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ABSTRACT 

The study focuses on α–almost similar operator which is a new concept 

of the operator theory and also some basic concepts related to the concept 

α–almost similar. 

The study also defines a new concept called 𝛽– 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟  which is an 

expansion of the concept 𝜃– 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 and the relationship of this concept 

with the α–almost similar. 

At the end of this research, we study some important relationships among 

similar, unitarily equivalent, and almost similar on the one hand and α–

almost similar on the other. 

 

 

Introduction  
We denote 𝐵(ℋ1 , ℋ2) to the set of all bounded linear 

operators from a Hilbert space ℋ1 into a Hilbert 

space ℋ2 . if ℋ= ℋ1 = ℋ2 then we denote 𝐵(ℋ)  

instead of  𝐵(ℋ1, ℋ2). The operator  𝑇 ∈ 𝐵(ℋ)   is 

called self- adjoint if 𝑇 = 𝑇∗ where 𝑇∗ is the adjoint 

of 𝑇[1]. An operator 𝐴 ∈ 𝐵(ℋ) is said to be 

isometric if 𝐴∗𝐴 = 𝐼[2]. If 𝐴∗𝐴 = 𝐴𝐴∗ then 𝐴 is 

called normal operator. And if 𝐴∗𝐴 = 𝐴𝐴∗ = 𝐼 then 𝐴 

is said to be unitary [3].  If  𝐴∗ = 𝐴 and 𝐴2 = 𝐴 then 

𝐴 is said to be projection. If 𝐴𝐴∗𝐴 = 𝐴 then A is said 

to be partially isometric, equivalently 𝐴∗𝐴 is 

projection (i.e. (𝐴∗A )2 = 𝐴∗𝐴) [4]. Clearly every 

unitary operator is isometric and normal. 

Two operators 𝐴 ∈ 𝐵(ℋ)𝑎𝑛𝑑 𝐵 ∈ 𝐵(ℋ) are said to 

be similar and denoted by 𝐴~𝐵,  if there exists an 

invertible operator X such that 𝑋 𝐴 = B 𝑋 

(𝑒𝑞𝑢𝑣𝑎𝑙𝑒𝑛𝑡𝑙𝑦 𝐴 = 𝑋−1B𝑋). If 𝐴~𝐵, then A and B 

have the same: spectrum, point spectrum and 

approximate point spectrum [5]. 

Similarly, two operators 𝐴, 𝐵 ∈ 𝐵(ℋ) are said to be 

unitarily equivalent and denoted by  𝐴 ≅ 𝐵, if there 

exists a unitary operator 𝑈 such that 𝑈 𝐴 = 𝐵 𝑈 

(𝑒𝑞𝑢𝑣𝑎𝑙𝑒𝑛𝑡𝑙𝑦 𝐴 = 𝑈∗B 𝑈)[4]. If 𝐴, 𝐵 are similar 

normal then they are unitarily equivalent by fugled-

Putnam theorem [6]. 

Let  𝐴, 𝐵 are two bounded linear operators on 𝐵(ℋ). 

Then  𝐴, 𝐵 are said to be almost similar and denoted 

by A  𝐵≈ 
𝑎.𝑠  if there exists an invertible operator X such 

that: 

𝐴∗𝐴 = 𝑋−1𝐵∗B 𝑋 and, 𝐴∗ + 𝐴 =𝑋−1(𝐵∗ + 𝐵) 𝑋. The 

class of almost similar was first introduced by Jibril 

[7]. we have extended this concept to α–almost 

similar and demonstrated some different results. 

An operator 𝐴 ∈ 𝐵(ℋ) is said to be 𝜃 − 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟  if 
 𝐴∗𝐴 commutes with 𝐴∗ + 𝐴. The class of all 𝜃 −
𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 in 𝐵 (ℋ) is denoted by 𝜃. The class of 

𝜃 − 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟  be which has been widely studied by 

Campbell [8]. We have extended the concept of 

𝜃 − 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 to another concept we called it 

𝛽 − 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟, the class of  𝛽 − 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 in 𝐵 (ℋ)  
is denoted by 𝛽. 

Let 𝑇 ∈ 𝐵(ℋ)  then the set of all complex number 𝜆 

for which 𝑇 − 𝜆𝐼 is not invertible is called the 

spectrum of 𝑇 and denoted by 𝜎(𝑇) that is,  𝜎(𝑇) =
{𝜆 ∈ ℂ: (𝑇 − 𝜆𝐼) is not invertible}. The complement 

of the spectrum of 𝑇  is called resolvent set of 𝑇. The 

spectrum of 𝑇 can be split into many disjoint sets [9]. 
The point spectrum of the operator 𝑇 is denoted 

by𝜎𝑝(𝑇)   is the set of all those 𝜆 for which 𝑇 − 𝜆𝐼 is 

not injective, that is 𝜎𝑝(𝑇) = { 𝜆 ∈ ℂ: 𝑘𝑒𝑟(𝑇 − 𝜆𝐼) ≠
{0}}. 

A scalar 𝜆 is said to be the approximate point 

spectrum for the operator 𝑇 and denoted by 𝜎𝑎𝑝(𝑇), if 

there exists a sequence of unit vector {𝑥𝑛} such that 
‖(𝑇 − 𝜆𝐼)𝑥𝑛‖ → 0 [9]. Let 𝑇 be a linear 

transformation from a normed space 𝑋 into a normed 

space 𝑌 (𝑖. 𝑒. 𝑇: 𝑋 ⟶ 𝑌). Then 𝑇 is said to be 

compact if   𝑇(ℬ)̅̅ ̅̅ ̅̅ ̅ is compact for every bounded 
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subset ℬ  of 𝑋. that is,  𝑇(ℬ)̅̅ ̅̅ ̅̅ ̅ is relatively compact for 

every bounded subset ℬ  of 𝑋 [9]. 

