Prevalence of Helicobacter pylori infected in the Kirkuk native population and associated with serum ferritin and Iron levels/Iraq

Nadia M. Mohammad¹, Sabah M. Salih²

¹ Department of Biology, College of Education for Pure Sciences, Tikrit University, Tikrit, Iraq
² College of Nursing, University of Kirkuk, Kirkuk, Iraq

ABSTRACT

An association of Helicobacter pylori and iron deficiency (ID) was conducted in Kirkuk city on 176 patients attending private laboratories in Kirkuk for the period from 1/8/2016 to 1/4/2017. Blood sampling and serum ferritin were performed in 176 patients suffering from digestive problems and disorder, 120 of them with H. pylori, serum ferritin and iron were measured by ELISA and direct enzymatic method techniques respectively. The result showed that 67 (55.83%) of the patients have serum ferritin concentrations below the normal range indicating iron deficiency, 69 (57.5%) of the patients have iron concentrations below the normal range indicating iron deficiency.

Keywords: Iron deficiency, H. pylori infection, ferritin.

ARTICLE INFO.

Article history:
- Received: 2/9/2018
- Accepted: 9/10/2018
- Available online: / / 2019

Materials and methods
The patients were referred to private laboratories in Kirkuk city in period from 1/8/2016 to 30/4/2017. H. pylori infection was diagnosed serologically by using anti-H. pylori IgG, antibodies Elisa kit (CALBIOTECH IgG, USA). Totally 176 patients 120 were seropositive H. pylori-IgG and 56 anti-H. pylori-IgG seronegative. Some factors such as age, sex, smoking, drug treatment and chronic diseases (gastric lymphoma, duodenal ulcers or carcinoma) were recorded for all of the patients.

Sample Collections
from the subjects 5 ml venous blood was obtained. All samples were dispensed into dry glass test tubes for clotting and retraction to take place. Sera was obtained after samples were centrifuged at 2000 g for ten minutes and stored at -20°C until assayed for laboratory investigations. Ferritin was detected by ELISA., this assay system utilizes one rabbit anti-ferritin antibody for solid phase immobilization and a mouse monoclonal anti-ferritin antibody in the antibody-enzyme (horseradish peroxidase) conjugate solution. The normal range of related to decreased acid secretion, increased iron loss from microbleeding, and utilization by bacteria. The purpose of this study is to investigate the infection with Helicobacter pylori gastritis association with iron-deficiency (ID) in some Kirkuk patients.

Sample Collections
from the subjects 5 ml venous blood was obtained. All samples were dispensed into dry glass test tubes for clotting and retraction to take place. Sera was obtained after samples were centrifuged at 2000 g for ten minutes and stored at -20°C until assayed for laboratory investigations. Ferritin was detected by ELISA., this assay system utilizes one rabbit anti-ferritin antibody for solid phase immobilization and a mouse monoclonal anti-ferritin antibody in the antibody-enzyme (horseradish peroxidase) conjugate solution. The normal range of related to decreased acid secretion, increased iron loss from microbleeding, and utilization by bacteria. The purpose of this study is to investigate the infection with Helicobacter pylori gastritis association with iron-deficiency (ID) in some Kirkuk patients.

Sample Collections
from the subjects 5 ml venous blood was obtained. All samples were dispensed into dry glass test tubes for clotting and retraction to take place. Sera was obtained after samples were centrifuged at 2000 g for ten minutes and stored at -20°C until assayed for laboratory investigations. Ferritin was detected by ELISA., this assay system utilizes one rabbit anti-ferritin antibody for solid phase immobilization and a mouse monoclonal anti-ferritin antibody in the antibody-enzyme (horseradish peroxidase) conjugate solution. The normal range of related to decreased acid secretion, increased iron loss from microbleeding, and utilization by bacteria. The purpose of this study is to investigate the infection with Helicobacter pylori gastritis association with iron-deficiency (ID) in some Kirkuk patients.
ferritin as recommended by BioCheck is 20-250 ng/ml for male and 10-120 ng/ml for female, serum iron concentration was investigated by direct enzymatic method., after dissociation of iron-transferring bound in acid medium, ascorbic acid reduces Fe+3 iron into Fe+2 ion. The absorbance measured at 600 nm is directly proportional to the amount of iron in the specimen. The normal range of iron as recommended by BIOLABO is 11.6-31.1 μmol/L for male and 9.0-30.4 μmol/L for female.

Statistical Analysis
All values were expressed as mean ± SD. Statistical analyses were done using the Student’s t-test to assess differences among patients. The level of significance was set at P <0.05.

