TJPS

Tikrit Journal of Pure Science

ISSN: 1813 – 1662 (Print) --- E-ISSN: 2415 – 1726 (Online)

TIPS TREAT

ON Supra α – Compactness In Supra topological Spaces

Ghufran A. Abbas, Taha H. Jasim

Department of Mathematics, College of Computer Science and Mathematics, Tikrit University, Tikrit, Iraq https://doi.org/10.25130/tjps.v24i2.359

ARTICLE INFO.

Article history:

-Received: 9 / 12 / 2018

-Accepted: 13 / 1 / 2019 -Available online: / / 2019

Keywords: supra topological space, supra α - open set, supra α - compact space, countably supra α - compact space, supra α - Lindelof space.

Corresponding Author:

Name: Ghufran A. Abbas

E-mail: <u>ghufranabas@gmail.com</u> Tel:

1. Introduction

 $\gamma \subseteq \mu$, it implies that $\bigcup_{\gamma} \in \mu$. The pair(*X*, μ) is called a supra topological space. Each element $A \in \mu$ is called a supra open set in (*X*, μ) and the complement of *A* denoted by $A^c = X - A$ is called a supra closed set in (*X*, μ).

Definition 2.2. [1] Let (X, μ) be a supra topological space. The supra closure of a set *A* is denoted by supra $-cl(A) = \{B \subseteq X : B \text{ is a supra closed set in$ *X* $such that <math>A \subseteq B\}$.

The supra interior of a set A is denoted by supra – Int(A) and is defined by supra – $Int(A) = \{ U \subseteq X : U \text{ is a supra open set in } X \text{ such that } U \subseteq A \}$.

Definition 2.3. [1] Let (X, \mathcal{T}) be a topological space and μ be a supra topology on X. We call μ a supra topology associated with \mathcal{T} if $\mathcal{T} \subseteq \mu$.

Definition 2.4. [2] Let (X, μ) be a supra topological space. A subset A of X is called a supra α - open set in X if $A \subseteq$ supra – Int [supra – cl [supra – Int (A)]]. The complement of supra α – open set is called a supra α - closed set .

Definition 2.5. [2] Let (X, μ) be a supra topological space. The supra α - closure of a set A is denoted by supra $-\alpha - cl(A)$, and is defined as given in the following :

Supra $-\alpha - cl(A) = \{B \subseteq X : B \text{ is supra } \alpha - closed \text{ set in } X \text{ such that } A \subseteq B\}.$

The supra α - interior of a set A is denoted by supra $-\alpha$ - Int (A), and is defined by supra

ABSTRACT

L he purpose of this paper is to introduce the concept of strongly supra α - continuous function, perfectly supra α - continuous function and totally supra α - continuous function, The relationships among these functions are studied., and investigated some properties of them. Also we introduced the concepts of supra α - compact space, supra α - Lindelof spaces and countably supra α - compact spaces. Some basic properties are proved. At last the relationships among supra α - open, supra α continuous maps and supra α - irresolute maps in supra topological spaces.

> In 1983, Mashhour, A.S. et al [1] introduced the supra topological spaces and studied S- continuous maps and S^* - continuous maps. In 2008, Devi, R. et al [2] introduced and studied a class of sets and maps between topological spaces called supra α - open sets and $S\alpha$ – continuous maps. In 2008, Jassim, T.H. [3] came out with the concept of supra compactness in supra topological spaces. respectively. In 2012, Sekar, S. et al [4] introduced and investigated a new class of sets and function between topological spaces called supra I – open sets and supra I – continuous functions respectively. In 2013, Mustafa, J.M. [5] came out with the concept of supra b – compact and supra b – Lindelof spaces. In 2017, Krishnaveni and Vigneshwaran [6] came out with supra $b\mathcal{T}$ – closed sets and gave their properties. In 2018, Latif, R.M. [7] came out with the concept of supra I – compactness and supra I – connectdness. Now the study brings up with the new concepts of supra α - compact, countably supra α - compact, supra α - Lindelof spaces and present several properties and characteristics of these concepts.

2. Preliminaries

We recall some definitions which are needed in this work .

Definition 2.1. [1] Let *X* be a non-empty set and Let $\mu \subseteq P(X) = \{A : A \subseteq X\}$. Then μ is called a supra topology on *X* if $\varphi \in \mu, X \in \mu$ and for all supra α - open subset of Y is supra α - open subset of X.

Definition 3.2 A function $f: (X, \mu) \to (Y, \mu^*)$ is called strongly supra α - continuous if the inverse image of every supra α - open subset of *Y* is supra open in *X*.

Definition 3.3 A function $f: (X, \mu) \to (Y, \mu^*)$ is called perfectly supra α - continuous if the inverse image of every supra α - open subset of *Y* is both supra open and supra closed in *X*.

Definition 3.4 A function $f:(X,\mu) \to (Y,\mu^*)$ is called totally supra α - continuous if the inverse image of every supra open set *V* in *Y* is both supra α - closed and supra α - open in *X*.

Theorem 3.5.[2] Every continuous function is supra α - continuous functions .

Proof : Let $(X,\mathcal{T}) \to (Y,\mathcal{T}^*)$ be two topological spaces and μ and μ^* be associated supra topologies with \mathcal{T} and \mathcal{T}^* respectively. Let $f: X \to Y$ be a continuous function. Therefore $f^{-1}(A)$ is an open set in X for each open set A in Y. But, μ is associated with \mathcal{T} . That is $\mathcal{T} \subseteq \mu$. This implies that $f^{-1}(A)$ is a supra open set in X. Since every supra open set is supra α - open set, this implies $f^{-1}(V)$ is supra α - open in X. Hence f is supra α - continuous function.

The converse of the above theorem is not true as shown in the following example .

