Structural and Optical Properties for TiO₂ thin films Prepared by Screen Printing method

Hiba A. Abdulla¹, Abdulla M. Ali², Khaleel I. Hassoon²

¹ Physics Department, College of Education for Pure Sciences, Tikrit University, Tikrit, Iraq
² College of Applied Sciences, University of Technology, Baghdad, Iraq.

https://doi.org/10.25130/tjps.v24i5.420

ABSTRACT

In this study, Structural and Optical Properties of titanium dioxide thin films are studied. TiO₂ (Anatase) thin films were prepared by screen printing (SP) method. X-ray diffraction analysis showed that the structure of TiO₂ films are polycrystalline and the lattice system is tetragonal. The main diffraction peak of TiO₂ was (101) at 20=25°. The data of optical absorption indicated that TiO₂ thin films prepared by SP have a direct optical band gap (about 3.1eV). The data of reflectivity was also used to calculate the band gap and was around 2.95 eV because of their uniformity and rapid production as well as easy thickness control [6]. This study showed the feasibility to fabricate TiO₂ electrodes from dioxide nano-powder, terpineol, ethanol and ethyl cellulose to be used in dye sensitized solar cell using screen printing method which is simple and low cost technique.

Experimental details

For making the paste, the following materials were used: titanium dioxide TiO₂ (purity 99.9%) of mass 0.34g, Ethanol volume 3ml, Terpineol 2ml and Ethyl cellulose of mass 0.032g as a binder. Glass slides were used as substrates for TiO₂ thin films. The substrates were cleaned with ethanol solution and distilled water. Then they immersed for 30 min in distilled water then dried with special drying paper and we used Scotch tape for framing. The past is prepared in the clean room and take some drop of past to deposited on the glass and quartz. All the samples were annealed in furnace at 500°C for 30 minutes and then left in the oven overnight to cool down. XRD measurements were implemented using Shimadzu XRD model-6000. The absorption spectra were measured Via a spectrophotometer provides (Mettetach Sp 8001) at room temperature and Tauc plot was utilized to calculate the band gap. The film thickness was calculated using the micrometer where it measures the first reading without paste and the second reading with the paste, the difference between

Keywords: TiO₂ thin films, Screen Printing, Structural Properties, Optical Properties

Corresponding Author:
Name: Hiba A. Abdulla
E-mail: hiba19888@yahoo.Com
Tel:

Introduction

TiO₂ is semiconductor metal Oxide that has unique properties such as low cost, nanotoxicity, easy reaction and resistance to chemical corrosion. It is used in environmental purification applications as well as in the manufacture of solar cells and other applications such as anti-moisture lenses, photoelectrochemistry, electro chrome devices, catalysis, gas sensing and dye-sensitized solar cells [1]. TiO₂ material to be much important than any thing else, because of the ability to work as a photovoltaic catalyst whose most important condition is to generate an electron pair- a gap near the surface of the catalyst by shedding a large part of the solar spectrum [2,3]. Titanium dioxed (TiO₂) was first produced commercially in 1923. Titanium dioxed is obtained from avarity of Ores, TiO₂ exists mostly as Rutile and Anatase phases which both of them have the tetragonal structures rutile is high-temperature stable phase and has an optical energy band gap of 3.0eV (415nm), Anatase is formed at a lower temperature with an optical energy band gap of 3.2eV and refractive index of around 2[4]. There are many processing techniques that can be used to prepare TiO₂ thin films such as Sol-gel, Liquid deposition, electron-beam, evaporation, chemical vapour deposition (CVD), direct current (DC), radio frequency (RF), plasma oxidation, magnetron sputtering [5], we used new method which is screen printing processes for thin films preparation where they are widly applied.
them is the thickness of the film thin. The Atomic Force Microscope (AFM) has been used and provides information on the nanoscale structure of the thin films and gives 2D and 3D analysis of the surfaces of the studied thin films. type AA3000-The provider from company Angstrom Advanced, device specifications: X-Y scan Scope:~10 micrometer, 2 distance:~ 2 micrometer. Scan Angle: 0-360 degree, Scan Rate: 0.1~ 100HZ, Size=2032×2044nm.

Results and Discussion

X-Ray Diffraction

Figure (1) shows XRD patterns of TiO₂ thin films prepared by screen printing method, intensity of diffraction X-ray was recorded for range 2θ from 10° to 80°. The main diffraction peaks of TiO₂ thin film after annealing at 500°C were (101) at 2θ = 25°, and the phase of TiO₂ is Anatase, this result agrees with findings reference [7, 8], as well as it is seen that full width half of maximum (FWHM) values were listed in Table (1) The grain size (D) of the films was calculated from the FWHM values using the Debye-Scherer’s formula[9]:

\[D = \frac{0.94 \lambda}{\beta \cos \theta} \]

(1)

Where D is the crystal size ; λ the X-ray wavelength (λ= 0.15406 nm), K is usually taken as 0.9 , β is the line width at half-maximum height in (radian) , and θ is the Bragg diffraction angle.

Scherrer analysis for TiO₂ powder is indicated in Table (1). The average crystallite size is about 16.3 nm while the average line density is 0.0038 lines/nm².

Williamson and Hall proposed [6] a method for determination size and strain broadening by looking at the peak width as a function of 2θ. According to this analysis, the total broadening (Btot) in each peak is produced by two types of broadening, strain broadening (βstrain) and size broadening (βsize) i.e.

\[\beta_{tot} = \beta_{strain} + \beta_{size} \]

(2)

Where \(\beta_{strain} = 2 \varepsilon \tan \theta \) and \(\beta_{size} = \lambda / D \cos \theta \).