1.  Basic concept on α–almost similarity  

Definition 1.1: Let α be a real number, two bounded 

linear operators 𝐴, 𝐵 ∈ 𝐵(ℋ) are said to be α–almost 

similar and, denoted by A  𝐵≈
∝  . If there exist an 

invertible operator X such that: 

𝐴∗𝐴 = 𝑋−1𝐵∗B X …..……(1) and, 𝐴∗ + 𝛼𝐴 

=𝑋−1(𝐵∗ + 𝛼𝐵) 𝑋…….…… (2). 

Example 1.2: Let 𝐴= [
1 1
0 0

] and 𝐵=[
0 0
1 1

] be the 

operators on the two-dimensional Hilbert space ℂ2, 
and define the invertible operator on ℂ2 as follows: 

𝑋=𝑋−1=[
0 1
1 0

] ,take 𝛼 = 2, then 𝐴 ≈
2  𝐵.  To show 

that  
𝐴∗𝐴 = [

1 0
1 0

] [
1 1
0 0

] =[
1 1
1 1

] =  [
0 1
1 0

] ( 

[
0 1
0 1

] [
0 0
1 1

] )[
0 1
1 0

]= 𝑋−1𝐵∗B X 

𝐴∗ + 2𝐴 

=[
1 0
1 0

]+2[
1 1
0 0

] =[
3 2
1 0

] =  [
0 1
1 0

]([
0 1
0 1

] +

2 [
0 0
1 1

])[
0 1
1 0

] 

=𝑋−1(𝐵∗ + 2𝐵) 𝑋 

Remark 1.3: Every 1– almost similar operators are 

almost similar and the converse are true. 

The following example show almost similar and α-

almost similar are independent when α≠1.   

Example 1.4: Let 𝐴= [
1 0
0 1

] = 𝐼 and 𝐵=[
0 1
1 0

] be 

the operators on the two-dimensional Hilbert 

space ℂ2, and define the invertible operator on ℂ2 as 

follows: 𝑋=[
1

2
0

0 2
] ,take 𝛼 = −1. Then 𝐴  ≈

−1 𝐵. But 

𝐴 is not almost similar to 𝐵  Since 𝐴∗ + 𝐴 ≠

𝑋−1(𝐵∗ + 𝐵) 𝑋, indeed  𝐴∗ + 𝐴 =[
2 0
0 2

] = 2𝐼 , 𝐵∗ +

𝐵 =  [
0 2
2 0

]. 𝐵∗ + 𝐵≠𝑋(𝐴∗ + 𝐴)𝑋−1 = 2𝑋 𝐼 𝑋−1 =

2𝐼 for every invertible operator 𝑋. 
Theorem 1.5: let α∈ ℝ, the relation   ≈

∝   on 𝐵(ℋ)  is 

equivalence relation. 

Proof: (𝑖)Reflexivity, let 𝐴 ∈  𝐵(ℋ)   take 𝑋 = 𝐼. 𝐴∗𝐴 

= 𝑋−1𝐴∗𝐴 𝑋  and, 𝐴∗+α 𝐴 = 𝑋−1(𝐴∗+α 𝐴) 𝑋. Then 

𝐴 ≈
∝ 𝐴. 

(ii)Symmetry, suppose that 𝐴, 𝐵 ∈ B (ℋ) and, 𝐴 ≈
∝ 𝐵. 

Then there exists an invertible operator 𝑋 such that. 

𝐴∗𝐴 = 𝑋−1𝐵∗𝐵 𝑋 ……… (1), and, 𝐴∗ + 𝛼𝐴 = 

𝑋−1(𝐵∗+α𝐵) 𝑋…... (2). 

Now, pre-multiplying and post-multiplying (1) and 

(2) by 𝑋 and 𝑋−1, respectively yields. 𝑋𝐴∗𝐴 𝑋−1 = 

𝐵∗𝐵…………....(3), and,  𝑋(𝐴∗+α𝐴) 𝑋−1= 

𝐵∗+α𝐵………... (4). 

Take 𝑌 =  𝑋−1, which is an invertible operator, since 

𝑋−1is an invertible operator. 

Substituting 𝑋 and 𝑋−1  in (3) and (4) by 𝑌−1and 𝑌 

respectively, we get 𝐵 ≈
∝  𝐴. 

(iii) Transitivity, suppose that 𝐴, 𝐵 and 𝐶 ∈ B (ℋ). 

And 𝐴 ≈
∝ 𝐵, 𝐵 ≈

∝ 𝐶, to show that  𝐴 ≈
∝ 𝐶. 

Since 𝐴 ≈
∝ 𝐵, then there exists an invertible operator 𝑋 

such that. 

𝐴∗𝐴 = 𝑋−1𝐵∗𝐵 𝑋………(1), and 𝐴∗+α𝐴 

=𝑋−1(𝐵∗+α𝐵) 𝑋 …. (2). 
Also, since 𝐵 ≈

∝  𝐶, then there exists an invertible 

operator 𝑌 ∈ 𝐵(ℋ) such that  

𝐵∗𝐵 = 𝑌−1 𝐶∗𝐶 𝑌 … (3) and, 𝐵∗+αB = 𝑌−1(𝐶∗+α𝐶) 

𝑌 …… (4). 

