\(\alpha \)-almost similar operators

Amjad H. Abdul Majeed, Laith K. Shaakir

Department of Mathematics, College of Computer Science and Mathematics, Tikrit University, Tikrit, Iraq

https://doi.org/10.25130/tjps.v24i5.421

Article Info:

- Received: 17/4/2019
- Accepted: 25/6/2019
- Available online: 1/2/2019

Keywords: \(\alpha \)-almost similar, almost similar, unitarily equivalent, self-adjoint operator.

Corresponding Author:

Name: Amjad H. Abdul Majeed
E-mail: amjadmath20980@st.tu.edu.iq
Tel:

Abstract:

The study focuses on \(\alpha \)-almost similar operator which is a new concept of the operator theory and also some basic concepts related to the concept \(\alpha \)-almost similar.

The study also defines a new concept called \(\beta \)-operator which is an expansion of the concept \(\theta \)-operator and the relationship of this concept with the \(\alpha \)-almost similar.

At the end of this research, we study some important relationships among similar, unitarily equivalent, and almost similar on the one hand and \(\alpha \)-almost similar on the other.

Introduction

We denote \(B(H_1,H_2) \) to the set of all bounded linear operators from a Hilbert space \(H_1 \) into a Hilbert space \(H_2 \), if \(H = H_1 = H_2 \) then we denote \(B(H) \) instead of \(B(H_1,H_2) \). The operator \(T \in B(H) \) is called self-adjoint if \(T = T^* \) where \(T^* \) is the adjoint of \(T[1] \).

An operator \(A \in B(H) \) is said to be isometric if \(A^*A = I[2] \). If \(A^*A = AA^* \), then \(A \) is called normal operator. And if \(A^*A = AA^* = I \) then \(A \) is said to be unitary [3]. If \(A^* = A \) and \(A^2 = A \) then \(A \) is said to be projection. If \(AA^*A = A \) then \(A \) is said to be partially isometric, equivalently \(A^*A \) is projection (i.e. \((A^*A)^2 = A^*A \) [4]). Clearly every unitary operator is isometric and normal.

Two operators \(A \in B(H) \) and \(B \in B(H) \) are said to be similar and denoted by \(A \sim B \), if there exists an invertible operator \(X \) such that \(AXB \) is a subset of the same: space, point spectrum and approximate point spectrum [5].

Similarly, two operators \(A, B \in B(H) \) are said to be unitarily equivalent and denoted by \(A \cong B \), if there exists a unitary operator \(U \) such that \(UA = U^*B U \) [4]. If \(A, B \) are similar normal then they are unitarily equivalent by Foged- Putnam theorem [6].

Let \(A, B \) be two bounded linear operators on \(B(H) \). Then \(A, B \) are said to be almost similar and denoted by \(A \sim_a B \) if there exists an invertible operator \(X \) such that:

\[
A^*A = X^{-1}B^*B X \text{ and, } A^* + A = X^{-1}(B^* + B) X.
\]

The class of almost similar was first introduced by Jibril [7], we have extended this concept to \(\alpha \)-almost similar and demonstrated some different results.

An operator \(A \in B(H) \) is said to be \(\theta \)-operator if \(A^*A \) commutes with \(A^* + A \). The class of all \(\theta \)-operator in \(B(H) \) is denoted by \(\theta \). The class of \(\theta \)-operator be which has been widely studied by Campbell [8]. We have extended the concept of \(\theta \)-operator to another concept we called it \(\beta \)-operator, the class of \(\beta \)-operator in \(B(H) \) is denoted by \(\beta \).

Let \(T \in B(H) \) then the set of all complex number \(\lambda \) for which \(T - \lambda I \) is not invertible is called the spectrum of \(T \) and denoted by \(\sigma(T) \) that is, \(\sigma(T) = \{ \lambda \in \mathbb{C} ; (T - \lambda I) \text{ is not invertible} \} \). The complement of the spectrum of \(T \) is called resolvent set of \(T \). The spectrum of \(T \) can be split into many disjoint sets [9].

