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ABSTRACT 

The study focused on expanding the concept of 2-normed spaces by 

developing a new definition (𝒮-normed space), and the study 

concentrated on the convergent of sequences and Cauchy sequences in 

our definition, as well as some other branches such as linear 

transformation and contraction. 

 

1. Introduction  
The concept of linear 2-normed spaces was 

introduced by Siegfried Gähler [1, 2, 3] in 1960, a 

German mathematician who worked in German 

academy of science, Berlin. Published this concept in 

the series of papers in German language, this subject 

has been studied by many mathematicians: A. White, 

Y J Cho, R W Freese and others who contributed to 

expanionality of this branch of mathematics since 

many researchers and scientists have obtained various 

results in this space, later the theory of 2-normed 

space was generalized and developed by S.Gähler 

then they trying to expand this generalization as well 

as  many other subjects. 

The study also give special attention to other results 

on this subject [4, 5, 6, 7, 8]. 

2. Preliminaries  
In this part, the study dealt with  two basic definitions 

as well as some properties are being focused on, each 

supported by an example for clarification”. 

Definition 2.1.”[9] “Let 𝒳 be a vector space with 

dim𝒳 > 1, over the field Ϝ, where Ϝ is the field of 

real or complex numbers. The real valued function 

∥. , . ∥: 𝒳×𝒳 → 𝓡 which satisfying these conditions 

for all 𝓍, 𝓎, 𝓏 ∈ 𝒳 and α∈ Ϝ: 

1. ∥ 𝓍,𝓎 ∥ = 0 if and only if 𝓍 and 𝓎 is linearly 

dependent. 

2. ∥ 𝓍,𝓎 ∥ = ∥ 𝓎,𝓍 ∥. 

3. ∥ 𝓍,𝛼𝓎 ∥ = |𝛼| ∥ 𝓍,𝓎 ∥. 

4. ∥ 𝓍 ,𝓎 + 𝓏 ∥  ≤  ∥ 𝓍,𝓎 ∥ + ∥ 𝓍, 𝓏 ∥. 

Is called a 2-norm on 𝒳 and the pair (𝒳, ∥. , . ∥) is said 

to be a 2-normed space over the field Ϝ”. 

Note in any 2-normed space (𝒳, ∥. , . ∥)  the 2-norm  

∥. , . ∥ is non-negative . 

 classical example of the 2-normed space (ℛ2
,∥. , . ∥) 

that 2-norm ∥. , . ∥ on ℛ2 
is defined by 

∥ 𝓍,𝓎 ∥ = |𝓍1𝓎2 – 𝓎1𝓍2| where 𝓍 = (𝓍1, 𝓍2) , 𝓎 =
(𝓎1, 𝓎2)  ∈ ℛ2. This is the area of parallelogram 

determined by the vectors 𝓍 and 𝓎”. 

Proposition 2.2. [9] “Let (𝒳, ∥. , . ∥) be a 2-normed 

space over the field Ϝ. Then  

1. ∥ 𝓍, 𝓎 ∥ = ∥ 𝓍, 𝓎 + 𝛼𝓍 ∥ , ∀𝓍, 𝓎 ∈ 𝒳 and 𝛼 ∈  Ϝ; 
2. If 𝓎 and 𝓏 are linearly independent in 𝒳 and  

∥ 𝓍, 𝓎 ∥ = ∥ 𝓍, 𝓏 ∥ =  0    
      ∀𝓍 ∈ 𝒳, 𝑡ℎ𝑒𝑛 𝓍 = 0”. 

Definition 2.3. [10] “Let 𝑛 ∈ 𝒩 and 𝒳 be real vector 

space such that dim ≥ 𝑛 . A real valued function 

 ∥ . , … , . ∥ on 𝒳𝑛  which satisfying the following four 

properties 

1. ∥ 𝓍1 ,…, 𝓍𝑛 ∥ = 0 if and only if 𝓍1 ,…, 𝓍𝑛 are 

linearly dependent;   

2. ∥ 𝓍1 ,…, 𝓍𝑛 ∥ is invariant under permutation; 

3. ∥ 𝓍1,…, α 𝓍𝑛 ∥ = |𝛼| ∥ 𝓍1 ,…, 𝓍𝑛 ∥ for any 𝛼 ∈ ℛ; 

4. ∥ 𝓍1 ,…, 𝓍𝑛−1, 𝓎 + 𝓏 ∥ ≤  ∥ 𝓍1 ,…, 𝓍𝑛−1, 𝓎 ∥ + 

∥ 𝓍1 ,…, 𝓍𝑛−1, 𝓏 ∥, 

Is called an n-norm on 𝒳 and the pair (𝒳, ∥. , … , . ∥) is 

called an 𝓃-normed space”. 

Note that in an n-normed space (𝒳, ∥ . , … , . ∥), we 

have, for instance, ∥ 𝓍1 ,…, 𝓍𝑛 ∥ ≥ 0  and  ∥ 𝓍1 
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,…, 𝓍𝑛−1 , 𝓍𝑛 ∥ = ∥ 𝓍1 , … , 𝓍𝑛−1, 𝓍𝑛 + 𝛼1𝓍1 + ⋯ +
𝛼𝑛−1𝓍𝑛−1 ∥. For all 𝓍1 , … , 𝓍𝓃 ∈ 𝒳 and 𝛼1, , … , 𝛼𝑛−1 

∈ ℛ   

A trivial example, of 𝓃-normed space is 𝒳 = ℛ𝑛 

equipped with the following 𝑛-norm: 

∥ 𝓍1 , … ,  𝓍𝑛 ∥𝐸 = abs(|

𝓍11 ⋯ 𝓍1𝑛

⋮ ⋱ ⋮
𝓍𝑛1 ⋯ 𝓍𝑛𝑛

|). 