Substituting (3) and (4) in (1) and (2) as follows: 

𝐴∗𝐴 = 𝑋−1[𝑌−1𝐶∗𝐶 𝑌] 𝑋   = 𝑋−1𝑌−1[𝐶∗𝐶] 𝑌𝑋  = 

(𝑌𝑋)−1 𝐶∗𝐶 (𝑌𝑋)……… (5) 

Also, 𝐴∗+α𝐴 = 𝑋−1[𝑌−1 (𝐶∗ + 𝛼𝐶)𝑌]𝑋 . Which 

implies that  𝐴∗+α𝐴 = (𝑌𝑋)−1[𝐶∗ +α𝐶] (𝑌𝑋).…. (6). 

Then from (5) and (6) we get 𝐴 ≈
∝ 𝐶. 

Proposition 1.6: Let 𝐴 ∈ 𝐵 (ℋ), such that 𝐴 ≈
∝ 0, 

then 𝐴 =  0. 
Proof: Since 𝐴 ≈

∝ 0 then there exists an invertible 

operator 𝑋 such that. 

𝐴∗𝐴 = 𝑋−10∗0 𝑋 = 0 ……. (1), and 𝐴∗ + 𝛼𝐴 = 

𝑋−1(0∗+α0) 𝑋 = 0 ……. (2). 

Then 𝐴∗𝐴 = 0 and 𝐴∗ +α𝐴 = 0. Now, ‖𝐴𝑥‖2 

=⟨𝐴𝑥|𝐴𝑥⟩ =⟨𝐴∗𝐴𝑥|𝑥⟩ = ⟨0|𝑥⟩ = 0 

Therefore 𝐴𝑥 = 0 for all 𝑥 ∈ ℋ. Thus 𝐴 = 0. 

Remark 1.7: suppose that 𝐴, 𝐵 ∈  𝐵 (ℋ) such that  

𝐴 ≈
∝ 𝐵, then clearly by using mathematical induction 

we can prove: 

(i) (𝐴∗A) 𝑛 =𝑋−1  (𝐵∗𝐵)𝑛𝑋, 

(ii) (𝐴∗ + αA) 𝑛 = 𝑋−1(𝐵∗ + 𝛼𝐵)𝑛𝑋. For all-natural 

number n. 

Proposition 1. 8: Let 𝐴, 𝐵 ∈  𝐵 (ℋ) such that 𝐴 ≈
∝ 𝐵. 

Then 𝐴 is isometric if and only if 𝐵 is isometric. 

Proof: Suppose that 𝐴 is isometric. Since 𝐴 ≈
∝  𝐵 this 

means that there exists an invertible operator 𝑋 such 

that 𝐴∗A = 𝑋−1(𝐵∗𝐵) 𝑋 ……. (1), and, 𝐴∗ + αA = 

𝑋−1(𝐵∗ + 𝛼𝐵) 𝑋 …… (2). Since 𝐴 is isometric then 

𝐴∗A = 𝐼 substituting in the equality (1) we have 

𝐼 = 𝐴∗A =𝑋−1(𝐵∗𝐵) 𝑋 which implies that 𝐵∗𝐵 = 𝐼. 

Thus, 𝐵 is isometric. 

Conversely: by the same way we can prove that 𝐴 is 

isometric whenever 𝐵 is isometric. 

Proposition 1. 9: Let α∈ ℝ. 𝐴, 𝐵 are two operators in 

B (ℋ) with  𝐴 ≈
∝ 𝐵. Then: 

(i) 𝐴∗𝐴 is onto if and only if 𝐵∗𝐵 is onto, 

(ii) 𝐴∗ + 𝛼𝐴 is onto if and only if  𝐵∗ + 𝛼𝐵 is onto, 

(iii) 𝐴∗𝐴 is one -to-one if and only if 𝐵∗𝐵 is one-to-

one, 

(iv) 𝐴∗ + 𝛼𝐴 is one-to-one if and only if 𝐵∗ + 𝛼𝐵 is 

one -to-one, 

(v) 𝐴∗𝐴 is projection if and only if 𝐵∗𝐵 is projection. 

Proof: Clearly. 

Remark 1.10: Let α∈ ℝ. 𝐴, 𝐵 are two operators in B 

(ℋ) with  𝐴 ≈
∝  𝐵. Then: 

(vi) 𝐴∗𝐴 is one-to-one and onto if and only if  𝐵∗𝐵 is 

one-to-one and, onto. 

(vii) 𝐴∗ + 𝛼𝐴 is one-to-one and, onto if and only if  

𝐵∗ + 𝛼𝐵 is one-to-one and, onto. 

Proof: immediately from proposition 1.9 above. 

proposition 1.11: Let  𝐴 ∈ 𝐵 (ℋ) and 𝐴 ≈
∝ 𝐼, then 

𝐴 is isometry. 
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Proof: Suppose that   𝐴 ≈
∝ 𝐼. then there exists an 

invertible operator 𝑋 such that 𝐴∗𝐴 = 𝑋−1(𝐼∗𝐼) 𝑋 = 

𝑋−1(𝐼) 𝑋 = 𝑋−1𝑋 =  𝐼…. (1). Then 𝐴∗𝐴 =
𝐼 (𝑖. 𝑒. 𝐴 𝑖𝑠 𝑖𝑠𝑜𝑚𝑒𝑡𝑟𝑦 ). 

Proposition 1.12: Let  𝐴, 𝐵 ∈ 𝐵 (ℋ) and 𝐴 ≈
∝ 𝐵 such 

that 𝐴 is partially isometric then 𝐵 is partially 

isometric. 

Proof:  𝐴 ≈
∝ 𝐵 means that there exists an invertible 

operator 𝑋 such that  

𝐴∗𝐴 = 𝑋−1(𝐵∗𝐵) 𝑋.…. (1). Since A is parietally 

isometric then 𝐴∗𝐴 is projection (i.e. (𝐴∗A )2 = 𝐴∗𝐴). 