Example 3.6.[2] Let $X = \{a, b, c\}$ and $\mathcal{T} = \{\varphi, X, \{a, b\}\}$ be a topology on X. The supra topology μ is defined as follows, $\mu = \{\varphi, X, \{a\}, \{a, b\}\}$. Suppose that $f: X \to X$ is a function defined as follows: $f(\{a\}) = b$, $f(\{b\}) = c$, $f(\{c\}) = a$. The inverse image of the open set $\{a, b\}$ is $\{a, c\}$ which is not an open set but it is supra α - open. Then f is supra α - continuous but not continuou.

Theorem 3.7 Every perfectly supra α – continuous function is strongly supra α – continuous function . Proof : Let $f: (X, \mu) \rightarrow (Y, \mu^*)$ be a perfectly supra α – continuous function, Let *V* be supra α – open set in (Y, μ^*) . Since *f* is perfectly supra α – continuous function $f^{-1}(V)$ is both supra open and supra closed in (X, μ) . Therefore *f* is strongly supra α – continuous function .

The converse of the above theorem need not be true. It is shown by the following example .

Example 3.8 Let $X = Y = \{a, b, c\}, \mu = \{\varphi, X, \{a\}, \{c\}, \{a, c\}, \{b, c\}\}$,

 $\mu^* = \{\varphi, Y, \{c\}, \{a, b\}\}. f : (X, \mu) \to (Y, \mu^*) \text{ be the function defined by } f(a) = b, f(b) = a, f(c) = c.$ Here *f* is strongly supra α – continuous but not perfectly supra continuous, since $\{c\}$ is supra α – open in *Y* but $f^{-1}\{c\} = \{c\}$ is supra open set but not supra closed in *X*.

Theorem 3.9 Let $f: (X, \mu) \to (Y, \mu^*)$ be strongly supra α – continuous and $g: (Y, \mu^*) \to (Z, \mu^{**})$ be strongly supra α – continuous then their composition

 $-\alpha - Int(A) = \{ U \subseteq X : U \text{ is supra } \alpha - \text{ open set}$ in X such that $U \subseteq A \}$. clearly supra $-\alpha - cl(A)$ is a supra α - closed set. supra $-\alpha - Int(A)$ is supra α - open set.

Throughout this paper, (X, \mathcal{T}) and (Y, \mathcal{T}^*) will denote topological spaces and we will denote by μ and μ^* to be their associated supra topologies with \mathcal{T} and \mathcal{T}^* respectively such that $\mathcal{T} \subseteq \mu$ and $\mathcal{T}^* \subseteq \mu^*$.

Theorem 2.6. [2] Let (X, μ) be a supra topological space. Then every supra open set in X is supra α -open set in X.

The converse of the theorem (2.6) need not be true as shown by the following example.

Example 2.7. [2] Suppose $X = \{a, b, c\}$ and have the supra topology $\mu = \{\varphi, X, \{a\}\}$. The set $\{a, b\} \notin \mu$, so the set $\{a, b\}$ is not supra open set in (X, μ) . Now since it clealy follows that supra – *Int* [supra – *cl* [supra – *Int* ($\{a, b\}$)]] = supra – *Int* [supra – *cl* ($\{a\}$)] = supra – *Int* [(X)] = X. Therefore it follows that $\{a, b\}$ is a supra α -open set in (X, μ) .

Theorem 2.8. [2] (i). Arbitrary union of supra α -open sets is always a supra α - open set .

(ii). Finite intersection of supra α - open sets may fail to be a supra α - open set .

Proof : (i). Let (X, μ) be a supra topological space. Let $\psi = \{S_i : i \in I\}$ be afamily of supra α - open sets in X. Let $S = \bigcup \psi = \bigcup \{S_i : i \in I\}$. Since for each $i \in I$, S_i is supra α - open set. Hence it follows that $S_i \subseteq$ supra – Int [supra – cl [supra – $Int(S_i)$]] \subseteq supra – Int [supra – cl [supra – Int(S)]], for all $i \in I$. So $S_i \subseteq$ supra – Int [supra – cl [supra – Int(S)]], for all $i \in I$. Therefore clearly it follows that $S = \bigcup_{i \in I} S_i \subseteq$ supra – Int [supra – cl [supra – Int(A)]]. Thus we conclude that S is supra α - open set.

(ii). Let $X = \{a, b, c\}$ and $\mu = \{\varphi, X, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$ be a supra topology on X. Then $\{a, b\}$ and $\{b, c\}$ are supra α -open sets but their intersection $\{b\}$ is not a supra α -open set.

Theorem 2.9. [2] (i). The arbitrary intersection of supra α - closed sets is always supra α - closed.

(ii). A finite union of supra α - closed sets may fail to be supra α - closed set .

Proof: (i) follows from theorem 2.8 (i).

Let

 $X = \{1, 2, 3, 4, 5\}$

 $\mu = \{\varphi, X, \{1,2\}, \{1,2,3\}, \{4\}, \{1,2,4\}, \{3,4\}, \{1,2,3,4\}\}$

and

be a supra topology on X. Then {4,5} and {1,2,5} are supra α - closed sets but their union {1,2,4,5} is a not a supra α - closed set as its complement {3} is not supra α - open set.

Definition 2.10.[2]. A function $f: (X, \mu) \to (Y, \mu^*)$ is called a supra α - continuous function if the inverse image of each supra open set in *Y* is a supra α - open set in *X*.

3. Types of Supra α – Continuity

Definition 3.1 A function $f: (X, \mu) \to (Y, \mu^*)$ is called *i*- supra α - continuous if $f^{-1}(V)$ of each

(ii).

4. Supra α – Compactness

In this section, we present the concept of supra α -compactness and its properties .

Definition 4.1 A collection $\{A_i : i \in I\}$ of supra α open sets in a supra topological space (X, μ) is called a supra α - open cover of a subset *B* of *X* if $B \subseteq \bigcup$ $\{A_i : i \in I\}$ holds.

