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1- Introduction

All rings in this research are associative ring with
identity unless we have another state . It is better to
give aring R and used N"(R) and N(R) to denote the
nilradical (the sum of all nil ideal), the set of all
nilpotent element is in R respectively . According to
H.E. Bell [1], aring R is called the Insertion of Factor
property (IFP) if xy = 0 implies xRy = 0, for x,y
€R. Shin[2] used the terms semicommutative and Sl
for IFP. And Habeb[3]Jused the term zero-insertive
(simple ZI) for IFP. According to Mark [4], R is
called NI if N°(R) = N(R), and a ring R is called 2-
primal if it is prime radical which coincides with the
set of nilpotent element of the ring (i.e. P(R) = N(R) )
and a prime radical P(R) of a ring R is the
intersection of all prime ideal of R. In [5] Ham, a ring
is called abelian if every idempotent is central. It is
clear that every commutative rings are
semicommutative rings. According to Cohn [6], a
ring R is called reversible if ab = 0 implies ba =0
for a,b € R . In this paper, we will introduce our
main concept namely Q-semicommutative ring which
is generalization of semicommutative ring. For
several years, the applications of semicommutative
rings have been studied by many authors. Kim and
Lee in [3] "show that if R is a reduced ( a ring is
reduced if it has zero element),then S;3(R) in
(proposition 2.15) is a semicommutative ring .
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Let R be a ring with identity. In this paper, we introduce some new

in a class of
semicommutative rings called Q-semicommutative rings whenever x*=0
implies xRx=0, for any a €R [7]. They study investigates general
properties of Q-semicommutative rings and shows several results of
semicommutative ring can be extended to Q-semicommutative rings .

rings which refers to generalization of

The study also focuses on various investigated
various properties of these ring and their relationships
with our known rings .

2- Q-semicommutative ring

Before introducing a new kind of a rings, it is
mentioned that this kind of rings is called Q-
semicommutative ring. It is significant to state some
definitions, propositions and lemmas which will be
used later to achieve our main target .

Definition 2.1 A ring R is called semicommutative
ring(simply SC) if we need any x,y € R,

xy=0 implies xRy =0 . [7]

Definition 2.2 A commutative ring is said to be a
reduced ring if it has no — non zero nilpotent element.
(8]

Definition 2.3 A ring R is said to be semiprime if
P(R)=0.[9]

Definition 2.4 A proper ideal P of a ring R is
semiprime ideal if R/P is semiprime ideal. [10]
Definition 2.5 Aring R is called homomorphically
semicommutative(simply  HSC) if R/l s
semicommutative for every proper ideal I in R . [11]
Definition 2.6 A prime ideal | of a ring R is called
completely prime if R/l is a domain. i.e. if for ab
€R, ab €l implies ae | or bel . [12]

Definition 2.7 Any ideal | of a ring R is said to be
completely semiprime if R/l is a reduced ring. i.e if
for x €R, a’ €l implies a €l . [13]
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Definition 2.8 A ring R is called a strong 2-primal
ring if P(R\I) = N(R\I) for all proper Ideal | of R,
where the term proper means only [#R . [14]
Definition 2.9 An element x of a ring R is regular
(in the sense of Von Neumann) if there exists a € R
such that xax = x . [9]

Definition 2.10 A ring R is called a left (right) duo
ring if every left(right) ideal is two-sided . [15]
Definition 2.11 A ring is said to be Q-
semicommutative ring (simply QSC ) if x> = 0
impliesxRx =0 .[7]

Note 2.12 : It is clear that all SC rings are QSC ring ,
but in general the converse is not true for example .

Example 2.13 :Let R = [1(; i] where F is division
ring.Then R is QSC but it is not SC ring .
Proof : Let p = [8 tcj] € R, suppose p? =0, then a =

c=0.
[0 ollo 26 ol=[5 of - rora

Hence R is QSC ring .

Now if ¢ = [(1) 8] ,a = [8 (1)] , then ga =0
But ya # 0.So Risnot SCring .
Let's recall the definition idempotent .
An element e €R it is repeated there times to be
idempotent if e?=e .[14]
Note 2.14 : We see that all SC rings are abelian, but
in QSC rings it is not true, In example (2.13), we see

that [(1) (1]] is an idempotent in R = [1(; 11::] but it is

not central .