Where 𝓍𝑖 = ( 𝓍𝑖1, … , 𝓍𝑖𝑛) ∈  ℛ𝑛 , for each 𝑖 =
1, … , 𝑛. (The subscript 𝐸 is for Euclidean)”. 

3. Definitions and characterizations 
“The study also presents a new concept,(𝒮-normed 

space), where we studied the convergent of sequence 

and Cauchy sequence in 𝒮-normed space applied 

followed by some possible cases”. 

Definition 3.1. “Let 𝒳 be a vector space with 

dim𝒳>1 over the field Ϝ, where Ϝ is the field of real 

or complex numbers, ℮ = {𝒮 ⊆ 𝒳: 𝒮 is finite and 

independent set}. 

The real valued function ∥ . , . ∥ : 𝒳 × ℮ → ℛ which 

satisfying these conditions ∀𝓍, 𝓎 ∈ 𝒳, 𝒮 ∈ ℮ and 

𝛼 ∈ Ϝ: 

1. ∥ 𝓍,𝒮 ∥ = 0 if and only if there exist 𝓎∈ 𝒮 such that 

𝓍, 𝓎 are linearly dependent. 

2. ∥ α𝓍,𝒮 ∥ = |α| ∥ 𝓍,𝒮 ∥. 

3. ∥  𝓍+𝓎,𝒮 ∥  ≤  ∥ 𝓍,𝒮 ∥ + ∥ 𝓎,𝒮 ∥, 

is called 𝒮-norm on 𝒳, and the pair (𝒳, ∥. , . ∥) is said 

to be 𝒮-normed space, over the field Ϝ”. 

The researcher is supporting his definition by this 

example define, when 𝒳 be 2-normed space and ℮ = 

{ 𝒮 ⊆ 𝒳: 𝒮 is finite and independent set}, the 𝒮-norm 

defined as :  ∥ 𝓍,𝒮 ∥ = min { ∥ 𝓍, 𝓎 ∥: 𝓎 ∈ 𝒮} Then 

𝒳 is 𝒮-normed space. 

Proposition 3.2. The 𝒮-normed space has the 

following properties: 

|  ∥ 𝓍, 𝑆 ∥  − ∥ 𝓎, 𝒮 ∥  |  ≤ ∥ 𝓍 − 𝓎, 𝒮 ∥ , ∀𝓍, 𝓎 ∈
𝒳 and 𝒮 ∈ ℮ 

Proof:  

                            “∥ 𝓍, 𝒮 ∥ = ∥ (𝓍 − 𝓎) + 𝓎, 𝒮 ∥ ≤ ∥
𝓍 − 𝓎, 𝒮 ∥  + ∥ 𝓎, 𝒮 ∥ 

     ⟹                                        ∥ 𝓍, 𝒮 ∥ − ∥ 𝓎, 𝒮 ∥ ≤ ∥
𝓍 − 𝓎, 𝒮 ∥, … (1) 

                                  ∥ 𝓎, 𝒮 ∥ = ∥ − 𝓎, 𝒮 ∥ = ∥  𝑥 −
 𝓎 −  𝓍, 𝒮 ∥ ≤ ∥ 𝓍 − 𝓎, 𝒮 ∥  + ∥ 𝓍, 𝒮 ∥ 

⟹                           ∥ 𝓎, 𝒮 ∥  − ∥ 𝓍, 𝒮 ∥ ≤ ∥
∥ 𝓍 −  𝓎, 𝒮 ∥ 

     ⟹                           ∥ 𝓍, 𝒮 ∥  − ∥ 𝓎, 𝒮 ∥ ≥  − ∥ 𝓍 −
𝓎, 𝒮 ∥, … (2)” 

From (1) and (2) we get : 

“− ∥ 𝓍 −  𝓎, 𝒮 ∥ ≤ ∥ 𝓍, 𝒮 ∥  − ∥ 𝓎, 𝒮 ∥ ≤ ∥ 𝓍 −
 𝓎, 𝒮 ∥ 

     ⟹           |  ∥ 𝓍, 𝒮 ∥  − ∥ 𝓎, 𝒮 ∥  |  ≤ ∥ 𝓍 − 𝓎, 𝒮 ∥
, ∀𝓍, 𝓎 ∈ 𝒳 and 𝒮 ∈ ℮”. 

Definition 3.3. “Let 𝒳 be 𝒮-normed space then the 

sequence {𝓍𝑛} in 𝒳 is convergent to 𝓍 ∈ 𝒳 if: 

∀𝜖 > 0, ∃ 𝒦 ∈ 𝒩, such that ∀𝑛 > 𝒦: ∥ 𝓍𝑛 −  𝓍, 𝒮 ∥
 < 𝜖  , for every 𝒮 ∈  ℮. 

If {𝓍𝑛} is convergent to 𝓍 , we write : {𝓍𝑛} ⟶ 𝓍” . 