The point spectrum of the operator \(T \) is denoted by \(\sigma_p(T) \) is the set of all those \(\lambda \) for which \(T - \lambda I \) is not injective, that is \(\sigma_p(T) = \{ \lambda \in \mathbb{C} ; ker(T - \lambda I) \neq \{0\} \} \).

A scalar \(\lambda \) is said to be the approximate point spectrum for the operator \(T \) and denoted by \(\sigma_{ap}(T) \), if there exists a sequence of unit vector \(\{x_n\} \) such that \(\|\{(T - \lambda I)x_n\}\| \to 0 \) [9]. Let \(T \) be a linear transformation from a normed space \(X \) into a normed space \(Y \) \((i.e. T: X \to Y) \). Then \(T \) is said to be compact if \(\overline{T(B)} \) is compact for every bounded
subset \mathcal{B} of X, that is, $\overline{T(\mathcal{B})}$ is relatively compact for every bounded subset \mathcal{B} of X [9].

1. Basic concept on α–almost similarity

Definition 1.1. Let α be a real number, two bounded linear operators $A, B \in \mathcal{B}(\mathcal{H})$ are said to be α–almost similar and, denoted by $A \sim^{\alpha} B$. If there exist an invertible operator X such that:

$$A' A = X^{-1} B^* B X \quad \text{(1)}, \quad A' + \alpha A = X^{-1} (B^* + \alpha B) X \quad \text{(2)}.$$

Example 1.2. Let $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ be the operators on the two-dimensional Hilbert space \mathbb{C}^2, and define the invertible operator on \mathbb{C}^2 as follows:

$$X = X^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \text{take } \alpha = 2, \text{ then } A \sim^2 B.$$

To show that:

$$A' A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = X^{-1} B^* B X \quad \text{(1)}$$

and

$$A' + 2 \alpha A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + 2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} = X^{-1} (B^* + 2B) X \quad \text{(2)}.$$

Remark 1.3. Every 1– almost similar operators are almost similar and the converse are true.

The following example show almost similar operators are α–almost similar independent when $\alpha \neq 1$.

Example 1.4. Let $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ be the operators on the two-dimensional Hilbert space \mathbb{C}^2, and define the invertible operator on \mathbb{C}^2 as follows:

$$X = X^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, \text{take } \alpha = -1. \text{ Then } A \sim^{-1} B. \text{ But } A \text{ is not almost similar to } B \text{ since } A' + A \neq X^{-1} (B^* + B) X,$$

indeed $A'^* A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = 2 I, B^* + B = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$.

Since $X \neq X^{-1} (B^* + B) X$, we have $A \sim^1 B$. Then A is invertible for every invertible operator X.

Theorem 1.5. Let $a \in \mathbb{R}$, the relation \sim^a on $B(\mathcal{H})$ is equivalence relation.

Proof: (i) Reflexivity, let $A \in B(\mathcal{H})$ take $X = I$, $A'A = X^{-1} A'A X$ and, $A' + a A = X^{-1} (A' + a A) X$.

Then $A \sim^a A$.

(ii) Symmetry, suppose that $A, B \in B(\mathcal{H})$ and, $A \sim^a B$. Then there exists an invertible operator X such that:

$$A' A = X^{-1} B^* B X \quad \text{(1)}, \quad A' + a A = X^{-1} (B^* + a B) X \quad \text{(2)}.$$

Now, pre-multiplying X^{-1} and post-multiplying X^{-1} yields $X^{-1} A'A X^{-1} = B^* B X^{-1} = B' B X^{-1}$.

Therefore,

$$A \sim^a B \quad \text{(1)}.$$

(iii) Transitivity, suppose that A, B, and $C \in B(\mathcal{H})$. And $A \sim^a B$, $B \sim^a C$, to show that $A \sim^a C$.

Since $A \sim^a B$, then there exists an invertible operator X such that:

$$A'A = X^{-1} B^* B X \quad \text{(1)}, \quad A' + a A = X^{-1} (B^* + a B) X \quad \text{(2)}.$$

Also, since $B \sim^a C$, then there exists an invertible operator $Y \in B(\mathcal{H})$ such that:

$$B' B = Y^{-1} C^* C Y \quad \text{(3)} \quad \text{and, } B' + a B = Y^{-1} (C' + a C) Y \quad \text{(4)}.$$

Substituting (3) and (4) in (1) and (2) as follows:

$$A'A = X^{-1} [Y^{-1} C^* C' Y] X = X^{-1} Y^{-1} C^* C Y X Y = (Y^{-1} C^* C Y) X Y \quad \text{(5)}$$

Also, $A' + a A = X^{-1} [Y^{-1} (C' + a C) Y] X$.