Proposition 2.15 [3]: Let R be a reduced ring .

Then
Xy z

Sz{(O X w)x,y,z,wER} isaSCring .
0 0 «x

Theorem 2.16: Let R be a ring . Suppose that R/l is a
SC ring for some ideal | of R . If | is reduced, then R
is SC . (I here is considered as a ring with identity)
Proof : Let xy=0 € | Then xRx < I since R/l is SC .
Also (yIx)? = yl(xy)Ix = 0. So yIx =0 as | is reduced
andylx < I.

Hence ((xRy)l)> = xRyl xRyl =xR(ylx)Ryl =0
,Hence (xRy)l =0 as (xRy)l < I and | are reduced .
So (xRy)? € (xRy)I= 0 which implies

xRy =0 .As xRy € | and I is reduced. Therefore, R
is SCring .
Cohn [6] proved the following Theorem .
Let's recall the definition a domain .

A ring R is called a domain if xy=0 in R ,then x=0
or y=0 .[10]
Theorem 2.17[6] : Let R be aring, then
1- R is a prime and reversible if and only if R is a
domain .
2- R isasemiprime and reversible if and only if R is
reduced .
Now it is significant to give special attention to the
following Theorem.
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Theorem 2.18: Let R be a ring, then :

1- Risprime and SC if and only if R is a domain .
2- R is semiprime and SC if and only if R is
reduced .

Proof :(1). Suppose that R is prime and SC to prove
that R is domain .

Let xy=0, X,y€R .Then xRy=0, as R is SC .

So x=0 or y=0 since R is prime. Therefore, R is
domain .

Conversely : Assume that R is domain and to prove
R is prime and

SC. If xRy =0, then xy=0 .

Sox=0or y=0as R isdomain. Thus R is prime.

Let xy=0, then x=0 or y=0 as R is domain .

In either case xRy=0. So R is SC.

(2). Suppose that R is semiprime and SC to prove
which is reduced .

Let x*=0, then xRx=0 as R is SC .

Thus x=0 as R is semiprime, so R is reduced .
Conversely : Assume that R is reduced and to prove
R is semiprime and SC.

Let xRx =0, Then x?=0, so x=0, as R is reduced.
Therefore, R is semiprime .

So R is SC by proposition (2.15) .

Definition 2.19: A sequence ap,3;... in a ring R is
called an m-sequence

if ay.1€acRay for each k>0 . [9]

Lemma 2.20: If a sequence XpXi,..... 1S an m-
sequence then A={Xq,Xy,....} is m-sequence . [9]
Proof: Let X, X, €A, we must show that 3 some re
R such that x,rx €A.

We can assume m>n without loss of generality

We have X,+1 € XaRX,.

S0 X2 € Xns1RXn11 S (XaRXn)RXns1 S XnRXne1 -
Again Xpi3 € Xps2RXnio  (XnRXn+1)RXn42 S X RX42 -
Containing we have Xk € XoRXn+k1 ,V k>1

Taking k=m-n+1, then we have Xn+1 € X.RXn, , and
Xm+1EA .

So 3 some r€ R such that x,rx, €A . thus A is m-
system .

Definition 2.21 : The nilradical N"(R) of the ring R
is the sum of all nil ideals of R, which is the largest
nil ideal in R . [16]

Definition 2.22: An element X €R is called strongly
nilpotent if for any m-sequence Xg ,X1,... with x¢=X,
3 some n such that x,=0 . [11]

Lemma 2.23: Every element in the prime radical
P(R) of a ring R is strongly nilpotent. Hence P(R) is
a nil ideal, so for every R we have
P(R)ISN'(R)SN(R) .[11]

Lemma 2.24: LetR be aring then .

1- P(R)=N(R) & R/P(R) is reduced .

2- N'(R) =N(R) &N(R) is an ideal of R .

Proof (1): P(R) €N(R), it is held by Lemma(2.23)
with equality because R/P is reduced
<=N(R)SP(R) .