By squaring both sides in (1) we have ( 𝑋−1(𝐵∗𝐵) 𝑋) 

(𝑋−1(𝐵∗𝐵) 𝑋) = (𝐴∗A )2 = 𝐴∗𝐴. Then  𝑋−1(𝐵∗𝐵) 

(𝐵∗𝐵) 𝑋 =  𝑋−1(𝐵∗𝐵) 𝑋 … (2). 

Pre-multiplying and post-multiplying (2) by 𝑋 and 

𝑋−1 respectively we have, (𝐵∗𝐵) 2 = 𝐵∗𝐵(i.e. 𝐵∗𝐵 is 

projection). Which implies that 𝐵 is partially 

isometric. 

Proposition 1.13: Let α∈ ℝ. Then the transformation  

𝜑 ∶ 𝐵 (ℋ) ⟶ B (ℋ) that satisfies 𝜑(𝐴∗𝐴) = 

𝑋−1(𝐵∗𝐵) X, 𝜑(𝐴∗ + 𝛼𝐴) = 𝑋−1(𝐵∗ + 𝛼𝐵) X is an 

automorphism. That is, it maps sums into sums, 

products into products and scalar multiples into scalar 

multiplies. 

Proof: suppose that 𝐴, 𝐵, 𝐶 and 𝐷 ∈ 𝐵(ℋ) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

 𝜑(𝐴∗A) = 𝑋−1(𝐵∗𝐵) X and 𝜑(𝐶∗𝐶) = 𝑋−1(𝐷∗𝐷) 𝑋.  

Then 

𝜑(𝐴∗𝐴+α𝐶∗𝐶) = 𝑋−1(𝐵∗𝐵 + 𝛼𝐷∗𝐷) 𝑋 = 

𝑋−1(𝐵∗𝐵) 𝑋 + 𝛼 𝑋−1(𝐷∗𝐷) 𝑋= 𝜑(𝐴∗𝐴)  + 𝛼 

𝜑(𝐶∗C) and, 𝜑((𝐴∗𝐴) (𝐶∗C)) = 𝑋−1((𝐵∗𝐵)(𝐷∗𝐷)) 

𝑋 = 𝑋−1(𝐵∗𝐵)𝑋𝑋−1(𝐷∗𝐷) 𝑋 

= (𝑋−1(𝐵∗𝐵)𝑋)(𝑋−1(𝐷∗𝐷) 𝑋)  = 𝜑(𝐴∗𝐴) 𝜑(𝐶∗𝐶). 
Proposition 1.14: Let 𝐴, 𝐵 ∈ 𝐵 (ℋ)  such that 𝐴, 𝐵 

are unitarily equivalent then 𝐴 ≈
∝ B for every α ∈ ℝ. 

Proof: Since 𝐴 and 𝐵 are unitarily equivalent then 

there exists a unitary operator 𝑈 such that 𝐴 = 𝑈∗𝐵𝑈. 
Then 𝐴∗ = 𝑈∗𝐵∗𝑈 which implies that 𝐴∗𝐴 =
(𝑈∗𝐵∗𝑈)(𝑈∗𝐵𝑈) = 𝑈∗𝐵∗(𝑈𝑈∗)𝐵𝑈 = 𝑈∗𝐵∗(𝐼)𝐵𝑈 = 

𝑈∗𝐵∗𝐵𝑈. And, 𝐴∗ + 𝛼𝐴 = 𝑈∗𝐵∗𝑈 + 𝛼𝑈∗𝐵𝑈 = 

𝑈∗𝐵∗𝑈 + 𝑈∗𝛼𝐵𝑈 =𝑈∗(𝐵∗ + 𝛼𝐵)𝑈 

Thus, 𝐴 ≈
∝ 𝐵 for all α ∈ ℝ. 

proposition 1.15: Let   𝐴, 𝐵 ∈ 𝐵 (ℋ)  such that 𝐴 ≈
∝ 𝐵 

for every real α. Then  (𝐴 + λI)≈
∝(𝐵 + λI)for every 

real 𝜆. 

Proof: 𝐴 ≈
∝ B means that there is an invertible operator 

X such that. 

𝐴∗A = 𝑋−1(𝐵∗𝐵) 𝑋 ….. (1). And, 𝐴∗ + αA = 

𝑋−1(𝐵∗ + 𝛼𝐵) 𝑋 … (2). 

From the equality (2) we have  𝐴∗ + αA = 𝑋−1𝐵∗𝑋 +
𝑋−1𝛼𝐵 𝑋, by post-adding to both sides 𝜆𝐼 + 𝛼𝜆𝐼 

which implies that  𝐴∗ + αA + 𝜆𝐼 + 𝛼𝜆𝐼 =𝑋−1𝐵∗𝑋 +
𝑋−1𝛼𝐵 X+𝜆𝐼 + 𝛼𝜆𝐼. Then we have 𝐴∗ + 𝜆𝐼 + α(A +
𝜆𝐼) = 𝑋−1𝐵∗𝑋 + 𝑋−1𝛼𝐵 X+𝜆𝐼 + 𝛼𝜆𝐼 which implies 

that 

(𝐴 + 𝜆𝐼)∗ + α(A + 𝜆𝐼) = 

𝑋−1(𝐵 + 𝜆𝐼)∗𝑋+𝑋−1 (α𝐵 + 𝜆𝐼)𝑋…. (3). Since 𝜆 is 

real number. Now, we want to prove that (𝐴 +
𝜆𝐼)∗(A + 𝜆𝐼) = 𝑋−1(𝐵 + 𝜆𝐼)∗ (A + 𝜆𝐼)𝑋.  (𝐴 +

𝜆𝐼)∗(A + 𝜆𝐼)= 𝐴∗𝐴 +  𝜆𝐴∗ + 𝜆𝐴 +𝜆2𝐼 =  𝐴∗𝐴 +
 𝜆(𝐴∗ + 𝐴) +  𝜆2𝐼 

= 𝑋−1(𝐵∗𝐵) 𝑋 + 𝜆𝑋−1(𝐵∗ + 𝐵) 𝑋 + 𝜆2𝑋−1𝑋 (since 

(1) and (2) are satisfies when α= 1)  = 𝑋−1[(𝐵∗𝐵) 

+𝜆(𝐵∗ + 𝐵) +𝜆2]𝑋= 𝑋−1[(𝐵∗ + 𝜆𝐼)(𝐵 + 𝜆𝐼)] 𝑋  

=𝑋−1[(𝐵 + 𝜆𝐼)∗ (𝐵 + 𝜆𝐼)] 𝑋, since 𝜆 is real number. 