Lemma 3.4. “Let 𝒳 be 𝒮-normed space and 

{𝓍𝑛},{𝓎𝑛} be sequences in 𝑋, then : 

1. If, {𝓍𝑛} ⟶ 𝓍 and {𝓎𝑛} ⟶ 𝓎, then {𝓍𝑛 + 𝓎𝑛} ⟶
𝑥 + 𝓎. 

2. If, {𝓍𝑛} ⟶ 𝓍, then {α𝓍𝑛} ⟶ 𝛼𝓍”. 

Proof:  

1. ∵ {𝓍𝑛} ⟶ 𝓍, 

      ∴ ∀𝜖 > 0, ∃ 𝒦1 ∈ 𝒩, such that ∀𝑛 > 𝒦1 : ∥ 𝓍𝑛 −

 𝓍, 𝒮 ∥ <  
𝜖

2
 , for every 𝒮 ∈  ℮ 

      ∵ {𝓎𝑛} ⟶ 𝓎, 

      ∴ ∀𝜖 > 0, ∃ 𝒦2 ∈ 𝒩, such that ∀𝑛 > 𝒦2 : ∥ 𝓎𝑛 −

 𝓎, 𝒮 ∥ <  
𝜖

2
 , for every 𝒮 ∈  ℮ 

 Take 𝒦 = max{𝒦1, 𝒦2} 

“Then,∀𝑛 > 𝒦: ∥ (𝓍𝑛 + 𝓎𝑛) − (𝑥 + 𝓎), 𝒮 ∥ = ∥
(𝓍𝑛 − 𝓍) + (𝓎𝑛 − 𝓎), 𝒮 ∥  
≤ ∥ 𝓍𝑛 −  𝓍, 𝒮 ∥+∥ 𝓎𝑛 −  𝓎, 𝒮 ∥ 

< 
𝜖

2
 + 

𝜖

2
 = 𝜖, for every 𝒮 ∈  ℮ 

∴ {𝓍𝑛 + 𝓎𝑛} ⟶ 𝑥 + 𝓎. 

2. ∵ {𝓍𝑛} ⟶ 𝓍,  

      ∴ ∀𝜖 > 0, ∃ 𝒦 ∈ 𝒩, such that ∀𝑛 > 𝒦: ∥ 𝓍𝑛 −

 𝓍, 𝒮 ∥ <
𝜖

|𝛼|
  , for every 𝒮 ∈  ℮ 

We have : ∀𝑛 > 𝒦, ∥ α𝓍𝑛 −  α𝓍, 𝒮 ∥ = |𝛼| ∥ 𝓍𝑛 −

 𝓍, 𝒮 ∥ < |𝛼| 
ℇ

|𝛼|
 = ℇ, for every 𝒮 ∈  ℮ 

      ∴ {α𝓍𝑛} ⟶ 𝛼𝓍”. 

The following theorem shows that if the sequence is 

converge then the convergence point is unique. 

Theorem 3.5. “If {𝓍𝑛} is convergent sequence in 𝒮-

normed space 𝒳, then the convergent point, is 

unique”. 

Proof :  

Suppose {𝓍𝑛}  is convergent to, 𝓍 and 𝓎 in 𝒮-normed 

space 𝒳 such that 𝓍 ≠ 𝓎 

Since {𝓍𝑛} ⟶ 𝓍”, 

then ∀ℇ > 0 , ∃ 𝒦1 ∈ 𝒩 such that ∀𝑛 > 𝒦1 : ∥ 𝓍𝑛 −

 𝓍, 𝒮 ∥ <
ℇ

2
 , ∀ 𝒮 ∈ ℮ 

Since {𝓍𝑛} ⟶ 𝓎 

⇒  ∀ℇ > 0 , ∃ 𝒦2 ∈ 𝒩 such that ∀𝑛 >  𝒦2 : ∥ 𝓍𝑛 −

 𝓎, 𝒮 ∥ <  
ℇ

2
 , ∀ 𝒮 ∈ ℮ 

“For every 𝓏 ≠ 0 take 𝒮 = {𝓏} such that {𝓍 −
𝓎} , 𝓏 are linearly independent”, 

So, ∥ 𝓍 −  𝓎, 𝒮 ∥ ≠  0 ⇒ ∥ 𝓍 − 𝓎, 𝒮 ∥= ℇ > 0 

ℇ =∥ 𝓍 −  𝓎, 𝒮 ∥=∥ 𝓍 − 𝓍𝑛 + 𝓍𝑛 − 𝓎, 𝒮 ∥≤∥ 𝓍𝑛 −
𝓍, 𝒮 ∥ +∥ 𝓍𝑛 − 𝓎, 𝒮 ∥<  ℇ  
and that is a contradiction. 

So that  𝓍 = 𝓎 . 

Definition 3.6. “Let 𝒳 be 𝒮-normed space, then the 

sequence {𝓍𝑛}  in 𝒳 is called Cauchy sequence if :  

∀𝜖 > 0 , ∃ 𝒦 ∈ 𝒩, such that: ∀𝑛, 𝑚 > 𝒦, ∥ 𝓍𝑛 −
 𝓍𝑚, 𝒮 ∥ < 𝜖 , for every 𝒮 ∈ ℮”. 

Definition 3.7. The 𝒮-normed space 𝒳, is called 

complete 𝒮-normed space, if every Cauchy sequence 

in  𝒳, converges to a point in 𝒳. 
Definition 3.8. The 𝒮-normed space 𝒳, is said to be 

𝒮-Banach space if it is complete “𝒮-normed space”. 