Definition 4.2 A supra topological space (X, μ) is called supra α - compact if every supra α - open cover of X has a finite sub cover.

Definition 4.3 A subset *B* of a supra topological space (X, μ) is said to be supra α - compact relative to (X, μ) if, for every collection $\{A_i : i \in I\}$ of supra α - open subsets of *X* such that $B \subseteq \bigcup \{A_i : i \in I\}$ there exists a finite subset I_o of *I* such that $B \subseteq \bigcup \{A_i : i \in I\}$ there exists a finite subset I_o of *I* such that $B \subseteq \bigcup \{A_i : i \in I_o\}$.

Definition 4.4 A subset *B* of a supra topological space (X, μ) is said to be supra α - compact if *B* is supra α -compact as a subspace of *X*.

Theorem 4.5 Every supra α -compact space (X, μ) is supra compact.

Proof : Let $\{A_i: i \in I\}$ be a supra open cover of X. Since every supra open set in X is a supra α - open set in X. So $\{A_i: i \in I\}$ is supra α - open cover of (X, μ) . Since (X, μ) is a supra α - compact. Therefore the supra α - open cover $\{A_i: i \in I\}$ of (X, μ) has a finite sub cover say $\{A_i: i = 1, 2, ..., n\}$ for X. Hence (X, μ) is a supra compact space.

Theorem 4.6 Every supra α – closed subset of a supra α – compact space is supra α – compact with respect to *X*.

Proof : Let *A* be a supra α - closed subset of supra topological space (X, μ) . Then $A^c = X - A$ is supra α - open in (X, μ) . Let $S = \{A_i : i \in I\}$ be a supra α - open cover of *A* by supra α - open subsets in (X, μ) . Let $S^* = \{A_i : i \in I\} \cup \{A^c\}$ be a supra α open cover of (X, μ) . That is $X = \bigcup S^* = (\bigcup \{A_i : i \in I\}) \cup A^c$. By hypothesis (X, μ) is supra α compact and hence S^* is reducible to a finite sub cover of (X, μ) say $X = A_1 \cup A_2 \cup ... \cup An \cup A^c$; But *A* and A^c are disjoint. Hence $A \subseteq A_1 \cup A_2 \cup ... \cup An$; $A_i \in S$. Thus a supra α - open cover *S* of *A* contains a finite sub cover. Hence *A* is supra α - compact relative to (X, μ) .

Theorem 4.7 A supra α - continuous image of a supra α -compact space is supra compact.

Proof : Let $f:(X,\mu) \to (Y,\mu^*)$ be a supra α continuous map from a supra α - compact space (X,μ) onto a supra topological space (Y,μ^*) . Let $\{A_i: i \in I\}$ be a supra open cover of (Y,μ^*) . Then $\{f^{-1}(A_i): i \in I\}$ is a supra α - open cover of (X,μ) , as f is supra α - continuous. Since (X,μ) is supra α - compact, the supra α - open cover of $(X,\mu), \{f^{-1}(A_i): i \in I\}$ has a finite sub cover say $\{f^{-1}(A_i): i = 1, 2, ..., n\}$. Therefore $X = \cup$ $\{f^{-1}(A_i): i = 1, 2, ..., n\}$, which implies $f(X) = \cup$ $\{A_i: i = 1, 2, ..., n\}$, then $Y = \cup \{A_i: i = 1, 2, ..., n\}$ is a finite sub $gof: (X, \mu) \to (Z, \mu^{**})$ is strongly supra α – continuous function.

Proof : Let V be supra α - open set in (Z, μ^{**}) . Since g is strongly α - continuous, $g^{-1}(V)$ is supra open in (Y, μ^*) . We know that every supra open set is supra α - open set, $g^{-1}(V)$ is supra α - open in (Y,μ^*) . Since f is strongly α - continuous, $f^{-1}(g^{-1}(V))$ is supra open in (X,μ) , implies (gof)(V) is supra open in (X,μ) . Therefore aof is strongly α - continuous.

Example 3.10 Let $X = Y = Z = \{a, b, c\}, \mu = \{\varphi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, c\}\}, \mu^* = \{\varphi, Y, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}, \dots, \mu^{**} = \{\varphi, Z, \{a, b\}, \{b, c\}\}, f: (X, \mu) \rightarrow (Y, \mu^*)$ be the function defined by $f(a) = b, f(b) = a, f(c) = c. g: (Y, \mu^*) \rightarrow (Z, \mu^{**})$ be a function defined by g(a) = c, g(b) = b, g(c) = a. Here f and g are strongly supra α – continuous and gof is supra open in (X, μ) . Then gof is strongly supra α – continuous function .

Theorem 3.11 If a function $f: (X, \mu) \to (Y, \mu^*)$ a strongly supra α – continuous then it is *i*– supra α – continuous but not conversely.

Proof : Let $f:(X,\mu) \to (Y,\mu^*)$ be strongly supra α – continuous function. Let *G* be a supra α – open set in (Y,μ^*) . Since *f* is strongly supra α – continuous, $f^{-1}(G)$ is supra open in (X,μ) . Since every supra open set is supra α – open. So every supra closed set is supra α – closed set, $f^{-1}(G)$ is α – open in (X,μ) . Hence *f* is *i*- supra α – continuous.

The converse of the above theorem need not be true as seen from the following example .

Example 3.12 Let $X = \{a, b, c\}, Y = \{1, 2, 3\}, \mu = \{\varphi, X, \{a\}\}$ and $\mu^* = \{\varphi, Y, \{1\}, \{1, 2\}\}$. Let $f: (X, \mu) \rightarrow (Y, \mu^*)$ be a function defined by f(a) = 1, f(b) = 2 and f(c) = 3. Then f is i- supra α -continuous but not strongly supra α - continuous, since for the supra α - open set $\{1, 2\}$ in Y. $f^{-1}(\{1, 2\}) = \{a, b\}$ is not supra open in X.