After some simple algebra we can rewrite (2) as follows:

\[\beta^* = \varepsilon d^* + \frac{1}{D} \]

(3)

Where \(\beta^* = \beta \cos \theta / \lambda \) and \(d^* = 2 \sin \theta / \lambda \). (Williamson-Hall) plot is shown in fig (2) It is plotted with \(\beta \cos \theta / \lambda \) on the y-axis and 2\(\sin \theta / \lambda \) on the x-axis. A linear fit is got for the data and from it: particle size (20 nm) and strain (0.00006) are extracted from y-intercept and slope – respectively.

Atomic Force Microscopy (AFM)

The surface Topology of TiO₂ thin films was analyzed using atomic force microscope. Figure (3) represents the result of AFM scanning in three dimensions for TiO₂ paste deposited on glass slides by SP and fired at (T=500) °C. The two diagrams show the typical three-dimensional surface Topology image of TiO₂ and the granularity distribution, respectively. The average grains size for TiO₂ films after annealing 500 °C for 30 min.) is about 57 nm and the roughness average is roughly 3 nm, root mean square was about 3.4 nm. The shape of the thin film is regular and homogeneous, and the adhesion strength was very good through these tests where the arrangement and uniformity of the coating layers are

Table (1): Scherer’s analysis of TiO₂ nanoparticles

<table>
<thead>
<tr>
<th>2θ(deg)</th>
<th>D (nm)</th>
<th>S(lines/nm²)</th>
<th>FWHM (rad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.4</td>
<td>17.05</td>
<td>0.0039</td>
<td>0.0083</td>
</tr>
<tr>
<td>37.84</td>
<td>17.1</td>
<td>0.0034</td>
<td>0.0091</td>
</tr>
<tr>
<td>48.16</td>
<td>16.0</td>
<td>0.0039</td>
<td>0.0096</td>
</tr>
<tr>
<td>53.9</td>
<td>15.7</td>
<td>0.0040</td>
<td>0.0094</td>
</tr>
<tr>
<td>55.18</td>
<td>15.7</td>
<td>0.0040</td>
<td>0.0096</td>
</tr>
<tr>
<td>62.8</td>
<td>16.5</td>
<td>0.0036</td>
<td>0.0098</td>
</tr>
</tbody>
</table>

Fig(2) Williamson-Hall plot-TiO₂ nanoparticles
clear, and it is important to observe that notice that the particles are vertically perpendicular to the crystal axis.

Fig (3) (a) AFM image for TiO2. (b) The granularity cumulation distribution chart of TiO2 thin films

Optical Properties

The transmission spectrum of TiO2 thin films is recorded as a function of wavelength in the range of (190-990) nm as shown in Figure (4). The thickness of TiO2 was too thin (about 500 nm) for TiO2 deposited on glass and quartz substrates so that the average transmission over the visible range could exceed 20%.

The absorption \((\alpha) \) was determined from the absorbance spectrum using the following equation [11]:

\[
\alpha = 2.303 \frac{A}{t} \quad \ldots (5)
\]

Where \(A \) is the measured absorbance and \(t \) is the thickness of the sample. Fig (5) shows the relation of \((\alpha h\nu)^2\) against photon energy, from strainst line obtained at high photon energy the direct allowed energy gap could be determined. The optical band gap energy \(E_g \) was evaluated from the absorption spectrum and the optical absorption coefficient \((\alpha) \) near the absorption edge is given by Eq (4). The extrapolation gave a bandgap of 3.1eV for our TiO2 thin film prepared by SP. This result has a good agreement with the findings reference[12].

Fig (5): Determination the energy band gap of TiO2 thin films using diffusive reflectance data.

Diffusive reflectance spectra

Diffusive reflectance spectra can also be used to calculate the absorption edge of TiO2 [11]. Figure (6) shows the reflectance which is plotted as a function of photon energy in the range from (1.5-4.0) eV for TiO2 thin films deposited on glass substrates by screen printing technique. The sharp full of reflectance determines where the sample starts to absorb near the band edge. The intersection point between the extrapolation line and the \(h\nu\)-axis gives the value of energy band gap \((E_g) \) the results obtained for the band gap are in good agreement with results extracted from Tauc plot.

The optical bandgap \((E_g) \) has been analyzed using Tauc plot [10] in which the relationship between absorption coefficient \((\alpha) \) and photon energy \((h\nu) \) is given by:

\[
\alpha h\nu = B(h\nu - E_g)^n \quad \ldots (4)
\]

Where \(B \) : constant depends on the type of transition.
\(h\nu \): photon energy.
\(E_g \): direct allowed energy photon.
\(n \): exponential constant. \(n=1/2 \) for TiO2.
Conclusions
Synthesis of TiO$_2$ thin films by screen printing method is found to be fast, low cost and practical to prepare electrodes dye sensitized solar cells. TiO$_2$ thin film prepared by screen printing method and fired at 500°C is polycrystalline with a broad peak located roughly at $2\Theta = 25^\circ$. The grain size increased after annealing (500°C for 30 min.) to become 57 nm. The band gap of TiO$_2$ thin film is direct with energy bandgap of 3.1 eV. Diffuse reflectance method gives accurate value for bandgap energy and compatible with that calculated from Tauc plot.

References