Which implies that $A' + a A = (Y^{-1} C^* C Y) X$.

Then from (5) and (6) we get $A \sim^a C$.

Proposition 1.6. Let $A \in B(\mathcal{H})$, such that $A \sim^a 0$, then $A = 0$.

Proof: Since $A \sim^a 0$ then there exists an invertible operator X such that:

$$A' A = X^{-1} 0^* 0 X = 0 \quad \text{(1)}, \quad A' + a A = X^{-1} (0^* + a 0) X = 0 \quad \text{(2)}.$$

Then $A' A = 0$ and $A' + a A = 0$. Now, $\|Ax\|^2 = (AX)\overline{(AX)} = |Ax|^2 \leq 0$.

Therefore $Ax = 0$ for all $x \in \mathcal{H}$. Thus $A = 0$.

Remark 1.7. Suppose that $A, B \in B(\mathcal{H})$ such that $A \sim^a B$, then clearly by using mathematical induction we can prove:

(i) $(A' A)^n = X^{-1} (B' B)^n X$.

(ii) $(A' + a A)^n = X^{-1} (B' + a B)^n X$.

For all natural number n.

Proposition 1.8. Let $A, B \in B(\mathcal{H})$ such that $A \sim^a B$, then A is isometric if and only if B is isometric.

Proof: Suppose that A is isometric. Since $A \sim^a B$ this means that there exists an invertible operator X such that:

$$A' A = X^{-1} (B' B) X \quad \text{(1)}, \quad A' + a A = X^{-1} (B' + a B) X \quad \text{(2)}.$$

Since A is isometric then $A' A = I$ substituting in the equality (1) we have $I = A' A \Rightarrow X^{-1} (B' B) X$ which implies that $B' B = I$.

Thus, B is isometric.

Conversely; by the same way we can prove that A is isometric whenever B is isometric.

Proposition 1.9. Let $a \in \mathbb{R}$, A, B are two operators in $B(\mathcal{H})$ with $A \sim^a B$. Then:

(i) $A' A$ is onto if and only if $B' B$ is onto.

(ii) $A' + a A$ is onto if and only if $B' + a B$ is onto.

(iii) $A' A$ is one -to-one if and only if $B' B$ is one-to-

one.

(iv) $A' + a A$ is one-to-one if and only if $B' + a B$ is one-to-

one.

(v) $A' A$ is projection if and only if $B' B$ is projection.

Proof: Clearly.

Remark 1.10. Let $a \in \mathbb{R}$, A, B are two operators in $B(\mathcal{H})$ with $A \sim^a B$. Then:

(iii) $A' A$ is one-to-one and onto if and only if $B' B$ is one-to-

and, onto.

(vii) $A' + a A$ is one-to-one and, onto if and only if $B' + a B$ is one-to-one and, onto.

Proof: immediately from proposition 1.9 above.

Proposition 1.11. Let $A \in B(\mathcal{H})$ and $A \sim I$, then A is isometry.
Proof: Suppose that \(A \subseteq I \), then there exists an invertible operator \(X \) such that \(A'X = X^{-1}(I)X = X^{-1}X = I \ldots \) (1). Then \(A' = I \) (i.e. \(A \) is isometry).

Proposition 1.12: Let \(A, B \in B(\mathcal{H}) \) and \(A \subseteq B \) such that \(A \) is partially isometric then \(B \) is partially isometric.

Proof: \(A \subseteq B \) means that there exists an invertible operator \(X \) such that \(A'X = X^{-1}(B'B)X \ldots \) (1). Since \(A \) is paritally isometric then \(A'X \) is projection (i.e. \((A'X)^2 = A'X \)). By squaring both sides in (1) we have \((X^{-1}(B'B)X)(X^{-1}(B'B)X) = (A'X)^2 = A'X \). Then \(X^{-1}(B'B)(B'B)X = X^{-1}(B'B)X \ldots \) (2).