Theorem 3.13 If a function $f: (X, \mu) \to (Y, \mu^*)$ is perfectly supra α – continuous then it is *i*– supra α – continuous but not conversely.

Proof : Let $f:(X,\mu) \to (Y,\mu^*)$ be perfectly supra α – continuous function. Let *G* be a supra α – open set in (Y, μ^*) . Since *f* is perfectly supra α – continuous, $f^{-1}(G)$ is both supra open and supra closed in (X,μ) . "Since every supra open set is supra α – open set and so $f^{-1}(G)$ is supra α – open in (X,μ) . Hence f is *i*- supra α - continuous .

The converse of the above theorem need not be true as seen from the following example .

Example 3.14 Let $X = \{a, b, c\}$, $Y = \{1, 2, 3\}$, $\mu = \{\varphi, X, \{a\}\}$ and $\mu^* = \{\varphi, Y, \{1\}, \{1, 2\}\}$. Let $f: (X, \mu) \rightarrow (Y, \mu^*)$ be a function defined by f(a) = 1, f(b)2, and f(c) = 3. Then f is i- supra α - continuous but not perfectly supra α - continuous, since for the supra α - open set $\{1, 2\}$ in Y, $f^{-1}(\{1, 2\}) = \{a, b\}$ is not both supra open and supra closed in X.

 $\{(X - A_i) : i \in I\}$ of X has a finite sub cover say $\{(X - A_i) : i = 1, 2, ..., n\}$. This implies that $X = \bigcup$ $\{(X - A_i) : i = 1, 2, ..., n\}$, which implies X = X - I { $A_i : i = 1, 2, ..., n$ }, which implies X - X = I { $A_i : i = 1, 2, ..., n$ }, and which implies $\varphi = I$ { $A_i : i = 1, 2, ..., n$ }. This disproves the assumption. Hence I { $A_i : i \in I$ } $\neq \varphi$.

Conversely, suppose (X, μ) is not supra α – compact. Then there exist a supra α – open cover of (X, μ) say $\{G_i : i \in I\}$ having no finite sub cover. This implies that for any finite subfamily { G_i : i = 1, 2, ..., n } of $\{G_i : i \in I\}$, we have $\cup \{G_i : i = 1, 2, ..., n\} \neq X$, implies $X - (\cup \{G_i : i = 1, 2, \dots, n\}) \neq$ which X - X, hence $I\{X - G_i : i = 1, 2, ..., n\} \neq \varphi$. Therefore the family $\{X - G_i : i \in I\}$ of supra α – closed sets has a finite intersection property. Then by assumption $I \{ X - G_i : i \in I \} \neq \varphi$, which implies $X - (\cup \{G_i : i \in I\}) \neq \varphi$, so that $\cup \{G_i : i \in I\}$ $I \} \neq X$. This implies that $\{G_i : i \in I\}$ is not a cover of (X, μ) . This disproves the fact that $\{G_i : i \in I\}$ is a cover for (X, μ) . Therefore any supra α – open cover { $G_i : i \in I$ } of (X, μ) has a finite sub cover $\{G_i : i = 1, 2, ..., n\}$. Hence (X, μ) is supra α – compact.

Theorem 4.12 Let $f: (X, \mu) \to (Y, \mu^*)$ is *i*- supra α - continuous and a subset *B* of *X* is supra α - compact relative to *X*. Then f(B) is supra α - compact relative to *Y*.

Proof : Let $\{A_i: i \in I\}$ be a cover of f(B) by supra α - open subsets of Y. Since f is i- supra α continuous. Then $\{f^{-1}(A_i): i \in I\}$ is a cover of B by supra α - open subsets of X. Since B is
supra α - compact relative to X, so $\{f^{-1}(A_i): i \in I\}$ has a finite subcover say $\{f^{-1}(A_1), f^{-1}(A_2), \dots, f^{-1}(A_n)\}$ for B. Then it implies that $\{A_i: i = 1, 2, \dots, n\}$ is a finite subcover of $\{A_i: i \in I\}$ for f(B). So f(B) is supra α - compact relative to Y.

5. Countably Supra α – Compactness

In this section, we present the concept of countably supra α – compactness and its properties .

Definition 5.1.[8] A supra topological space (X, μ) is said to be countably supra compact if every countable supra open cover of (X, μ) has a finite subcover.

Definition 5.2 A supra topological space (X, μ) is said to be countably supra α – compact if every countable supra α – open cover of X has a finite subcover.

Theorem 5.3 If (X, μ) is a countably supra α – compact space, then (X, μ) is countably supra compact.

Proof : Let (X, μ) be a countubly supra α – compact . Let $\{A_i : i \in I\}$ be a countable supra open cover of (X, μ) . Since every supra open set in X is always supra α – open set in X . So $\{A_i : i \in I\}$ is a countable supra α – open cover of (X, μ) . Since (X, μ) is countable supra α – compact, so the countable supra α – open cover $\{A_i : i \in I\}$

cover of $\{A_i : i \in I\}$ for (Y, μ^*) . Hence (Y, μ^*) is supra compact.

Theorem 4.8 Let $f: (X, \mu) \to (Y, \mu^*)$ is strongly supra α - continuous map from a supra compact space (X, μ) onto a supra topological space (Y, μ^*) , then (Y, μ^*) is supra α - compact.

Proof : Let { $A_i : i \in I$ } be a supra α - open cover of (Y, μ^*) . Then { $f^{-1}(A_i) : i \in I$ } is a supra open cover of (X, μ) , since f is strongly supra α - continuous. Since (X, μ) is supra compact, the supra open cover { $f^{-1}(A_i) : i \in I$ } of (X, μ) has a finite sub cover say { $f^{-1}(A_i) : i = 1, 2, ..., n$ }. Therefore $X = \bigcup \{f^{-1}(A_i) : i = 1, 2, ..., n\}$, which implies $f(X) = \bigcup \{A_i : i = 1, 2, ..., n\}$, so that $Y = \bigcup \{A_i : i = 1, 2, ..., n\}$ is a finite sub cover of { $A_i : i \in I$ } for (Y, μ^*) . Hence (Y, μ^*) is supra α - compact.