Definition 3.9. Let (𝒳, ∥. , . ∥) be 𝒮-normed space, 

Let  𝓍0  ∈ 𝒳 , 𝓇 > 0 𝑎𝑛𝑑 𝒮 ∈ ℮, the set 

𝐵{𝒮}(𝑟,  𝓍0) =  { 𝓍  ∈ 𝒳 ∶ ∥ 𝓍 −   𝓍0, 𝒮 ∥ <  𝑟 }.” 
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We call it an open ball with respect to 𝒮 with center 

𝓍0 and redius 𝑟. 
Definition 3.11. “Let 𝒳 be 𝒮-normed space, the 

sequence {𝓍𝑛} in 𝒳 is called”𝒮-bounded if: 

∀ 𝒮 ∈ ℮, ∃ ℳ𝒮 > 0 such that ∥ 𝓍𝑛 , 𝒮 ∥≤  ℳ𝒮  , ∀𝑛 . 
Lemma3.12. Every Cauchy sequence in 𝒮-normed 

space is 𝒮-bounded. 

Proof : Suppose {𝓍𝑛} is Cauchy sequence and take 

𝜖 = 1 

then ∃”𝒦 ∈ 𝒩 such that ∀𝑛 > 𝒦 ∥ 𝓍𝑛 − 𝓍𝑚, 𝒮 ∥ <
1, ∀𝒮 ∈ ℮ 

let 𝑚 = 𝑘 + 1 ⇒ ∀𝑛 > 𝒦:  ∥ 𝓍𝑛 − 𝓍𝑘+1 , 𝒮 ∥ < 1 

since ∀𝑛 > 𝒦, ∥ 𝓍𝑛, 𝒮 ∥  − ∥ 𝓍𝑘+1, 𝒮 ∥ ≤ ∥ 𝓍𝑛 −
𝓍𝑘+1, 𝒮 ∥ < 1 

⟹ ∀𝑛 > 𝒦: ∥ 𝓍𝑛 , 𝒮 ∥ < 1+∥ 𝓍𝑘+1, 𝒮 ∥ 

Take ℳ𝒮 = 𝑀𝑎𝑥{∥ 𝓍1, 𝒮 ∥, ∥ 𝓍2, 𝒮 ∥, … , ∥ 𝓍𝑘, 𝒮 ∥
,1+∥ 𝓍𝑘+1, 𝒮 ∥} 

⟹ ∥ 𝓍𝑛, 𝑆 ∥< ℳ𝒮  , ∀ 𝑛 ∈ 𝒩”. 

⟹ {𝓍𝑛} is 𝒮-bounded. 

Theorem 3.13. “Every convergent”sequences”in 𝒮-

normed space”is Cauchy sequence  

Proof: Let {𝓍𝑛} be a convergent sequence, in 𝒮-

normed space, such that {𝓍𝑛} ⟶ 𝓍,  
Let > 0 , since {𝓍𝑛} ⟶ 𝓍 then“∃ 𝒦 ∈ 𝒩 such that 

∀𝑛 > 𝒦: ∥ 𝓍𝑛 − 𝓍, 𝒮 ∥ <  
𝜖

2
 “, 

∀𝒮 ∈ ℮, for 𝑚 > 𝒦: ∥ 𝓍𝑚 − 𝓍, 𝒮 ∥ <  
𝜖

2
 , ∀𝒮 ∈ ℮ 

Since ∀𝑛, 𝑚 > 𝒦: ∥ 𝓍𝑛 − 𝓍𝑚, 𝒮 ∥ < ∥ 𝓍𝑛 − 𝓍, 𝒮 ∥
 +∥ 𝓍𝑚 − 𝓍, 𝒮 ∥ < ℇ , ∀𝒮 ∈ ℮ 

So”{𝓍𝑛}, is Cauchy sequence in 𝒮-normed space”. 

The prove of the following corollary consequence 

from lemma (3.12) and lemma (3.13). 

Corollary3.14. “Every convergent sequence in 𝒮-

normed space is bounded”. 

4. Linear transformation on 𝒮-normed spaces  

In this part of the study, the linear transformation and 

contraction mapping is being defined in 𝒮-normed 

space and with a study of several propositions. 

Definition 4.1. “Let, 𝒳 be 𝒮-normed space and 𝒴 is 

normed space, then 

ℱ: 𝒳 × ℮ ⟶ 𝒴 , is”called 𝒮-linear transformation if 

it satisfies the conditions:  

∀ 𝑥 ∈ 𝒳, ∀𝒮 ∈ ℮ and 𝛼 ∈ Ϝ; 
1. ℱ(𝓍 + 𝓎, 𝒮) =  ℱ(𝓍, 𝒮) +  ℱ(𝓎, 𝒮), 
2. ℱ(𝛼𝓍, 𝒮) =  𝛼 ℱ(𝓍, 𝒮). 
Definition 4.2. A linear 𝒮-normed space ℱ is said to 

be bounded, if ∃ M> 0 such that ∥ ℱ(𝓍,𝒮) ∥”≤ 

𝑀 ∥ 𝑥, 𝑆 ∥ , ∀ 𝓍 ∈ 𝒳, ∀𝒮 ∈ ℮. 
Propoition4.3. Let𝒳 be 𝒮-normed space and 

ℱ: 𝒳× ℮ ⟶ 𝒴 is bounded 𝒮-linear transformation. 