Pre-multiplying and post-multiplying (2) by \(X \) and \(X^{-1} \) respectively we have, \((B'B)^2 = B'B\) (i.e. \(B'B \) is projection). Which implies that \(B \) is partially isometric.

Proposition 1.13: Let \(\alpha \in \mathbb{R} \). Then the transformation \(\varphi : B(\mathcal{H}) \rightarrow B(\mathcal{H}) \) that satisfies \(\varphi(A') = X^{-1}(B'B)X \) for every \(A \in B(\mathcal{H}) \) is an automorphism.

Proof: Suppose that \(\alpha \neq 0 \) and \(B \in B(\mathcal{H}) \) such that \(\varphi(A') = X^{-1}(B'B)X \). Then \(\varphi(A') = X^{-1}(B'B)B \) and \(\varphi(C') = X^{-1}(D'D)C \) for every \(A, C \in B(\mathcal{H}) \) and \(D, C \in B(\mathcal{H}) \).

Proposition 1.14: Let \(A, B \in B(\mathcal{H}) \) such that \(A, B \) are unitarily equivalent then \(A \subseteq B \).

Proof: Since \(A \) and \(B \) are unitarily equivalent then there exists a unitary operator \(U \) such that \(A = U'B'U \). Then \(A' = U'B'U \) which implies that \(A' = (U'B')U = U'B'U + U'B'U = U'B' \). And, \(A' + \alpha A = U'B'U + U'B'U = U'B' = U'B'B'U \). Thus, \(A \subseteq B \).

Proposition 1.15: Let \(A, B \in B(\mathcal{H}) \) such that \(A \subseteq B \).

Proof: \(A \subseteq B \) means that there is an invertible operator \(X \) such that \(A'X = X^{-1}(B'B)X \ldots \) (1). Then, \(A' + \alpha A = X^{-1}(B'B + \alpha AB)X \ldots \) (2).

From the equality (2) we have \(A' + \alpha A = X^{-1}(B'B + \alpha AB)X \), by post-adding to both sides \(\alpha A + \alpha A \) which implies that \(A' + \alpha A = X^{-1}(B'B + \alpha AB)X \). Then we have \(A' + \alpha A = X^{-1}(B'B + \alpha AB)X \ldots \) (3) since \(\lambda \) is real number. Now, we want to prove that \((A + \lambda I)'(A + \lambda I)X = X^{-1}(B + \lambda I)'(A + \lambda I)X \ldots \) (3).

Consider the following example: Let \(A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \), \(B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \) and \(X = X^{-1} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \), be the operators on two-dimensional Hilbert space \(\mathbb{C}^2 \), take \(\alpha = 2 \),
$A \precsim B$. Also A is similar to B (i.e., $XA = BX$) but $A'A = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \neq \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = AA'$ and, $B'B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = BB'$. Then A and B are not normal operators.

2. The properties of self-adjoint operator on α-almost similarity.

Proposition 2.1: Suppose that A, B are self-adjoint operators in $B(\mathcal{H})$ with $A \precsim B$ (i.e. A is similar to B), then $A \succeq B$, for every $a \in \mathbb{R}$.

Proof: Since A and B are similar operators, then there exists an invertible operator X such that $XA = BX$ (i.e. $A = X^{-1}B X$).

Also, A and B are self-adjoint operators in $B(\mathcal{H})$, then

$A' = X^{-1}B' X$ (1).

Also, $A' + aA = A + aA = X^{-1}B + a X^{-1}B X = X^{-1}(B + aB) X$ = $X^{-1}(B + aB) X$ (2). From (1) and (2) we have $A \succeq B$.

Remark 2.2: The converse of the Proposition 2.1. above is not true in general.

For example: Let $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$ and

$x = X^{-1} = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$ be the operators on the two-dimensional Hilbert space \mathbb{C}^2 take $a = 2$. We know that $A \precsim B$ as in example 1.2. Moreover $A \precsim B$. But $A \neq A'$, also $B \neq B'$. Thus, A and B are not self-adjoint operators.