Then (𝐴 + 𝜆𝐼)∗(A + 𝜆𝐼)= 𝑋−1[(𝐵 + 𝜆𝐼)∗ (𝐵 + 𝜆𝐼)] 

𝑋…. (4). 

From the equality (3) and the equality (4) we have 

(𝐴 + λI)≈
∝(𝐵 + λI)for every real 𝜆. 

proposition 1.16: Let  𝐴, 𝐵 ∈ 𝐵 (ℋ)  be projections 

such that 𝐴 ≈
∝ 𝐵 and  (𝐴 + λI)≈

∝(𝐵 + λI). Then: 

𝜎(𝐴) = 𝜎(𝐵),𝜎𝑝 (𝐴) = 𝜎𝑝(𝐵)𝑎𝑛𝑑 𝜎𝑎𝑝 (𝐴) =

𝜎𝑎𝑝(𝐵). 

 Proof: 𝐴 ≈
∝ 𝐵 means that there is an invertible 

operator 𝑋 such that. 

𝐴∗A = 𝑋−1(𝐵∗𝐵) 𝑋 ….….. (1). And, 𝐴∗ + αA = 

𝑋−1(𝐵∗ + 𝛼𝐵) 𝑋 ……. (2). 

Since A and B are projection then A and B are self-

adjoints. Then (2) becomes  (1 + α)A = 𝑋−1(1 +
𝛼)𝐵 𝑋 which implies that  A = 𝑋−1𝐵 𝑋. This means 

that 𝐴~𝐵, then 

𝜎(𝐴) = 𝜎(𝐵), 𝜎𝑝 (𝐴) = 𝜎𝑝(𝐵) 𝑎𝑛𝑑, 𝜎𝑎𝑝 (𝐴) =

𝜎𝑎𝑝(𝐵) [6]. 

Theorem 1.17 [10]: the operator 𝐴 ∈ 𝐵 (ℋ) is 

compact if and only if 𝐴∗𝐴 is compact. 

Proposition 1.18: Let α∈ ℝ. 𝐴, 𝐵 ∈ 𝐵 (ℋ) and  

𝐴 ≈
∝ 𝐵. If 𝐴 is compact then 𝐵 is compact. 

Proof: since  𝐴 ≈
∝ 𝐵 then there exsist an invertible 

operator 𝑋 such that  

𝐴∗𝐴 = 𝑋−1𝐵∗𝐵 𝑋 pre-multiplying and post-

multiplying both sides by 𝑋 and 𝑋−1 respectively, we 

have 𝑋 𝐴∗𝐴 𝑋−1 = 𝐵∗𝐵  . Since 𝐴 is compact then 

𝑋 𝐴∗𝐴 𝑋−1is also compact. By theorem 1.17 above 

then  𝐵 is compact. 

Theorem 1.19: Let α∈ ℝ. 𝐴, 𝐵 ∈ 𝐵 (ℋ), 𝑋 be an 

invertible operator. If 𝑋𝐴 = 𝐵𝑋 and, 𝑋𝐴∗ = 𝐵∗𝑋 . 

Then  𝐴 and 𝐵 are α-almost similar. 

Proof: by hypothesis 𝑋𝐴 = 𝐵𝑋 and, 𝑋𝐴∗ = 𝐵∗𝑋 then 

we have 𝐴 = 𝑋−1𝐵𝑋 and, 𝐴∗ = 𝑋−1𝐵∗𝑋. Now, 

𝐴∗𝐴 = (𝑋−1𝐵∗𝑋)(𝑋−1𝐵𝑋) = 𝑋−1𝐵∗(𝑋 𝑋−1)𝐵𝑋 =
 𝑋−1𝐵∗𝐵 𝑋  and, 

𝐴∗ + 𝛼𝐴 = 𝑋−1𝐵∗𝑋 + 𝑋−1(𝛼𝐵)𝑋 = 𝑋−1(𝐵∗ +
𝛼𝐵 ) 𝑋. Then 𝐴 and 𝐵 are α-almost similar. 

Proposition 1.20: If 𝐴 ,𝐵 ∈ B (ℋ) are similar normal 

operators, then 𝐴 ≈
∝  𝐵 . 

Proof: suppose that 𝐴 and 𝐵 are similar normal 

operators then there exists an invertible operator 𝑋  
such that 𝑋𝐴 = 𝐵𝑋. Then 𝑋𝐴∗ = 𝐵∗𝑋 by Fuglede-

Putnam theorem [6]. 

Now, by using theorem 1.20 we have, 𝐴 and 𝐵 are α-

almost similar. 

Remark 1.21: The converse of the proposition 1.20 is 

not true in general. 