Let 𝒮 belong to ℮, 𝑥 ∈ 𝒳. If there exist 𝓎 ∈ 𝒮 such 

that 𝓍, 𝓎 are linraly dependent then (𝓍, 𝒮) ∈ 𝑘𝑒𝑟 ℱ , 

where “𝑘𝑒𝑟 ℱ = {(𝓍, 𝒮) ∶  ℱ(𝓍, 𝒮) = 0}.” 

Proof: 

Since ℱ is bounded” 

Then there exist ℳ > 0 such that ∥ ℱ(𝓍, 𝒮) ∥ ≤ ℳ ∥
𝓍, 𝒮 ∥” 

since there exit 𝓎 ∈ 𝒮, such that 𝓍 and 𝓎 are linearly 

dependent  

⟹ ∥ 𝓍, 𝑆 ∥ =  0 

Hence, 0 ≤ ∥ ℱ(𝓍, 𝒮) ∥ ≤ ℳ ∥ 𝓍, 𝒮 ∥ = ℳ. 0 =  0 

Therefore,  ℱ(𝓍, 𝒮) = 0 

Thus, (𝓍, 𝒮) ∈ 𝑘𝑒𝑟 ℱ. 
Let ℬ(𝒳 × ℮, 𝒴) be the set of all bounded 𝒮-linear 

transformation on the 𝒮-normed space 𝒳 × ℮. 

We can define over ℬ(𝒳 × ℮, 𝒴) operations (+) and 

( . )  in this way  

“For ℱ1 , ℱ2 ∈ ℬ(𝒳 × ℮, 𝒴)   

(ℱ1 + ℱ2)(𝓍,𝒮) = ℱ1(𝓍, 𝒮) + ℱ2(𝓍, 𝒮) , ∀ 𝓍 ∈ 𝒳and 

∀𝒮 ∈ ℮ .  
  (𝛼. ℱ1)(𝓍,𝒮) =  𝛼. ℱ1(𝓍, 𝒮), ∀𝓍 ∈ 𝒳, ∀𝒮 ∈

℮, and 𝛼 ∈ 𝐹” 

Propoition 4.4. The set ℬ(𝒳 × ℮, 𝒴)  with two 

operation defined above is vector space  

Proof: Let ℱ1 , ℱ2 ∈ ℬ(𝒳 × ℮, 𝒴)  ⇒  ∃ ℳ1 , ℳ2 >
0 such that”∥ ℱ1(𝓍, 𝒮) ∥ ≤  ℳ1 ∥ 𝑥, 𝒮 ∥  
And   ∥ ℱ2(𝓍, 𝑆) ∥ ≤ ℳ2 ∥ 𝓍, 𝒮 ∥  

Then, 

∥ (ℱ1 + ℱ2)(𝓍,𝒮) ∥ =  ∥ ℱ1(𝓍, 𝒮) + ℱ2(𝓍, 𝒮) ∥ ≤ ∥

ℱ1(𝓍, 𝒮) ∥ + ∥ ℱ2(𝓍, 𝒮) ∥  
≤  (ℳ1 + ℳ2) ∥ 𝓍, 𝒮 ∥ 

∥ (𝛼. ℱ1)(𝓍,𝒮) ∥ = ∥ 𝛼. ℱ1(𝓍, 𝒮) ∥= |𝛼| ∥ ℱ1(𝓍, 𝒮) ∥

 ≤  |𝛼| ℳ1 ∥ 𝓍, 𝒮 ∥” 

 “So ℱ1 + ℱ2 ∈ ℬ(𝒳 × ℮, 𝒴)  and 𝛼, ℱ1 ∈ ℬ(𝒳 ×
℮, 𝒴)” 

 By the same way in proposition4.4 we can prove 

other conditions of vector space. 

Propoition4.5. Let  ℬ(𝒳 × ℮, 𝒴) be the set of all 

bounded 𝒮-linear transformation, for every  𝐹 ∈
ℬ(𝒳 × ℮, 𝒴) , then ℬ(𝒳 × ℮, 𝒴) is normed space 

where, 

 ∥ ℱ ∥ = 𝑠𝑢𝑝𝓎∈𝒮 {
∥ℱ(𝓍,𝒮)∥ 

∥𝓍,𝒮∥
 : 

𝓍, 𝓎 are linearly independent } 

we call ∥ ℱ ∥ the norm of bounded 𝒮-linear 

transformation ℱ. 

Proof: The vector space ℬ(𝒳× ℮,𝒴) with the 

function ‖ . ‖:ℬ(𝒳 × ℮, 𝒴) → ℛ, is normed space 

because it satisfies : 

1. ∥ ℱ ∥ ≥  0  
∵”∥ 𝓍, 𝑆 ∥ > 0 , ∀𝓎 ∈ 𝑆 , 𝓍, 𝓎 are linearly 

independent and ∥ 𝐹(𝓍, 𝑆) ∥ ≥ 0, ∀𝓎 ∈ 𝑆, 
 𝓍 ∈ 𝒳. 