Proposition 2.3: Let $a = -1 \in \mathbb{R}$, $A, B \in B(\mathcal{H})$ and $A \precsim B$. If A is self-adjoint then B is self-adjoint.

Proof: Since $A \precsim B$, then there exist an invertible operator X such that $A' = A = X^{-1}(B' - B) X$. Which implies that $0 = X^{-1}(B' - B) X$ (1). Pre-multiplying and post multiplying (1) by X and X^{-1} respectively we have $0 = B' - B$. Then $B = B'$.

Remark 2.4: The converse of the Proposition 2.3 above is not true in general for example $A = \begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix}$ = A', $B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = B'$ and, $X = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ be the operators on the two-dimensional Hilbert space \mathbb{C}^2, take $a \in \mathbb{R}$.

Then $\begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \neq \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

$X = X^{-1} = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$ $X = X^{-1} X = I$. Thus, A is not α-almost similar to B. Then A is not (-1)-almost similar to B.

Theorem 2.5 [4]: (Cartesian form) let T be any operator, then there exist self-adjoint operators A and B such that $T = A + iB$. When $A = \frac{1}{2}(T + T^*)$ and,

$B = \frac{1}{2i}(T - T^*)$.

Theorem 2.6: Let $T \in B(\mathcal{H})$ then $T \precsim T^*$ if and only if T is normal and $(T + T^*)^2 = 4T^*T$.

Proof: If $T \precsim T^*$ then clearly $(T + T^*)^2 = 4T^*T$ and T is normal.

Conversely: If $4T^*T = (T + T^*)^2$ then $(T + T^*)^2 = T^* + 2T^*T + T^*T$. Hence, $T^* + 2T^*T + T^*T = 0$ which implies that $(T^* - T)^2 = 0 \Rightarrow (T^* - T)(T - T^*) = 0$. Let $S = T^* - T$, then $SS^* = 0 \Rightarrow S = 0 = SS^*x(x) = S^*(x)Sx = \|Sx\|^2$ for every x. Then $S^*x = 0$ for every $x \Rightarrow S = 0 \Rightarrow T^* - T = 0 \Rightarrow T = T^*$.

Remark 2.6: If $T = T^*$ then $(T + \alpha T)^2 = (1 + \alpha)^2T^*T$ for every $\alpha \in \mathbb{R}$.

Proposition 2.7: Suppose that $(T + \alpha T)^2 = (1 + \alpha)^2T^*T$ then:

(i) If $\alpha = 1$ then T is normal then $T = T^*$.

(ii) If $\alpha = -1$ then $T = T^*$.

(iii) If $\alpha \neq 1$, -1 then $T^2 = T^2$.

Proof: (i) directly as in theorem 2.6. And (ii) clearly. Now to prove (iii) let $\alpha \neq 1$, -1. $(T + \alpha T)^2 = (1 + \alpha)^2T^*T$ by taking adjoint to both sides we have $(T + \alpha T)^2 = (1 + \alpha)^2T^*T$. Then $T^2 + \alpha TT^* + \alpha T^*T + \alpha TT^* = T^2 + \alpha TT^* + \alpha^2T^2 \Rightarrow T^2 = T^2$.

Theorem 2.8 [4]: If T^*T is normal operator, then there exists a unitary operator U such that $T^* = UT$.

3. The properties of β-operator on α-almost similarity.

Definition 3.1: Let $A \in B(\mathcal{H})$, then A is called a β-operator if $A'A$ commutes with $A' + aA$. The class of all β-operator in a Banach algebra on a Hilbert space \mathcal{H} is denoted by β i.e. $\beta = \{A : A \in B(\mathcal{H}) | [A'A', A' + aA] = 0\}$.

Example 3.2: Let $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and take $\alpha = 3$ then $[A'A', A' + 3A] = 0$ i.e. $[A'A', A' + 3A] = (A' + 3A)(A' + aA)$ which implies that A is β-operator.

Proposition 3.3: If $A \in B(\mathcal{H})$ is β-operator then kA is β-operator for every real number k.

Proof: Clearly.