Consider the following example: Let 𝐴= [
0 1
0 0

] , 

𝐵=[
0 0
1 0

] and 𝑋=𝑋−1=[
0 1
1 0

], be the operators on 

two-dimensional Hilbert space ℂ2, take 𝛼 = 2 ,then 
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𝐴 ≈
2  𝐵. Also 𝐴 is similar to 𝐵 (I.e.  𝑋𝐴 = 𝐵𝑋 ) but 

𝐴∗𝐴 = [
0 0
0 1

] ≠ [
1 0
0 0

] = 𝐴𝐴∗ and, 𝐵∗𝐵 =

[
1 0
0 0

] ≠ [
0 0
0 1

] = 𝐵𝐵∗. Then 𝐴 and 𝐵 are not 

normal operators. 

2. The properties of self-adjoint operator on α-

almost similarity. 

Proposition 2.1: Suppose that 𝐴, 𝐵 are self-adjoint 

operators in 𝐵 (ℋ) with 𝐴 ~ 𝐵 (i.e. 𝐴 is similar to 𝐵), 

then 𝐴 ≈
∝ 𝐵, for every α∈ ℝ. 

Proof: Since 𝐴 and 𝐵 are similar operators, then there 

exists an invertible operator 𝑋 such that 𝑋𝐴 = 𝐵 𝑋 

(i.e. 𝐴 =  𝑋−1𝐵 𝑋). 

Also, 𝐴 and 𝐵 are self-adjoint operators in B (ℋ) , 
then  

 A∗𝐴= X−1B∗𝐵 𝑋 …….….(1). Also, 𝐴∗ + 𝛼𝐴 =  𝐴 +
 𝛼𝐴 =  𝑋−1𝐵 𝑋 + 𝛼 𝑋−1𝐵 𝑋 = 𝑋−1(𝐵 + 𝛼𝐵) 𝑋 = 

𝑋−1(B∗ + 𝛼𝐵)𝑋 ……… (2). From (1) and (2) we 

have 𝐴 ≈
∝ 𝐵. 

Remark 2.2: The converse of the Proposition 2.1. 

above is not true in general. 

For example: Let 𝐴= [
1 1
0 0

] , B=[
0 0
1 1

] and 

X=𝑋−1=[
0 1
1 0

] , be the operators on the two-

dimensional Hilbert spaceℂ2 take 𝛼 = 2. We know 

that 𝐴 ≈
2  𝐵 as in example 1.2. Moreover 𝐴 ~ 𝐵 . But 𝐴 

≠   𝐴∗, also 𝐵 ≠  𝐵∗.Thus, 𝐴 and 𝐵 are not self-

adjoint operators. 

Proposition 2.3: Let α= −1 ∈ ℝ.  𝐴, 𝐵 ∈ 𝐵 (ℋ) and 

𝐴 ≈
∝ 𝐵. If 𝐴 is self-adjoint then 𝐵 is self-adjoint. 

Proof: Since 𝐴 ≈
−1 𝐵, then there exist an invertible 

operator X such that 𝐴∗ − 𝐴 = 𝑋−1(𝐵∗ − 𝐵) 𝑋. 

Which implies that 0 = 𝑋−1(𝐵∗ − 𝐵) 𝑋 …… (1). Pre-

multiplying and post multiplying (1) by X and 𝑋−1 

respectively we have 0 = 𝐵∗ − 𝐵. Then 𝐵 = 𝐵∗. 

Remark 2.4: The converse of proposition 2.3 above 

is not true in general for example   𝐴 = [
3 0
0 0

] =

𝐴∗, 𝐵 = [
1 0
0 1

] = 𝐵∗𝑎𝑛𝑑, 𝑋=[
𝑎 𝑏
𝑐 𝑑

] be the operators 

on the two-dimensional Hilbert space ℂ2, take 𝛼 ∈ ℝ 

Then [
3 0
0 0

] [
3 0
0 0

] = [
9 0
0 0

] ≠ 𝑋−1 [
1 0
0 1

] 

[
1 0
0 1

] 𝑋 = 𝑋−1 [
1 0
0 1

] 𝑋 = 𝑋−1𝐼 𝑋 = 𝐼 .Thus, 𝐴 is 

not α-almost similar to 𝐵. Then 𝐴 is not (-1)-almost 

similar to 𝐵. 

Theorem 2.5 [4]: (Cartesian form) let 𝑇 be any 

operator, then there exist self-adjoint operators 𝐴 and 

𝐵 such that 𝑇 = 𝐴 + 𝑖𝐵. When  𝐴 =
1

2
(𝑇 + 𝑇∗) and, 

𝐵 =
1

2𝑖
(𝑇 − 𝑇∗). 

Theorem 2.6: Let 𝑇 ∈B (ℋ) then 𝑇 = 𝑇∗ if and only 

if 𝑇 is normal and 

 (𝑇 + 𝑇∗) 2 = 4𝑇∗T.   

Proof: If 𝑇 = 𝑇∗ then clearly  (𝑇 + 𝑇∗) 2 = 4𝑇∗T and 

T is normal. 

Conversely: If 4𝑇∗𝑇 = (𝑇∗ + T) 2 = (𝑇∗ + 𝑇)(𝑇∗ +

𝑇) = 𝑇∗2 + 2𝑇∗𝑇 + 𝑇2. Hence, 𝑇∗2 − 2𝑇∗𝑇 + 𝑇2 =
0 which implies that (𝑇∗ − T) 2 = 0. ⟹

−(𝑇∗ − T) 2 = 0 ⟹ (𝑇∗ − 𝑇)(𝑇 − 𝑇∗) = 0. Let 

𝑆 = 𝑇∗ − 𝑇 ⟹ 𝑆𝑆∗ = 0 ⟹ 0 = ⟨𝑆𝑆∗𝑥|𝑥⟩ =
⟨𝑆∗𝑥|𝑆∗𝑥⟩ = ‖𝑆∗𝑥‖2 for every 𝑥. Then 𝑆∗𝑥 = 0 for 

every 𝑥 ⟹  𝑆∗ = 0 ⟹ 𝑆 = 0 ⟹ 𝑇∗ − 𝑇 = 0 ⟹
𝑇∗ = 𝑇 . 