Theorem 4.9 Let $f: (X, \mu) \to (Y, \mu^*)$ is perfectly supra α – continuous map from a supra compact space (X, μ) onto a supra topological space (Y, μ^*) , then (Y, μ^*) is supra α – compact.

Proof : Let { $A_i : i \in I$ } be a supra α - open cover of (Y,μ^*) . Then { $f^{-1}(A_i) : i \in I$ } is a supra open cover of (X,μ) , since f is perfectly supra α continuous . Since (X,μ) is supra compact, the supra open cover { $f^{-1}(A_i) : i \in I$ } of (X,μ) has a finite subcover say { $f^{-1}(A_i) : i =$ 1,2,...,n} . Therefore $X = \bigcup \{f^{-1}(A_i) : i =$ $1,2,...,n\}$, which implies $f(X) = \bigcup \{A_i : i =$

1,2,...,n}, so that $Y = \bigcup \{A_i : i = 1,2,...,n\}$. That is $\{A_1, A_2, ..., An\}$ is a finite subcover of $\{A_i : i \in I\}$ for (Y, μ^*) . Hence (Y, μ^*) is supra α - compact.

Theorem 4.10 Let $f: (X, \mu) \to (Y, \mu^*)$ is *i*- supra α - continuous from a supra α - compact space (X, μ) onto a supra topological space (Y, μ^*) , then (Y, μ^*) is supra α - compact.

Proof : Let $\{A_i : i \in I\}$ be a supra α - open cover of (Y,μ^*) . Then $\{f^{-1}(A_i) : i \in I\}$ is a supra α open cover of (X,μ) , since f is i- supra α continuous. Since (X,μ) is supra α - compact, the supra α - open cover $\{f^{-1}(A_i) : i \in I\}$ of (X,μ) has a finite sub cover say $\{f^{-1}(A_i) : i =$ $1,2,\ldots,n\}$. Therefore $X = \bigcup \{f^{-1}(A_i) : i =$ $1,2,\ldots,n\}$, which implies $f(X) = \bigcup \{A_i : i =$ $1,2,\ldots,n\}$, so that $Y = \bigcup \{A_i : i =$ $1,2,\ldots,n\}$. That is $\{A_1, A_2, \ldots, An\}$ is a finite subcover of $\{A_i : i \in I\}$ for (Y,μ^*) . Hence (Y,μ^*) is supra α - compact.

Theorem 4.11 A supra topological space (X, μ) is supra α – compact if and only if every family of supra α – closed sets of (X, μ) having finite intersection property has a non-empty intersection.

Proof : Suppose (X, μ) is supra α – compact, Let $\{A_i : i \in I\}$ be a family of supra α – closed sets with finite intersection property . Suppose $I_{i \in I} A_i = \varphi$, then $X - I(\{A_i : i \in I\}) = X$. This implies $\cup \{(X - A_i) : i \in I\} = X$. Thus $\{(X - A_i) : i \in I\}$ is a supra α – open cover of (X, μ) . Then as (X, μ) is supra α – compact, the supra α – open cover

compact space (X, μ) onto a supra topological space (Y, μ^*) , then (Y, μ^*) is countably supra α – compact. Proof: Let $\{A_i: i \in I\}$ be a countable supra α – open cover of (Y, μ^*) . Since f is perfectly supra α – continuous map, $\{f^{-1}(A_i): i \in I\}$ is countable supra open cover and countable supra closed cover of (X, μ) . Again since (X, μ) is countably supra compact space the countable supra open cover $\{f^{-1}(A_i): i \in I\}$ of (X, μ) has a finite subcover $\{f^{-1}(A_i): i \in I\}$ of (X, μ) has a finite subcover $\{f^{-1}(A_i): i \in I\}$ of (X, μ) has a finite subcover $\{f^{-1}(A_i): i \in I\}$ of (X, μ) has a finite subcover $\{f^{-1}(A_i): i \in I\}$ of (X, μ) has a finite subcover $\{f^{-1}(A_i): i \in I\}$ of (X, μ) has a finite subcover $\{f^{-1}(A_i), which$ implies $f(X) = \bigcup_{i=1}^n (A_i)$. Then $Y = \bigcup_{i=1}^n (A_i)$ is finite sub cover of $\{A_i: i \in I\}$ for (Y, μ^*) . Hence (Y, μ^*) is countably supra α – compact.

Theorem 5.9 If $f: (X, \mu) \to (Y, \mu^*)$ is *i*- supra α - continuous from a countably supra α - compact space (X, μ) onto a supra topological space (Y, μ^*) , then (Y, μ^*) is countably supra α - compact.

Proof : Let { $A_i: i \in I$ } be a countable supra α - open cover of (Y, μ^*) . Since f is i- supra α - continuous, { $f^{-1}(A_i): i \in I$ } is countable supra α - open cover of (X, μ) . Again since (X, μ) is countably supra α - compact space, the countable supra α - open cover { $f^{-1}(A_i): i \in I$ } of (X, μ) has a finite subcover { $f^{-1}(A_i): i = 1, 2, ..., n$ } . Therefore $X = \bigcup_{i=1}^n f^{-1}(A_i)$, which implies $f(X) = \bigcup_{i=1}^n (A_i)$. Then $Y = \bigcup_{i=1}^n (A_i)$ is finite sub cover of { $A_i: i \in I$ } for (Y, μ^*) . Hence (Y, μ^*) is countably supra α - compact .