∴ 
∥ℱ(𝓍,𝒮)∥ 

∥𝓍,𝒮∥
 ≥ 0 , ∀ 𝓎 ∈ 𝒮 , 𝓍,𝓎 are linearly 

independent 

∴ 𝑠𝑢𝑝𝓎∈𝒮{
∥ℱ(𝓍,𝒮)∥ 

∥𝓍,𝒮∥
: 𝓍, 𝓎 are linearly independent} ≥ 0 

   ∴ ∥ ℱ ∥ ≥ 0 , ∀ℱ ∈ ℬ(𝒳 × ℮, 𝒴)  
2. ∥ ℱ ∥= 0 if and only if ℱ=0  

Let  ∥ ℱ ∥= 0 ⟺  𝑠𝑢𝑝𝓎∈𝒮{
∥ℱ(𝓍,𝒮)∥ 

∥𝓍,𝒮∥
 : 𝓍, 𝓎 are linearly 

independent} = 0” 

                          ⟺  
∥ℱ(𝓍,𝒮)∥ 

∥𝓍,𝒮∥
 = 0  𝓍, 𝓎 are linearly 

independent, ∀𝓎 ∈ 𝒮, 
                ∵              ∥ 𝓍, 𝒮 ∥ > 0   𝓍, 𝓎 are linearly 

independent, ∀𝓎 ∈ 𝒮, 
                          ⟺ ∥ ℱ(𝓍, 𝒮) ∥ =0 , 𝓍, 𝓎 are linearly 

independent, ∀𝓎 ∈ 𝒮, 
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                          ⟺ ℱ(𝓍, 𝒮) =0 , 𝓍,𝓎 are linearly 

independent, ∀𝓎 ∈ 𝒮, 

                          ⟺ ℱ=0 . 

3. ∀𝛼 ∈ Ϝ, ∥ 𝛼ℱ ∥=  |𝛼| ∥ ℱ ∥ 

∥ 𝛼𝐹 ∥= 𝑠𝑢𝑝𝓎∈𝒮 {
∥(𝛼ℱ)(𝓍,𝒮)∥ 

∥𝓍,𝒮∥
 : 

𝓍, 𝓎 are linearly independent } 

                    =  𝑠𝑢𝑝𝓎∈𝒮 {
∥𝛼ℱ(𝓍,𝒮)∥ 

∥𝓍,𝒮∥
 : 

𝓍, 𝓎 are linearly independent } 

                   = 𝑠𝑢𝑝𝓎∈𝒮 {
|𝛼| ∥ℱ(𝓍,𝒮)∥ 

∥𝓍,𝒮∥
 : 

𝓍, 𝓎 are linearly independent } 

                  = |α| 𝑠𝑢𝑝𝓎∈𝒮 {
 ∥ℱ(𝓍,𝒮)∥ 

∥𝓍,𝒮∥
 : 

𝓍, 𝓎 are linearly independent } 

           = |α| ∥ ℱ ∥ . 

4. “∥ ℱ1 + ℱ2 ∥ ≤ ∥ ℱ1 ∥ + ∥ ℱ2 ∥ , ∀ ℱ1and  ℱ2 ∈ 

ℬ(𝒳× ℮,𝒴).  

   ∥ ℱ1 + ℱ2 ∥=  𝑠𝑢𝑝𝓎∈𝒮{
∥(ℱ1+ℱ2)(𝓍,𝒮)∥ 

∥𝓍,𝒮∥
  :  𝓍,𝓎 are 

linearly independent} 

                         =  𝑠𝑢𝑝𝓎∈𝒮{ 
∥ℱ1(𝓍,𝒮) + ℱ2(𝓍,𝒮)∥ 

∥ 𝓍,𝒮 ∥
 : 𝓍,𝓎 are 

linearly independent} 

                      ≤  𝑠𝑢𝑝𝓎∈𝒮{
∥ℱ1(𝓍,𝒮)∥+∥ℱ2(𝓍,𝒮)∥ 

∥ 𝓍,𝒮 ∥
 : 𝓍,𝓎 are 

linearly independent} 

                      =  𝑠𝑢𝑝𝓎∈𝒮{
∥ℱ1(𝓍,𝒮)∥

∥𝓍,𝒮∥
+

∥ℱ1(𝓍,𝒮)∥

∥𝓍,𝒮∥
 : 𝓍, 𝓎 are 

linearly independent}” 

                      ≤ 𝑠𝑢𝑝𝓎∈𝒮{
∥ℱ1(𝓍,𝒮)∥

∥𝓍,𝒮∥
: 𝓍, 𝓎 are linearly 

independent}+ 𝑠𝑢𝑝𝓎∈𝒮{
∥ℱ2(𝓍,𝒮)∥

∥𝓍,𝒮∥
 : 𝓍, 𝓎 are linearly 

independent} 

∴ ∥ ℱ1 + ℱ2 ∥ ≤ ∥ ℱ1 ∥ + ∥ ℱ2 ∥. 

Proposition 4.6. “Let 𝒳 be 𝒮-normed space and 𝒴 be 

Banach space, then ℬ(𝒳× ℮, 𝒴) is a Banach space”. 

Proof :”let, {ℱ𝑛} be Cauchy sequence in ℬ(𝒳 ×
℮, 𝒴), and 𝑚 = 𝑛 + 𝑝, where 𝑝 ∈ 𝒩 

⇒ ∀ℇ > 0 , ∃ 𝒦 ∈ 𝒩, such that ∀𝑛, 𝑚 > 𝒦: ∥ ℱ𝑛 −
 ℱ𝑚, 𝒮 ∥ < ℇ ,  ∀𝒮 ∈ ℮. 