Remark 2.6: If 𝑇 = 𝑇∗ then (𝑇∗ + αT) 2 =
(1 + 𝛼 )2𝑇∗T for every α∈ ℝ. 
Proposition 2.7: Suppose that (𝑇∗ + αT) 2 =
(1 + 𝛼 )2𝑇∗T then: 

(i) If α=1 and 𝑇 is normal then 𝑇 = 𝑇∗. 

(ii) If α=-1 then 𝑇 = 𝑇∗. 

(iii) If α≠1, -1 then 𝑇∗2 = 𝑇2. 

Proof: (i) directly as in theorem 2.6. And (ii) clearly. 

Now to prove (iii) let α≠1, -1. (𝑇∗ + αT) 2 =
(1 + 𝛼 )2𝑇∗T by taking adjoint to both sides we have 

(𝑇 + 𝛼𝑇∗) 2 = (1 + 𝛼 )2𝑇∗T. Then 𝑇∗2 + 𝛼𝑇∗𝑇 +
𝛼𝑇𝑇∗ + 𝛼2𝑇2 = 𝑇2 + 𝛼𝑇𝑇∗ + 𝛼2𝑇∗2 ⟹ 𝑇∗2 = 𝑇2. 

Theorem 2.8 [4]: If 𝑇 is normal operator, then there 

exists a unitary operator 𝑈 such that 𝑇∗ =  𝑈𝑇. 

3.  The properties of 𝜷 − 𝒐𝒑𝒆𝒓𝒂𝒕𝒐𝒓 on α-almost 

similarity. 

Definition 3.1:  let 𝐴 ∈ 𝐵(ℋ), then A is called an 

 𝛽 − 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 if 𝐴∗𝐴 commutes with 𝐴∗+α𝐴. The 

class of all   𝛽 − 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 in a Banach algebra on a 

Hilbert space ℋ is denoted by 𝛽 i.e.  β= {𝐴: 𝐴 ∈
𝐵 (ℋ) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 [𝐴∗𝐴, 𝐴∗+α𝐴] = 0}. 

Example 3.2: Let 𝐴=[
1 0
0 0

] and take α=3 then  [𝐴∗𝐴, 

𝐴∗+3𝐴] =0 

i.e.  ( 𝐴∗𝐴) ( 𝐴∗+3𝐴) = ( 𝐴∗+3𝐴) ( 𝐴∗𝐴) which implies 

that 𝐴 is 𝛽-operator. 

Proposition 3.3: If 𝐴 ∈ 𝐵 (ℋ) is 𝛽- operator then 𝑘𝐴 

is 𝛽- operator for every real number 𝑘. 

Proof: Clearly.  

Proposition 3.4: If  𝐴, 𝐵 ∈ 𝐵 (ℋ) and 𝐴 ≈
∝ 𝐵  such 

that 𝐵 is 𝛽 −  𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 then 𝐴 is 𝛽 −  𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟. 
Proof: 𝐴 ≈

𝛼  𝐵 means that there exists an invertible 

operator 𝑋 such that  

𝐴∗A = 𝑋−1(𝐵∗𝐵) 𝑋 . And, 𝐴∗ + αA = 𝑋−1(𝐵∗ + 𝛼𝐵) 

𝑋.  

Then, [ 𝑋−1(𝐵∗ + 𝛼𝐵) 𝑋] [𝑋−1(𝐵∗𝐵) 𝑋] = [ 𝐴∗ + αA] 

𝐴∗𝐴 …... (1) 

And [𝑋−1(𝐵∗𝐵) X] [ 𝑋−1(𝐵∗ + 𝛼𝐵) X] = 𝐴∗A [ 

𝐴∗ + αA] …. (2). From the equality (1) we have: [ 

𝑋−1(𝐵∗ + 𝛼𝐵) (𝐵∗𝐵) 𝑋] = [ 𝐴∗ + αA] 𝐴∗𝐴 …… (3). 

Also, from the equality (2) we have: [𝑋−1(𝐵∗𝐵) 

(𝐵∗ + 𝛼𝐵) 𝑋] = 𝐴∗𝐴 [ 𝐴∗ + αA]…....… (4). 

Since 𝐵 is 𝛽- operator then the left-hand side of the 

equality (3) and the equality (4) are equal. which 

imply that the right-hand side of the equality (3) and 

the equality (4) are equal. Hence 𝐴 is 𝛽- operator. 

4. The relation among similarity, unitarily 

equivalent, quasi similarity and almost similarity 

with α-almost similarity. 

Proposition 4.1: Let   𝐴, 𝐵 ∈ 𝐵 (ℋ)  are orthogonal 

projection then 𝐴 and 𝐵  are α-almost similar if and 

only if 𝐴 and 𝐵 are similar. 

Proof: Suppose that 𝐴 ≈
∝ 𝐵  and 𝐴, 𝐵 are projection 

then by proposition 1.16 we get 𝐴~𝐵. 
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Conversely, suppose that 𝐴 and 𝐵 are similar 

operators then there exists invertible operator 𝑋 such 

that A = 𝑋−1𝐵 𝑋, since 𝐴 and 𝐵 are orthogonal 

projection then 𝐴 = 𝐴∗ = 𝐴2 , 𝐵 = 𝐵∗ =
𝐵2. Which implies that A2 = 𝑋−1𝐵2 X then we have 

A∗𝐴 = 𝑋−1𝐵∗𝐵 X. 