6. Supra α – Lindelof Space

In this section, we concentrate on the concept of supra α – Lindelof space and its properties .

Definition 6.1. [8] A supra topological space (X, μ) is said to be supra Lindelof space if every supra open covre of (X, μ) has a countable sub cover .

Definition 6.2 A supra topological space (X, μ) is said to be supra α – Lindelof space if every supra α – open cover of (X, μ) has a countable sub cover .

Theorem 6.3. Every supra α – Lindelof space (*X*, μ) is supra Lindelof space.

Proof : Let (X, μ) be a supra α – Lindelof space . Let $\{A_i: i \in I\}$ be a supra open cover of (X, μ) . Since every supra open set in X is always supra α – open set in X .Therefore $\{A_i: i \in I\}$ is supra α – open cover of (X, μ) . Since (X, μ) is supra α – Lindelof, so the supra α – open cover $\{A_i: i \in I\}$ of (X, μ) has a countable subcover say $\{A_i: i = 1, 2, ..., n\}$ for X. Hence (X, μ) is a supra Lindelof space .

Theorem 6.4. If (X, μ) is supra α – Lindelof space, then (X, \mathcal{T}) is Lindelof space.

Proof : Let $\{A_i: i \in I\}$ be an open cover of X. Since every open set in X being a supra open set in X is also supra α – open set in X. Therefore $\{A_i: i \in I\}$ is a supra α – open cover of (X, μ) . Since (X, μ) is supra α – Lindelof, so the supra α – open cover $\{A_i: i \in I\}$ of (X, μ) has a countable subcover say $\{A_i: i = 1, 2, ..., n\}$ for X. Hence (X, \mathcal{T}) is a Lindelof space.

has a finite sub cover say $\{A_i : i = 1, 2, ..., n\}$ for X. Hence (X, μ) is a countably supra compact space. **Theorem 5.4** If (X, μ) is countably supra compact and every supra α – closed subset of X is supra closed in X, then (X, μ) is countably supra α – compact.

Proof : Let (X, μ) be a countably supra compact space . Let $\{A_i : i \in I\}$ be a countable supra α – open cover of (X, μ) . since every supra α – closed subset of X is supra closed in X. Thus every supra α – open set in X is supra open in X. Therefore $\{A_i : i \in I\}$ is a countable supra open cover of (X, μ) . Since (X, μ) is countably supra compact . So the countable supra open cover $\{A_i : i \in I\}$ of (X, μ) has a finite sub cover say $\{A_i : i = 1, 2, ..., n\}$ for X. Hence (X, μ) is a countably supra α – compact space.

Theorem 5.5. Every supra α – compact space is countably supra α – compact.

Proof : Let (X, μ) be supra α - compact space . Let $\{A_i : i \in I\}$ be a countable supra α - open cover of (X, μ) . Since (X, μ) is supra α - compact, so the supra α - open cover $\{A_i : i \in I\}$ of (X, μ) has a finite sub cover say $\{A_i : i = 1, 2, ..., n\}$ for (X, μ) . Hence (X, μ) is countably supra α - compact space .

Theorem 5.6 If $f: (X, \mu) \to (Y, \mu^*)$ is supra α – continuous map from a countably supra α – compact space (X, μ) onto a supra topological space (Y, μ^*) , then (Y, μ^*) is countably supra compact.

Proof : Let $\{A_i : i \in I\}$ be a countable supra open cover of (Y,μ^*) . Since f is supra α - continuous map, $\{f^{-1}(A_i) : i \in I\}$ is countable supra α - open cover of (X,μ) . Again since (X,μ) is countably supra α - compact space, then $\{f^{-1}(A_i) : i \in I\}$ of (X,μ) has a finite subcover $\{f^{-1}(A_i) : i =$ $1,2,\ldots,n\}$. Therefore $X = \bigcup_{i=1}^n f^{-1}(A_i)$. which implies $f(X) = \bigcup_{i=1}^n (A_i)$. Then $Y = \bigcup_{i=1}^n (A_i)$ is finite subcover of $\{A_i : i \in I\}$ for (Y,μ^*) . (Y,μ^*) is countably supra compact .

Theorem 5.7 If $f:(X,\mu) \to (Y,\mu^*)$ is strongly supra supra α – continuous map from a countably supra compact space (X,μ) onto a supra topological space (Y,μ^*) , then (Y,μ^*) is countable supra α – compact.

Proof : Let { $A_i : i \in I$ } be a countable supra α – open cover of (Y,μ^*) . Since f is strongly supra α – continuous map, { $f^{-1}(A_i) : i \in I$ } is countable supra open cover of (X,μ) . Again since (X,μ) is countable supra compact space, the countable supra open cover { $f^{-1}(A_i) : i \in I$ } of (X,μ) has a finite subcover { $f^{-1}(A_i) : i \in I$ } of (X,μ) has a finite subcover { $f^{-1}(A_i) : i = 1,2,...,n$ } . Therefore $X = \bigcup_{i=1}^n f^{-1}(A_i)$, which implies $f(X) = \bigcup_{i=1}^n (A_i)$. Then $Y = \bigcup_{i=1}^n (A_i)$ is finite subcover of { $A_i : i \in I$ } for (Y,μ^*) . Hence (Y,μ^*) is countably supra α – compact.

Theorem 5.8 If $f: (X, \mu) \to (Y, \mu^*)$ is perfectly supra α – continuous map from a countably supra

 α - Lindelof space, the supra α - open cover $\{f^{-1}(A_i): i \in I\}$ of (X, μ) has a countable subcover $\{f^{-1}(A_i): i = 1, 2, ..., \text{Therefore } X = \bigcup_{i=1}^{n} f^{-1}(A_i)$, which implies $f(X) = \bigcup_{i=1}^{n} (A_i)$. Then $Y = \bigcup_{i=1}^{n} (A_i)$. is a countable sub cover of $\{A_i: i \in I\}$ for (Y, μ^*) . Hence (Y, μ^*) is supra α - Lindelof.