Proof (2): The nilradical of a ring R is the largest nil
ideal by Definition (2.21) and N'(R) € N(R), so the
result follows because N(R) is an ideal if and only if
N(R) € N(R) .
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Theorem 2.25: Let R be a ring: reduced =
reversible = SC = abelian . [17]

Proof: LetR be reduced and let xy=0inR .

Then (xy)? =yxyx= y(xy)x = 0

So yx =0 since R has no nonzero nilpotent. Hence R
is reversible .

Let R be reversible and let xy =0 in R. Then yx =0
and

y(xr) = (yx)r=0foranyr e R.Soxry=0as R is
reversible

Hence Ris SC .

Suppose R is SC . Let 0O#e=¢’ € R .

Then e(1-e)=e-e* =0

Therefore, eR(1-e) = (1-e)Re =0

Since R is SC .So er(1-e)=0 =(1-e)re foreachre R .
Therefore, e is central .

Hence R is abelian .

Note that the implications of above are not true in
general, .We see the example (1.10) in [3]

Theorem 2.26: Any left or right duo ring is HSC
ring . [16]

Proof : Let R be a left duo ring. Suppose P is any
ideal of R,

let xy €P, then XRERX since R is left duo, and so
XRyESRxycP , this shows that R/P is SC.
SoRIisHSC .

(The right case is similarly proved) .

Lemma 2.27: If for each xeN(R), (RxR)™ =0 for
some positive integer m, then R is 2-primal

Proof : Let xeN(R), (RxR)™ =0cP(R) = RxR <
P(R) as P(R) is semiprime. Therefore, xeP(R) and
N(P)SP(R) since P(R) is nil ideal of R, we have
P(R)EN(R). Hence P(R)=N(R) .

So R is 2-primal .

Theorem 2.28: Every semicommutative ring R is 2-
primal .

Proof: Let XxeN(R) suppose x"=0, for some positive
integer n .

Since R is SC, we have xRx"" =0.

And so xRxRx"™? =0, continue by inductively, we get
xRxR.....Rx =0,

Hence (RxR)" =0 by Lemma (2.27) therefore, R is
2-primal . Now if R is a Von Neumann regular ring,
we get the following Theorem .

Theorem 2.29: Let R be a Von Neumann regular
ring . The following are equivalent :

1- Risabelian.

2-  Risright(left).

3- Risreduced.

4- Risreversible.

5- RisSCring.

6- R s 2-primal ring.
7- Ris NI ring.

8- Ris HSC ring.

Proof : (1)—(2) Every principle right (left) ideal of R
is generated by a Central ldempotent for a von
Neumann regular ring R. Therefore all

right(left) ideals are two sided ideal .

(2)—(3) let r>=0 . Then rR is a right ideal of R. There
for is two
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sided by (2). So we have RrR < rR . Since R is
regular 3 a €R suchthat r=rxrandar e RrRc rR.
So 3 somey eRsuchthatar=rb .
Therefore r=rxr =rrb=r’b = 0. So R is reduced .
{In fact, every regular ring is semiprime and the right
duo rings

are SCring}
Apply theorem (2.18) to get (2)—(3)
(3)—(4)—(5) is by theorem (2.25)
(5)—(6) by theorem (2.28) is clear .
(7)—(1) let e be an idempotent in R.
We have er(1-e) when is nilpotent, for any reR .

+ R is regular, 3 e€eR such that er(1-e)=(er(1-
e))z(er(1-e)) .

So er(1-e)z is an idempotent .

But er(1-e)z is also nilpotent as R is NI(i.e N(R)AR).
Soitis 0. Hence we have er(1-e)=0 so er=ere .
Similarly re =ere .
Thus we have er=re, forany r eR .