Then, ∀𝓍 ∈ 𝒳, and 𝒮 ∈ ℮ such that 𝓍, 𝓎 are linearly 

independent ∀𝓎 ∈ ℮ 

 We have ∥ ℱ𝑛(𝓍, 𝒮) + ℱ𝑛+𝑝(𝓍, 𝒮) ∥ ≤ ∥ ℱ𝑛 −

 ℱ𝑚, 𝒮 ∥ ∥ 𝓍,𝒮 ∥ 

∴ we get {ℱ𝑛(𝓍, 𝒮)} is Cauchy sequence in 𝒴” 

Since 𝒴 is complete then the sequence {ℱ𝑛(𝓍, 𝒮)} is 

convergent to a pont in 𝒴 say ℱ(𝓍, 𝒮) 

∴ {ℱ𝑛(𝓍, 𝒮)} ⟶ ℱ(𝓍, 𝒮) 

Now, we will show that {ℱ𝑛} ⟶ {ℱ}  

∥ (ℱ𝑛 − ℱ)(𝓍,𝒮) ∥=∥ ℱ𝑛(𝓍, 𝒮) − ℱ(𝓍, 𝒮)∥=

lim𝑝→∞ ∥ ℱ𝑛(𝓍, 𝒮) + ℱ𝑛+𝑝(𝓍, 𝒮) ∥  

lim
𝑝→∞

∥ ℱ𝑛 − ℱ𝑛+𝑝, 𝒮 ∥ ∥ 𝓍,𝒮 ∥< ℇ ∥ (𝓍, 𝒮) ∥ 

∴ 𝓍 ∈ 𝒳 and 𝒮 ∈ ℮ such that 𝓍, 𝓎 are linearly 

independent ∀𝓎 ∈ ℮  

⟹  
∥(ℱ𝑛+ℱ)(𝓍,𝒮)∥ 

∥𝓍,𝒮∥
≤ ℇ  

∴ ∥ ℱ𝑛 −ℱ ∥=  𝑠𝑢𝑝𝓎∈𝒮{
∥(ℱ𝑛+ℱ)(𝓍,𝒮)∥ 

∥𝓍,𝒮∥
  : 𝓍, 𝓎 are 

linearly independent} ≤ ℇ 

∴ {ℱ𝑛} ⟶ {ℱ}. 

We will show that ℱ is bounded and 𝒮-linear 

transformation 

∵ {ℱ𝑛} is Cauchy sequence 

∴ ∃ℳ > 0, such that , ‖ ℱ𝑛 ‖ < ℳ, ∀𝑛. 

“∥ ℱ(𝓍, 𝒮) ∥=∥ ((ℱ − ℱ𝑛) + ℱ𝑛)(𝓍, 𝒮) ∥≤∥

(ℱ − ℱ𝑛)(𝓍,𝒮) ∥ + ∥ ℱ𝑛(𝓍, 𝒮) ∥ 

                     ≤∥ ℱ𝑛 − ℱ𝑚 ∥ ‖𝓍, 𝒮‖+‖ ℱ𝑛 ‖ ‖𝓍, 𝒮‖ ≤
( ℇ + ℳ)‖𝓍, 𝒮‖. 
∴ ℱ(𝓍, 𝒮) is bounded. 

∵ {ℱ𝑛(𝓍, 𝒮)} ⟶ ℱ(𝓍, 𝒮),  ∀𝓍 ∈ 𝒳 and ∀𝒮 ∈ ℮ 

Then ℱ(𝓍 + 𝓎, 𝒮) = lim𝑛→∞ ℱ𝑛(𝓍 + 𝓎, 𝒮) 

= lim𝑛→∞(ℱ𝑛(𝓍, 𝒮) + ℱ𝑛(𝓎, 𝒮)) = ℱ(𝓍, 𝒮)+ ℱ(𝓎, 𝒮)” 

And ℱ(α𝓍, 𝒮) = lim
𝑛→∞

ℱ𝑛(α𝓍, 𝒮) = lim
𝑛→∞

𝛼ℱ𝑛(𝓍, 𝒮) =

𝛼ℱ(𝓍, 𝒮). 
∴ ℱ is 𝒮-linear transformation. 

∴ ℬ(𝒳× ℮, 𝒴), is Banach space. 

Definition 4.7. “Let 𝒳 be 𝒮-normed space, the 

mapping 𝒯: 𝒳 ⟶ 𝒳 is called 𝒮-contraction, if there 

exist: 𝒞 ∈ [0,1) such that, ∥ 𝒯𝓍 − 𝒯𝓎, 𝒮 ∥ ≤  𝒞 ∥
𝓍 − 𝓎, 𝒮 ∥ , for all 𝓍 ∈ 𝒳 and 𝒮 ∈  ℮”.. 

Definition 4.8. “Let 𝒳 be 𝒮-normed space, the 

mapping 𝒯: 𝒳 ⟶ 𝒳 is called sequentially continuous 

if : 

𝓍𝑛 ⟶ 𝓍 then  𝒯𝓍𝑛
⟶ 𝓍”.. 

Lemma 4.9. “Let,𝒳 be 𝒮-normed space, then every 

contraction 𝒯: 𝒳 ⟶ 𝒳, is sequentially continuous “. 

Proof : “since, 𝒯 is contraction 

Then, ∃ 𝒞 ∈ [0,1) such that: ∥ 𝒯𝓍 − 𝒯𝓎, 𝒮 ∥ ≤ 𝒞 ∥
𝓍 − 𝓎, 𝒮 ∥ , for all 𝓍,𝓎 ∈ 𝒳 and 𝒮 ∈ ℮ 

Let, {𝓍𝑛} be a sequence in 𝒳, such that: {𝓍𝑛}  ⟶ 𝓍,  

then 

∥ 𝒯𝓍𝑛 − 𝒯𝓍, 𝒮 ∥ ≤ 𝒞 ∥ 𝓍𝑛 − 𝓍, 𝒮 ∥ ⟶ 0 , as 𝑛 ⟶ ∞ 

⟹ 𝒯𝓍𝑛 ⟶ 𝒯𝓍. 