On the other hand, the second inequality follows from 

the fact that 

 𝐴∗ + 𝛼𝐴 = (1 + 𝛼)𝐴 = (1 + 𝛼)𝑋−1𝐵 𝑋 =
𝑋−1(𝐵∗ + 𝛼𝐵)𝑋. Thus, 𝐴 ≈

∝ 𝐵 . 

Proposition 4.2: Let α∈ ℝ.  𝐴, 𝐵 ∈ 𝐵 (ℋ) and 

𝐴, 𝐵 are self-adjoint then 𝐴 and 

 𝐵 are unitarily equivalent if and only if 𝐴 ≈
∝ B.  

Proof: Suppose that 𝐴 and 𝐵 are unitarily equivalence 

then by proposition 1.14we have 𝐴 ≈
∝ B. 

Conversely:  Suppose that 𝐴, 𝐵 ∈ 𝐵 (ℋ) are self-

adjoint with 𝐴 ≈
∝ B.  

Now, 𝐴 ≈
∝ 𝐵 means that there exists an invertible 

operator 𝑋 such that  

𝐴∗𝐴 = 𝑋−1(𝐵∗𝐵) 𝑋.…... (1), and  𝐴∗ + αA = 

𝑋−1(𝐵∗ + 𝛼𝐵) 𝑋 …..…. (2). 

Since 𝐴, 𝐵 are self-adjoint and 𝐴 ≈
∝ 𝐵  then they are 

similar operates(𝑖. 𝑒 𝐴 = 𝑋−1𝐵 𝑋). Then A and B are 

both similar and self-adjoint operators then 𝐴 and 𝐵 

are normal. Thus 𝐴 and 𝐵 are unitarily equivalence. 

Corollary 4.3: Let α∈ ℝ.  𝐴, 𝐵 ∈ 𝐵 (ℋ)  are self-

adjoint and 𝐴 ≈
∝  B. Then 𝐴 and 𝐵 are unitarily 

equivalent. 

Proof: directly from proposition 4.2 above. 

Proposition 4.4:  Let   𝐴, 𝐵 ∈ 𝐵 (ℋ)  are self-adjoint 

operators then, 𝐴 and 𝐵  are α- almost similar if and 

only if 𝐴 and 𝐵 are almost similar. 

Proof: Suppose that 𝐴, 𝐵 are α-almost similar then 

there is an invertible operator X such that. 𝐴∗𝐴 = 

𝑋−1(𝐵∗𝐵) 𝑋 ……. (1), and  𝐴∗ + αA = 𝑋−1(𝐵∗ +
𝛼𝐵) 𝑋 ……. (2). 

Since A and B are self-adjoint Then 𝐴 = 𝐴∗,  𝐵 = 𝐵∗  

then (2) becomes 

 (1 + 𝛼)𝐴 = (1 + 𝛼)𝑋−1𝐵 𝑋. Now pre-multiplying 

both sides by 
2

(1+α)
 , α≠−1.Which implies that 2 𝐴 = 

2𝑋−1𝐵𝑋 ⟹ 𝐴 + 𝐴∗ = 𝑋−1(𝐵 + 𝐵∗)𝑋 …….. (3). 

From (1) and (3) we have 𝐴 and 𝐵 are almost similar. 

Conversely, suppose that 𝐴, 𝐵 are almost similar then 

(1) and (3) satisfies. Since A and B are self-adjoint 

Then (3) becomes 2 𝐴 =  2𝑋−1𝐵𝑋. pre-multiplying 

both sides by 
1+𝛼

2
 which implies that  (1 + 𝛼)A = 

(1 + 𝛼)𝑋−1𝐵𝑋 ⟹ 𝐴 + αA = 𝑋−1(𝐵 + 𝛼𝐵) 𝑋 ⟹  
𝐴∗ + αA = 𝑋−1(𝐵∗ + 𝛼𝐵) 𝑋. Thus, 𝐴 and 𝐵 are α-

almost similar. 

Remark 4.7: the converse of proposition 4.6 is not 

true in general consider the following example: Let 

𝐴= [
1 1
0 0

] and 𝐵=[
0 0
1 1

] be the operators on the 

two-dimensional Hilbert space ℂ2, and define the 

invertible operator on ℂ2 as follows: 𝑋=𝑋−1=[
0 1
1 0

] 

,take 𝛼 = 2. then 𝐴 ≈
2  𝐵. As in example 1.2. Also, 

𝐴  ≈
𝑎.𝑠 𝐵. But 𝐴 ≠ 𝐴∗  and, 𝐵 ≠ 𝐵∗. 
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 α -طالمؤثرات الخطية المتشابهة تقريبا من النم
 ليث خليل شاكر،  امجد حمد عبد المجيد

 سم الرياضيات ، كلية علوم الحاسوب والرياضيات ، جامعة تكريت ، تكريت ، العراقق
 

 الملخص
وهو مفهوم جديد لنظرية المؤثرات الخطية, كذلك بعض المفاهيم  α-تقريبا من النمط درسنا في هذه البحث المؤثرات الخطية المقيدة المتشابهة

من  عرفنا مفهوما جديدا والذي اطلقنا عليه اسم المؤثر كذلك. α-المؤثرات الخطية المقيدة المتشابهة تقريبا من النمطمفهوم ب المتعلقة الاساسية
. في نهاية هذا البحث درسنا α-وعلاقة هذا المؤثر بالمؤثرات الخطية المتشابهة تقريبيا من النمط 𝜃-من النمط والذي يعتبر توسيعا للمؤثر 𝛽-النمط

 α-والتشابه التقريبي من جهة وبين المؤثرات الخطية المتشابهة تقريبا من النمط ,والمؤثرات الاحادية المتكافئة بعض العلاقات المهمة بين لتشابه,
 الاخرى. جهةمن ال