It follows that R is abelian

=~ (1)—(7) is equal .
(8)—(5) is clear and (2)—(8) by theorem (2.26) .
Theorem 2.30: Let R be a ring, suppose R/l is
QSC ring, and I is reduced( where 1 is considered to
be a ring without identity ). Then R is QSC ring .
Proof : Let x* =0€l, where x €R. Then xRx S| as
R/I is QSC ring and (XRx)(XRx)=XRx?Rx=0. So XRx
=0aslisreduced. Hence RisQSCring.
Note 2.31

It is clear that the above theorem is the analog of
Theorem (2.16) .
Corollary 2.32: Let S be a commutative subring of
R if I is a reduced ideal of R. Then S+l is a QSC
ring.
Proof : We see that | is also a reduced ideal of S+1 .
Since (S+1)/1 = S/(S+1) and S is commutative .
We have S+I/I is commutative . Therefore, S+I/1 is
QSCring By
Theorem (2.30) . We get S+1 which is QSC ring .
Corollary 2.33: Let S be a QSC subring of a ring R
and let I be a reduced ideal of R such that SNI =0,
then S+l is QSC ring .

Proof : we see that | is also reduced ideal of S+I .
Since (S+1)/1 = S/(SNI) and SNI=0. We have (S+I)/I
which is QSC ring. By Theorem (2.30), we get S+l
which is QSC ring .
Now we show that some Theorems of SC ring are
also QSC ring .
Theorem 2.34: Let R be QSC ring and semiprime if
and only if it is reduced .
Proof : = Assume x? =0, X €R
Then xRx = 0 as R is QSC ring . So we have x=0
since R is semiprime. Hence R is reduced .
Conversely: Let x?=0, then x=0 as R is reduced .
Therefore, xXRx=0, R is QSC ring .Now let xRx =0 as
1eR .
This implies that x=0 as R is reduced . Therefore, R is
semiprime.
Theorem 2.35: Aring Ris QSC ring and prime if
and only if it is a domain .
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Proof : Assume xy=0, then (yx)*= y(xy)x = 0.

It has become clear that every prime ring is
semiprime, focusing on R which is reduced by
Theorem (2.33) Therefore, yx =0 .

And (XRy)(XRy) = xR(yx)Ry =0 . So xRy =0, as R is
reduced . This implies that x=0 or y=0, as R is prime .

Hence R is a domain .

Conversely : Let xRy =0, then xy =0 as 1€R . So x
=0ory=0asR isa

Domain. Hence R is prime .Suppose x* =0 , then we
have x =0 .

As R is a domain.
QSCring .
Remark: The Theorem (2.34) and Theorem (2.35)
are analogs of Theorem (2.18) .

Corollary 2.36: An ideal | of R is prime(semiprime
)and R/l'is QSCring if and only if | isa completely
prime (completely semiprime) .

Corollary 2.37: Let R be a semiprime ring. Then the
following are equivalent :

Therefore, xRx =0 . And R is

1- Ris QSCring .
2- 2-Risreduced .
3- RisSCring .

Proof : By Theorem (2.34), we get (1) which is
equivalent to (2)

and (2) is equivalent to (3) by Theorem (2.18).
Example 2.38: There exists SC rings which are not
HSC rings . [11]

Proof : Let R be the localization of the ring Z at the
prime (3)

Let Q be the ring of quaternions over R, that is, the
basis1,i,

j . k and multiplication satisfying i’ =j?=k'=-1,
ij =k =-ji. Then Q is non-commutative domain, so it
is SC ring.

However, J(Q) =3Q and QJ(Q) is isomorphic to the
2x2 full matrix ring over Zs. So QJ(Q) is not SC ring
as it is not abelian . Thus Q is not HSC rings .
Definition 2.39: A ring R is called homomorphically
Q- semicommutative ring(simply HQSC) if R/l is Q-
semicommutative ring for every proper ideal | inR .
Note 2.40: It is clear that every HSC rings are
HQSC rings.

Note 2.41: We see that every HQSC ring is QSC,
but the converse is not true in general, for Example :-
Example 2.42: Let S be a ring in the Example(2.38)
, then S/J(S) is isomorphic to the 2- by-2 full matrix
over Z;. Sis QSC as it is domain .

1 27 1 2112 111 2
We have [1 o =0 But [1 2] [1 1] [1 2] =
[ 270
Hence S/J(S) is not QSC ring .Therefore, S is not
HQSCring .
Let's recall the definition of 2-primal .
A ring R is called 2-primal if P(R) = N(R) ,where
P(R) used to denote the prime radical and N(R) the
set of all nilpotent elementis R .
Theorem 2.43: If ring R is HQSC then it is 2-
primal .
Proof: Let | be aprime ideal, R/l is QSC as R is
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HQSC. Then 1 is completely prime by corollary
(2.36) . Thus R is 2-primal by using Shin's result [5].
We get an immediate consequence of Theorem(2.34)
in the following Corollary.