Theorem 6.9 If $f: (X, \mu) \to (Y, \mu^*)$ is perfectly supra α – continuous map from a supra Lindelof space (X, μ) onto a supra topological space (Y, μ^*) , then (Y, μ^*) is supra α – Lindelof.

Proof : Let { $A_i: i \in I$ } be a supra α – open cover of (Y,μ^*) . Since f is perfectly supra α – continuous map, { $f^{-1}(A_i): i \in I$ } is supra open cover and supra closed cover of (X,μ) . Again since (X,μ) is supra Lindelof space, the supra open cover { $f^{-1}(A_i): i \in I$ } of (X,μ) has a countable sub cover { $f^{-1}(A_i): i \in I$ } of (X,μ) has a countable sub cover { $f^{-1}(A_i): i \in I$ } of $(X,\mu) = \bigcup_{i=1}^n (A_i)$. Therefore $X = \bigcup_{i=1}^n f^{-1}(A_i)$, which implies $f(X) = \bigcup_{i=1}^n (A_i)$. Then $Y = \bigcup_{i=1}^n (A_i)$. is a countable sub cover of { $A_i: i \in I$ } for (Y,μ^*) . Hence (Y,μ^*) is supra α – Lindelof.

Theorem 6.10 If (X, μ) is supra α – Lindelof space and countably supra α – compact space, then (X, μ) is supra α – compact space.

Proof: Suppose (X, μ) is supra α – Lindelof space and countably supra α – compact space. Let $\{A_i : i \in I\}$ be a supra α – open cover of (X, μ) . Since (X, μ) is supra α – Lindelof space, $\{A_i : i \in I\}$ has a countable sub cover say $\{A_i : i \in I_o\}$ for some $I_o \subseteq I$ and I_o is countable. Therefore $\{A_i : i \in I_o\}$ is a countable supra α – open cover of (X, μ) . Again, since (X, μ) is countably supra α – compact space $\{A_i : i \in I_o\}$ has a finite sub cover and say $\{A_i : i = 1, 2, ..., n\}$. Therefore $\{A_i : i = 1, 2, ..., n\}$ is a finite sub cover of $\{A_i : i \in I\}$ for (X, μ) . Hence (X, μ) is a supra α – compact space.

Theorem 6.11. If $f: (X, \mu) \to (Y, \mu^*)$ is *i*-supra α continuous and a subset *B* of *X* is supra α – Lindelof relative to *X*, then f(B) is supra α – Lindelof relative to *Y*.

Proof : Let $\{A_i : i \in I\}$ be a cover of f(B) by supra α – open subsets of Y. By hypothesis f is supra α – irresolute and so $\{f^{-1}(A_i) : i \in I\}$ is a cover of B by supra α – open subsets of X. Since B is supra α – Lindelof relative to $X, \{f^{-1}(A_i) : i \in I\}$ has a countable subcover say $\{f^{-1}(A_i) : i \in I_o\}$ for B, where I_o is a countable subset of I. Now $\{A_i : i \in I_o\}$ is a countable subcover of $\{A_i : i \in I\}$ for f(B). So f(B) is supra α – Lindelof relative to Y.

References

[3] Jassim, T.H. (2009). On supra compactness in supra topological spaces. Tikrit Journal of Pure Sciences, **14(3)**:57-69.

[4] Sekar, S.; Jayakumar, P. (2012). On supra I – open sets and supra I – continuous function. Internatinal Journal Scientific and Engineering Research, 3(5):01–03.

Theorem 6.5. Every supra α – compact space is supra α – Lindelof space.

Proof : Let (X, μ) be a supra α – compact space. Let $\{A_i: i \in I\}$ be a supra α – open cover of (X, μ) . Since (X, μ) is supra α – compact space . Then $\{A_i: i \in I\}$ has a finite sub cover say $\{A_i: i = 1, 2, ..., n\}$. Since every finite sub cover is always countable sub cover and therefore $\{A_i: i \in I\}$ is a countable sub cover of $\{A_i: i \in I\}$. Hence (X, μ) is a supra α – Lindelof space .

Theorem 6.6 If $f:(X,\mu) \to (Y,\mu^*)$ is supra α – continuous map from a supra α – Lindelof space (X,μ) onto a supra topological space (Y,μ^*) then (Y,μ^*) is supra Lindelof space.

Proof : Let { $A_i: i \in I$ } be a supra open cover of (Y, μ^*) . Then $\{f^{-1}(A_i) : i \in I\}$ is a supra α – open cover of (X, μ) , as f is supra α – continuous. Since (X, μ) is supra α – Lindelof space, so the supra α – open cover { $f^{-1}(A_i) : i \in I$ } of (X, μ) has a countable sub cover say $\{f^{-1}(A_i) : i \in I\}$ I_o } for some $I_o \subseteq I$ and I_o is countable. Therefore $X = \bigcup \{ f^{-1}(A_i) : i \in I_o \}$, which implies f(X) = $\cup \{A_i : i \in I_o\}$, then $Y = \cup \{A_i : i \in I_o\}$. That is $\{$ $A_i: i \in I_0$ is a countable sub cover of $\{A_i: i \in I\}$ for (Y, μ^*) . Hence (Y, μ^*) is a supra Lindelof space. **Theorem 6.7** If $f: (X, \mu) \to (Y, \mu^*)$ is *i*- supra α continuous from a supra α – Lindelf space (X, μ) onto a supra topological space (Y,μ^*) , then (Y,μ^*) is supra α – Lindelof space.