⟹ 𝒯 is sequentially continuous”. 

Lemma 4.10 “Let (𝒳, ∥. , . ∥) be 𝒮-Banach, the 𝒮-

contraction map 𝒯: 𝒳 ⟶ 𝒳 has a unique fixed point 

in 𝒳.  . 

Proof : ∵ 𝒯 is contraction, 

∴∃ 𝒞 ∈ [0,1) such that: ∥ 𝒯𝓍 − 𝒯𝓎, 𝒮 ∥ ≤ 𝒞.∥ 𝓍 −

𝓎, 𝒮 ∥ , for all 𝓍, 𝓎 ∈ 𝒳 and ∀𝒮 ∈ ℮ 

Similarly, ∥ 𝒯𝓍
𝑛 − 𝒯𝓎

𝑛 , 𝒮 ∥ ≤  𝒞𝑛 ∥ 𝓍 − 𝓎, 𝒮 ∥, for 

all 𝓍 ∈ 𝒳 and 𝒮 ∈ ℮, 𝑛 = 1,2,3, …” 

Let 𝓍0 ∈ 𝒳 and 𝓍𝑛 =  𝒯𝓍𝑛−1
 ⟹  𝓍𝑛 = 𝒯𝑛

𝓍0  

To show that {𝓍𝑛} is Cauchy in 𝒳, we take = 𝑛 + 𝑝 , 

∀𝒮 ∈ ℮, where 𝑝 ∈ 𝒩 

“∥ 𝓍𝑛 − 𝓍𝑚, 𝒮 ∥ = ∥ 𝓍𝑛 − 𝓍𝑛+𝑝, 𝒮 ∥” 

≤ ∥ 𝓍𝑛 −  𝑥𝑛+1 , 𝒮 ∥  + ∥ 𝑥𝑛+1 −  𝑥𝑛+2, 𝑆 ∥ + … +∥
𝑥𝑚+𝑝−1  −  𝑥𝑚+𝑝 , 𝑆 ∥  

=
 ∥ 𝒯𝓍0

𝑛 − 𝒯𝓍1
𝑛 , 𝒮 ∥  + ∥ 𝒯𝓍0

𝑛+1 − 𝒯𝓍1
𝑛+1, 𝒮 ∥  + ⋯ + ∥

𝒯𝓍0

𝑛+𝑝−1
− 𝒯𝓍1

𝑛+𝑝−1
, 𝒮 ∥ 

≤ 𝒞𝑛 ∥ 𝓍0 −  𝓍1, 𝒮 ∥  + 𝒞𝑛+1 ∥ 𝓍0 − 𝓍1, 𝒮 ∥  + ⋯ +
 𝒞𝑛+𝑝−1  ∥ 𝓍0 − 𝓍1, 𝒮 ∥ 

≤ 𝒞𝑛 ∥ 𝓍0 − 𝓍1, 𝒮 ∥ (1 + 𝒞 + 𝒞2 + ⋯ ) 

= 
𝐶𝑛

1−𝑐
 ∥ 𝓍0 −  𝓍1, 𝒮 ∥ , ∀𝒮 ∈  ℮ 

So, ∥ 𝓍𝑛 −  𝓍𝑚, 𝒮 ∥ ≤
𝐶𝑛 

1−𝑐
∥ 𝓍0 −  𝓍1, 𝒮 ∥ ⟶

0 , as 𝑛 ⟶ ∞  , ∀𝒮 ∈  ℮ 

⟹ ∥ 𝓍𝑛 −  𝓍𝑚, 𝒮 ∥ ⟶ 0 , as 𝑛 ⟶ ∞, ∀𝒮 ∈  ℮ 
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∴ “{𝓍𝑛} is Cauchy sequence in 𝒳 

∵𝒳 is 𝒮-Banach 

∴ {𝓍𝑛} is converges to a point in 𝒳 say 𝓍. 

∵ 𝒯 is contraction map then 𝒯 is sequentially 

continuous” 

∴ 𝒯𝓍 =  𝑙𝑖𝑚 𝒯𝓍𝑛
 = lim 𝒯𝓍𝑛+1

 = 𝓍 , as 𝑛 ⟶ ∞ 

∴𝒯 has a fixed point in 𝒳. 
Now, we will show that a fixed point is unique  

Let 𝓎 ∈ 𝒳 and 𝓎 be another fixed point of 𝒯 such 

that  𝓎 ≠ 𝓍 

then ∥ 𝓍 − 𝓎, 𝒮 ∥ = ∥ 𝒯𝓍 − 𝒯𝓎 , 𝒮 ∥ ≤ 𝒞 ∥ 𝓍 − 𝓎, 𝒮 ∥

,  when 𝒞 ≥ 1 

Since 𝒞 ∈ [0,1) ⟹ contraction 

𝓎 = 𝓍 

“∴ 𝒯 has a unique fixed point”. 

5. Conclusion. 
In this research, the researcher gives a new definition. 

They study some topics and characteristics over the 

new definition, of these cases is convergence of 

sequences, linear transformations and contraction. 

One of the results obtained by the researcher is that 

the set of all bounded 𝒮-linear transformation is 

normed space and the 𝒮-contraction map over 𝒮-

Banach space has a unique fixed point. 
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