Corollary 2.44: Let R be a ring . The following are
equivalent:

1- Risregular, prime and QSC.

2- Risadivisionring .

Proof := Let R be a prime and QSC .Then R is a
domain by Theorem (2.23). A regular domain is a
division ring by [17].

Conversely : Assume that R is a division ring then it
is a domain, so it is

Prime and QSC ring by theorem(2.35) . it is clear that
every division ring is regular .

Theorem 2.45: Let R be a regular ring then the
following are equivalent:

1- Risabelian .

2- Ris HQSCring .

3- R/Pisadivision ring for any prime ideal P of R .
4- Ris 2-primal .

5-  Riis left (right) due .

Proof : (1)=(2) .Let R be an abelian ring . For every
proper ideal | of R.

Let x’el , since R is regular, there exists some a €R
such that x = xax ,

so xa is an idempotent of R .Hence, it is central . So
x=xax = x’a. Thus

x €l as x%€l .Hence xRx €1 .So R/l is QSC ring
and R is HQSC ring .

(2)=(1) . By assumption it is QSC ring. If xX*= 0,
then xXRx=0 . As R is regular, x € xRx and so x =0
Therefore, R is reduced. By theorem (2.29), we get R
is abelian.

(2)=(3) . Let P be a prime ideal of R, where R is
HQSC ring .Then R/P is QSC ring , prime and regular
.Hence, R/P is a division ring by Corollary (2.44)
(3)=(4) . Assume that R/P is division ring , for all
prime ideal P of R .

Then R/P is reduced. Hence, P/P(R) is reduced ,
where P(R) is prime radical of R .Therefore, R is 2-
primal by Lemma (2.24) .

(4)=(1) and (1)—(5) are clear by Theorem(2.29) .
Note that (1)—(3) clear by the result in [18]
Theorem 2.46: If | is a prime(semiprime) ideal of R,
and R/l is SC ring, then 1 is completely prime
(completely semiprime) ideal . [13]

We get another version of Theorem(2.18) in the

similar proof .
Proof : Assume that R/l is an SC ring .If | is a prime
(semiprime) ideal of R, then R/l is a

prime(semiprime) ring. So R/l is a domain (reduced)
ring by Theorem(2.36). Hence, | is completely
prime(completely semiprime) ideal. Thus Theorem
(2.18) can be as corollary of Theorem(2.46) when
1={0}.

Definition 2.47 An ideal | of aring R is called 2-
primal if P(R/I) = N(R/I) . [19]
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Definition 2.48: Arring is called strongly 2-primal if
every proper ideal | of R is 2-primal, where the term
proper means only I #R . [13]

Note 2.49: We see that a ring R is 2-primal if and
only if the zero ideal is 2-primal and hence that every
strongly 2-primal ring is 2-primal. But, the converse
is not true by Example (2.7) in [20] .

The following Theorem was proved by Shin [2] .
Theorem 2. 50 : Aring R is strongly 2-primal if and
only if every prime ideal I of R is completely
prime .[2]

Theorem 2.51: A ring R is NI if and only if every
minimal strongly prime ideal of R is completely
Prime .[21]

Corollary 2.52[21]

If R/P is SC ring for any minimal strongly prime ideal
Pofaring R, then Ris NI .
proof: By Theorem (2.46) and by Theorem (2.51)
we get the proof .

Then we have the following result which is analog of

Corollary (2.44) .

Theorem 2.53

Let R be a strongly 2-primal if and only if R/P is QSC
ring(SC) for all prime ideal PinR .
proof : Assume P be a prime ideal of R .

R/P is QSC ring(semicommutative) if and only if
R/P is
domain by Theorem (2.30) or by Corollary (2.33) .
That is , P is completely prime and R is strongly 2-
primal if and only if
every prime ideal of R is completely prime by [2].So
the result follows.