Proof : Let { $A_i: i \in I$ } be a supra α - open cover of (Y, μ^*) . Then { $f^{-1}(A_i): i \in I$ } is a supra α - open cover of (X, μ) . Since f is i- supra α - continuous . As (X, μ) is supra α - Lindelof space, so the supra α - open cover { $f^{-1}(A_i): i \in I$ } of (X, μ) has a countable sub cover say { $f^{-1}(A_i): i \in I$ } of (X, μ) has a countable sub cover say { $f^{-1}(A_i): i \in I$ } of (X, μ) has a countable sub cover say { $f^{-1}(A_i): i \in I_o$ } for some $I_o \subseteq I$ and I_o is countable. Therefore $X = \bigcup \{ f^{-1}(A_i): i \in I_o \}$, which implies $f(X) = \bigcup \{ A_i: i \in I_o \}$, so that $Y = \bigcup \{ A_i: i \in I_o \}$. That is { $A_i: i \in I_o$ } is a countable sub cover of { $A_i: i \in I_o$ } for (Y, μ^*) . Hence (Y, μ^*) is a supra α - Lindelof space .

Theorem 6.8 If $f: (X, \mu) \to (Y, \mu^*)$ is strongly supra α – continuous map from a supra α – Lindelof space (X, μ) onto a supra topological space (Y, μ^*) , then (Y, μ^*) is supra α – Lindelof.

Proof : Let { A_i : $i \in I$ } be a supra α – open cover of (Y, μ^*) . Since f is strongly supra α – continuous map, { $f^{-1}(A_i) : i \in I$ } is supra open cover of (X, μ) , which implies { $f^{-1}(A_i) : i \in I$ } is supra α – open cover of (X, μ) . Again since (X, μ) is supra

[1] Mashhour, A.S.; Allam, A.A.; Mahmoud, F.S and Khedr, F.H. (1983). On supra topologicl spaces. Indian J.pure and Appl . Math, **4 (14)**:502-510

[2] Devi, R.; Sampathkumar, S. and Caldas, M. (2008). On supra α – open sets and S α – continuous maps. General Mathematics, **16** (2):77–84.

[11] Jassim, T.H.; Abdulqader, Z.T. and Mousa, H. O. (2015). On bi- intuitionstic topological space, Tikrit Journal of Pure Science, **20(4)**:131-136

[12] Jassim, T.H.; Shihab, A.A. and Hameed, S.A. (2015). Anew Types of Contra in Bi-Supra Topological Space, Tikrit Journal of Pure Science, **20(4)**:170-176

[13] Jassim, T.H.; Shihab, A.A. and Zabin, R.A. (2015). Geometry of concircular curvature tensor of Nearly Kahler manifold, Tikrit Journal of Pure Science, **20(4)**:137-141

[14] Jassim, T.H.; Yaseen, S.R. and Abdual Baqi, L.S. (2015). Some Generalized Sets and Mappings in Intuitionistic Topological Spaces, Journal of Al-Qadisiyah for Computer Science and Mathematics, **7(2)**:80-96

[15] Jassim, T.H.; Rasheed, R.O. (2015). On strongly faintly $M - \varphi - i$ – continuous functions in Bi-Supra Topological Space, Tikrit Journal of Pure Science, **20(4)**:161-166

[16] Jassim, T.H. (2009). Strongly irresolute precontinuous functions in intuitionistic fuzzy special Topological spaces, Journal of al-anbar university for pure science, **3(1)**:126-130

[5] Krishnaveni, K.; Vigneshwaran, M. (2017). $bT\mu$ compactness and $bT\mu$ – connectedness in supra topological spaces. European Journal of Pure and Applied Mathematics, **10**(2):323–334 ISSN 1307– 5543–<u>www.ejpam.com</u>.

[6] Mustafa, J.M. (2013). supra b – compact and supra b – Lindelof spaces. Journal of Mathematics and Applications, **36**:79 -83.

[7] Latif, R.M. (2018). Supra–I–compactness and supra–I–connectedness. Journal of Mathematics Trends and Technology(IJMTT). **35**(7):525-538

[8] Vidyarani, L.; Vigneshwaran, M. (2015). supra N– compact and supra N–connected in supra topological spaces, Global Journal of pure and Applied Mathematics, **11(4)**:2265–2277.

[9] Jassim, T.H.; Zaben, R.H. (2015). On ideal supra topological space, Tikrit Journal of Pure Science, **20(4)**:152-160

[10] Jassim, T.H.; Rasheed, R.O. and Amen, S.G. (2017). 3a\ quasi $M - \varphi - ii$ -continuous functions in bi- Supra topological spaces, Kirkuk University Journal / Scientific Studies (KUJSS), **12(4)**:11-24

حول التراص الفوقى من النمط a في الفضاءات التبولوجية الفوقية

طه حميد جاسم , غفران على عباس

قسم الرياضيات , كلية علوم الحاسوب والرياضيات, جامعة تكريت , تكريت , العراق

الملخص

الغرض من البحث هو تقديم مفهوم الدالة المستمرة الفوقية بقوة من النمط α والدالة المستمرة الفوقية التامة من النمط α والدالة المستمرة الفوقية الكلية من النمط α . قد درست العلاقات بين هذه الدوال وتحرينا بعض خواصها. وكذلك قدمنا مفهوم الفضاء المرصوص الفوقي من النمط α والفضاء الندلوفي الفوقي من النمط α والفضاءات المرصوصة المعدودة الفوقية من النمط α وبعض الخصائص الأساسية قد برهنت. وأخيرا, العلاقات بين الدوال المفتوحة الفوقية من النمط α والدوال المستمرة الفوقية من النمط α وبعض الخصائص الأساسية قد النصاء العلاقات بين الدوال المفتوحة الفوقية من النمط α والدوال المستمرة الفوقية من النمط α وبعض الخصائص الأساسية المستمرة وأخيرا, العلاقات بين الدوال المفتوحة الفوقية من النمط α والدوال المستمرة الفوقية من النمط α والدوال المحيرة الفوقية من النمط α في الفضاءات