Proposition 3.4: If $A \in B(\mathcal{H})$ and $A \precsim B$ such that B is β-operator then A is β-operator.

Proof: $A \precsim B$ means that there exists an invertible operator X such that $A'A = X^{-1}(B' + aB) X$. And, $A' + aA = X^{-1}(B' + aB) X$. Then, $[X^{-1}(B' + aB) X] [X^{-1}(B' + aB) X] = [A' + aA]$ $A'A$ (1)

And $[X^{-1}(B' + aB) X] [X^{-1}(B' + aB) X] = [A' + aA]$ $A'A$ (2).

From the equality (1) we have: $[X^{-1}(B' + aB) X] = [A' + aA] A'A$ (3).

Also, from the equality (2) we have: $[X^{-1}(B' + aB) X] = A'A [A' + aA]$ (4).

Since B is β-operator then the left-hand side of the equality (3) and the equality (4) are equal. which imply that the right-hand side of the equality (3) and the equality (4) are equal. Hence A is β-operator.

4. The relation among similarity, unitarily equivalent, quasi similarity and almost similarity.

Proposition 4.1: Let $A, B \in B(\mathcal{H})$ are orthogonal projection then A and B are α-almost similar if and only if A and B are similar.

Proof: Suppose that $A \precsim B$ and A, B are projection then by proposition 1.16 we get $A \succeq B$.

83
Conversely, suppose that A and B are similar operators then there exists invertible operator X such that $A = X^{-1}BX$, since A and B are orthogonal projection then $A = A^* = A^2$, $B = B^* = B^2$. Which implies that $A^2 = X^{-1}B^2X$ then we have $A^*A = X^{-1}B^*BX$.

On the other hand, the second inequality follows from the fact that $A^* + \alpha A = (1 + \alpha)A = (1 + \alpha)X^{-1}BX = X^{-1}(B^* + \alpha B)X$, Thus, $A \preceq B$.

Proposition 4.2. Let $\alpha \in \mathbb{R}$, $A, B \in B(\mathcal{H})$ and A, B are self-adjoint then A and B are unitarily equivalent if and only if $A \preceq B$.

Proof: Suppose that A and B are unitarily equivalence then by proposition 1.14 we have $A \preceq B$.

Conversely: Suppose that $A, B \in B(\mathcal{H})$ are self-adjoint with $A \preceq B$.

Now, $A \preceq B$ means that there exists an invertible operator X such that $A^*A = X^{-1}(B^*B)X$ (1) and $A^* + \alpha A = X^{-1}(B^* + \alpha B)X$ (2).

Since A, B are self-adjoint and $A \preceq B$ then they are similar operators (i.e, $A = X^{-1}BX$). Then A and B are both similar and self-adjoint operators then A and B are normal. Thus A and B are unitarily equivalent.

Corollary 4.3. Let $\alpha \in \mathbb{R}$, $A, B \in B(\mathcal{H})$ are self-adjoint and $A \preceq B$. Then A and B are unitarily equivalent.

Proof: directly from proposition 4.2 above.

References

المؤثرات الخطية المتشابهة تقريبا من النمط-α

امجد حمد عبد المجيد، ليث خليل شاكر
قسم الرياضيات، كلية علوم الحاسوب والرياضيات، جامعة تكريت، تكريت، العراق

الملخص
درسنا في هذه البحث المؤثرات الخطية المقيدة المتشابهة تقريبا من النمط-α وهو مفهوم جديد للنظرية المؤثرات الخطية. كذلك بعض المفاهيم الأساسية المتعلقة بمفهوم المؤثرات الخطية المقيدة المتشابهة تقريبا من النمط-α. كذلك عرفنا مفهوما جديدا والذي اطلقنا عليه اسم المؤثر من النمط-β والذي يعتبر توسعا للمؤثر من النمط-θ وعلاقة هذا المؤثر بالمؤثرات الخطية المتشابهة تقريبا من النمط-α. في نهاية هذا البحث درسنا بعض العلاقات المهمة بين التشابه، المؤثرات الاحادية المتكافئة، التشابه التقريبي من جهة وبين المؤثرات الخطية المتشابهة تقريبا من النمط-α من الجهة الأخرى.