∈ 𝐾 and 𝑎𝑦 ∈ 𝐿. 

But 𝐾 and 𝐿 be two app-primary submodule of an 𝑅-

module 𝑀 and 𝑎𝑛𝑀 ⊈ 𝐾 + 𝑠𝑜𝑐(𝑀) and 𝑎𝑛𝑀 ⊈ 𝐿 +
𝑠𝑜𝑐(𝑀), it follows that 𝑦 ∈ 𝐾 + 𝑠𝑜𝑐(𝑀) and 

𝑦 ∈ 𝐿 + 𝑠𝑜𝑐(𝑀), implies that 𝑦 ∈ (𝐾 + 𝑠𝑜𝑐(𝑀)) ∩
(𝐿 + 𝑠𝑜𝑐(𝑀)). If 𝑠𝑜𝑐(𝑀) ⊆ 𝐿 then 𝐿 + 𝑠𝑜𝑐(𝑀) = 𝐿, 

that is 𝑦 ∈ (𝐾 + 𝑠𝑜𝑐(𝑀)) ∩ 𝐿, again since 𝑠𝑜𝑐(𝑀) ⊆

𝐿, then by modular law we have 𝑦 ∈ (𝐾 ∩ 𝐿) +
𝑠𝑜𝑐(𝑀). Similarly if 𝑠𝑜𝑐(𝑀) ⊆ 𝐾 we get 𝑦 ∈ (𝐾 ∩
𝐿) + 𝑠𝑜𝑐(𝑀). Hence 𝐾 ∩ 𝐿 is app-primary 

submodule of 𝑀. 

The following propositions gives the behavior of app-

primary submodules under 𝑅-homomorphism. 

Proposition 2.20 : Let 𝑓:𝑀
          
→  𝑀′ be an 𝑅-

epimorphism and 𝐾 be an app-primary submodule of 

𝑀 with 𝐾𝑒𝑟 𝑓 ⊆ 𝐾. Then 𝑓(𝐾) is an app-primary 

submodule of  𝑀′. 

Proof : 𝑓(𝐾) is a proper submodule of 𝑀′. If not, we 

have  𝑓(𝐾) = 𝑀′, that is 𝑓(𝑚) ∈ 𝑀′ = 𝑓(𝐾) for 

some 𝑚 ∈ 𝑀, it follows that there exists 𝑥 ∈ 𝐾 such 

that 𝑓(𝑥) = 𝑓(𝑚), that is 𝑓(𝑥 − 𝑚) = 0, so 𝑥 − 𝑚 ∈
𝐾𝑒𝑟 𝑓 ⊆ 𝐾, it follows that 𝑚 ∈ 𝐾, hence 𝑀 = 𝐾 

(since 𝐾 is a propoer submodule of 𝑀), 

contradiction. Now let  𝑎𝑦′ ∈ 𝑓(𝐾), for 𝑎 ∈ 𝑅, 

𝑦′ ∈ 𝑀′. Since 𝑓 is an epimorphism, then there exists 

𝑦 ∈ 𝑀 such that 𝑓(𝑦) = 𝑦′. That is 𝑓(𝑎𝑦) =
𝑎𝑓(𝑦) ∈ 𝑓(𝐾), implies that 𝑓(𝑎𝑦) = 𝑓(𝑥) for some 

𝑥 ∈ 𝐾, so 𝑓(𝑎𝑦 − 𝑥) = 0, it follows that 𝑎𝑦 − 𝑥 ∈
𝐾𝑒𝑟 𝑓 ⊆ 𝐾, hence 𝑎𝑦 ∈ 𝐾. But 𝐾 is an app-primary 

submodule of 𝑀, then either 𝑦 ∈ 𝐾 + 𝑠𝑜𝑐(𝑀) or 

𝑎𝑛𝑀 ⊆ 𝐾 + 𝑠𝑜𝑐(𝑀) for some 𝑛 ∈ 𝑍+. It follows that 

𝑦′ = 𝑓(𝑦) ∈ 𝑓(𝐾) + 𝑓(𝑠𝑜𝑐(𝑀)) = 𝑓(𝐾) +

𝑠𝑜𝑐(𝑓(𝑀)) = 𝑓(𝐾) +𝑠𝑜𝑐(𝑀′)[since 𝑓 is an 

epimorphism], or 𝑎𝑛𝑓(𝑀) ⊆ 𝑓(𝐾) + 𝑠𝑜𝑐(𝑀′). 
Hence 𝑓(𝐾) is an app-primary submodule of 𝑀′. 

 Proposition 2.21 : Let 𝑓:𝑀
          
→  𝑀′ be an 𝑅-

epimorphism and 𝐾 is an app-primary submodule of 

𝑀′. Then 𝑓−1(𝐾) is an app-primary submodule of 𝑀. 

Proof : It is clear that 𝑓−1(𝐾) is a proper submodule 

of 𝑀. Now, let 𝑎𝑦 ∈ 𝑓−1(𝐾), for 𝑎 ∈ 𝑅, 𝑦 ∈ 𝑀,  it 

follows that  𝑓(𝑎𝑦) = 𝑎𝑓(𝑦) ∈ 𝐾. But 𝐾 is an app-

primary submodule of 𝑀′, then either 𝑓(𝑦) ⊆ 𝐾 

+𝑠𝑜𝑐(𝑀′) or 𝑎𝑛𝑀′ = 𝑎𝑛𝑓(𝑀) ⊆ 𝐾 + 𝑠𝑜𝑐(𝑀′) for 

some 𝑛 ∈ 𝑍+. It follows that either   𝑦 ∈ 𝑓−1(𝐾) +

𝑓−1(𝑠𝑜𝑐(𝑀′)) ⊆ 𝑓−1(𝐾) + 𝑠𝑜𝑐(𝑀) or 𝑎𝑛𝑀 ⊆

𝑓−1(𝐾) + 𝑓−1(𝑠𝑜𝑐(𝑀′)) ⊆ 𝑓−1(𝐾) + 𝑠𝑜𝑐(𝑀). 

Hence 𝑓−1(𝐾) is an app-primary submodule of  𝑀. 
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 تقريبا   بتدائيةالجزئية الا المقاسات

 هيبة كريم محمدعلي،  علي شبل عجيل
 ، تكريت ، العراق تكريت جامعة , توالرياضياعلوم الحاسوب  ةكلي , الراضيات قسم

 

 الملخص
كأعمام للمقاسات  𝑅 على الحلقة الابداليه بمحايد 𝑀للمقاس الاحادي الايسر  ا  مفهوم المقاسات الجزئية الابتدائية تقريب اكدت الدراسة الحاليه على

اذا كان  𝑀من  بتدائيامقاس جزئي  𝑀من المقاس  𝑁يدعى المقاس الجزئي الفعلي  , حيثا  الجزئية الابتدائية والمقاسات الجزئية الاولية تقريب
𝑎𝑦 ∈ 𝑁  حيث𝑎 ∈ 𝑅  ,𝑦 ∈ 𝑀  يؤدي الى اما𝑦 ∈ 𝑁 + 𝑠𝑜𝑐(𝑀)  او𝑎𝑘𝑀 ⊆ 𝑁 + 𝑠𝑜𝑐(𝑀)  لبعض𝑘  عدد صحيح موجب في𝑍. 

قاسات مكافئات والخصائص الاساسية لهذا المفهوم. من ناحيه اخرى درسنا العلاقات الشكلية لهذا المفهوم مع بعض اصناف الماعطينا العديد من ال
 نوقشت. تحت تأثير التشاكلات ا  الاخرى. أكثر من هذا سلوك المقاسات الجزئية الابتدائية تقريب

 