Remark 2.54
By Theorem (2.53) we easily get every HQSC
ring(HSC) which is strongly 2-primal .

Corollary 2.55
Let R/P be a QSC for all prime ideals in R, then
R/P(R) is a strongly 2-primal ring .
proof : R is a strongly 2-primal ring which is
equivalent to R/P(R) and it is a strongly 2-primal ring
by [20] and by Theorem(2.52), we get the following
result .Then the following result in [13] can be
viewed as a corollary of the preceding Theorem .
Corollary 2.56
Let R be a Von Neumann regular ring then the
following are equivalent :

1- Ris2-primal .

2- Risstrongly 2-primal .

Proof : For (2)=(1) is clear .

For (1)=(2) . Let R be a von Neumann regular 2-
primal ring , then R is abelian Theorem(2.28).
Therefore, R is HQSC ring by Theorem (2.44) in
particular R/P is QSC ring for all prime ideals P of R
by Theorem( 2.53) we get R is strongly 2-primal .
Note 2.57
It is important to combine Theorem (2.29,Corollary
(2.36,Theorem (2.45) and Corollary(2.52) we get the
following Theorem:

Theorem 2.58: Let R is regular Von Neumann then
the following are equivalent :
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1- Risabelian .

2- Risright(left) duo .
3- Risreduced .

4- Risrevisable .

5- RisSC .

6- Ris2-primal .

7- RisNI .

8- R is QSC .

9- RisHSC .

10- Ris HQSC .

11- R/P is a division ring for any prime ideal P of
R .

12- Riisstrongly 2-primal .

Definition 2.59[9]: Let R be aring an element x in R
is called entire if it is not a zero divisor .

Definition 2.60[9]: A commutative ring R and S is
multiplicatively closed subset of R with 1€S and 0¢S
.We define SR to be the set of all pair (r,s), when re
R, s€ S modulo the equivalence ~ where
(r1,50)~(r2,5) € 115,58 = 1,5, for some s€ S. S'R is
called the localization of R atS .

Theorem 2.61: Let R be a ring, and let D be a
multiplicatively closed subset of R consisting of a

central entire elements where D'R ={d™a| de D, a€

R}. Then the following are equivalent:

1- Ris QSC .

2- D'RisQSC .

Proof : (1)=>(2) . Let f?=0 with B =y™x, ye D and
X€ R. Then

yxyx=0. So x*y'y* =0 as y'iscentral .

Hence x*=0 .For any d’s € D'R, where s €R , de
D .

We have xsx =0 as Ris QSC .

Hence y'xdsy?x = xsxyldly* =0 .
QsC .

(2)=(1) . It is clear since the class of QSC ring is
closed under subring .

Definition 2.62[22] The ring of Laurent
polynomial in X, coefficients in a ring R, consists of
all formal sums Y7, m;x’ with obvious addition
and multiplication, where m; € R and k, n are
(possibly negative) integer. We denote this ring by
R[x; XY .

Corollary 2.63

Let R be a ring, R[X] is QSC if and only if the ring of
Laurent polynomials

R[x,x'] is QSC .

Proof : To prove the necessity as R[X] is a subring of
R[x,x].

LetD={1,x,x%,...} . Then D is a multiplicatively
closed under subset of R[x] consisting of central
entire element and R[x , x*] =

D'R[x] . Hence R[x , x'] is QSC by Theorem (2.61)

So DR is

Theorem 2.64 : Let R be aring and e be a central
idempotent . Then the following are equivalent:

1- RisQSC ring.

2- eRe=eR and (1-e)R(1-e) = (1-e)R are QSC ring.
proof : (1)=(2) : Itis clear since eR and (1-e)R are
subring of R.(2)=(1) : Forany x€R, letx*=0.
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Then (ex)’ = exex = ex?= 0 . So exeRex = 0 and
exRx=0.

Similarly: We have ((1-e)x)*= (1-e)x* =0 so (1-
e)x(1-e)R(1-e)x=0.

Which implies (1-e)xRx =0 .

Hence xRx = exRx + (1-e)xRx =0. R is QSC ring .

( R=eR®(1-e)R, and QSC is preserved under direct
sum) .

Example 2.64

then

Let  R=T,(2)

|
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