Results
A total of 120 patients (79 women and 41 men) with infected H. pylori were enrolled in this study. Mean ±SD age of the 79 female/male patients was 44.2±14.4/45.4±14.9 years, range 15-74/18-73 years, respectively. Table 1 shows the lifestyle and clinical characteristics of subjects (women and men).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Men (n=41)</th>
<th>Women (n=79)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>(18-75)</td>
<td>(15-74)</td>
</tr>
<tr>
<td>Mean ±SD</td>
<td>43.4±14.2</td>
<td>44.2±14.4</td>
</tr>
<tr>
<td>Smoking%</td>
<td>32 (78.04)</td>
<td>11 (13.92)</td>
</tr>
<tr>
<td>Chronic diseases%</td>
<td>15 (36.58)</td>
<td>37 (46.83)</td>
</tr>
</tbody>
</table>

Of the 120 H. pylori patients (67) 55.83%, showed low concentration of ferritin, (69) 57.5% showed low concentration of iron. In general median serum ferritin and iron levels were significantly lower than the normal ranges in H. pylori infected patients than in anti-H. pylori-IgG seronegative as it showed in table 2.3.

Table 2. shows serum concentration of ferritin (ng/ml) according to prevalence of H. pylori under study

<table>
<thead>
<tr>
<th>Serum ferritin conc (ng/ml)</th>
<th>H.Pylori (+ve)</th>
<th>H.pylori (-ve)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low ferritin conc.</td>
<td>67 (55.83)</td>
<td>11 (19.64)</td>
<td>78 (44.31)</td>
</tr>
<tr>
<td>Normal ferritin conc.</td>
<td>53 (44.16)</td>
<td>45 (80.35)</td>
<td>98</td>
</tr>
<tr>
<td>Total</td>
<td>120 (100)</td>
<td>56 (100)</td>
<td>176 (100)</td>
</tr>
</tbody>
</table>

Chi-Square = *20.265 P value = 0.0006

There was no significant difference in median concentrations of both iron and ferritin between women and men.

Table 3. presents serum concentration of iron (μmol/L) according to prevalence of H. pylori under study

<table>
<thead>
<tr>
<th>Serum Iron conc.</th>
<th>H.Pylori (+ve)</th>
<th>H.pylori (-ve)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Iron conc.</td>
<td>69 (57.5)</td>
<td>12 (21.42)</td>
<td>81 (46.02)</td>
</tr>
<tr>
<td>Normal Iron conc.</td>
<td>51 (42.5)</td>
<td>44 (78.57)</td>
<td>95 (53.97)</td>
</tr>
<tr>
<td>Total</td>
<td>120 (100)</td>
<td>56 (100)</td>
<td>176 (100)</td>
</tr>
</tbody>
</table>

Chi-Square = **19.999 P value = 0.0005

Discussion
Iron deficiency and IDA are conditions with important health consequences regarding reproduction, work performance, immunity and possibly cognitive development; it is a simple result of an imbalance between absorption and iron loss. It is unclear why some patients with H. pylori infection develop IDA.

Postulates include decreased iron absorption secondary to atrophic gastritis, reduced gastric acid production, decreased ascorbic acid concentration in stomach, and uptake of iron by bacteria. [6,9] as Helicobacter pylori associated gastritis has emerged as a cause of IDA that is unresponsive to iron therapy.[3,10] Laboratory Investigations: Ferritin is a very good marker for iron deficiency but iron is measured too as another indicator for iron deficiency due to ferritin which is an acute phase protein, it can be elevated in inflammation conditions that a normal serum ferritin may not always exclude iron deficiency in this results the proposal that Helicobacter pylori infection is associated with ID, this proposal is achieved by many studies with different explanation of the mechanisms abaout Helicobacter. pylori affect iron absorbance. Baysoy, et al. have investigated Helicobacter pylori related-changes in gastric physiology and histology. They have reported that H. pylori infection is associated with low serum iron levels and with a decrease in gastric juice ascorbic acid concentration.[10] Capurso, et al. has suggested that H. pylori infection may be the cause of atrophic gastritis leading to aclorhydria and gastric hypoaclorhydria.[11] A study in Alaska including 2080 adult patients, where there is a high prevalence of H. pylori, have suggested a significant correlation between H. pylori–IgG positivity and low serum ferritin levels. [12] They have suggested that ulceration causes bleeding which leads to IDA and this result was confirmed in this study. The blood loss in chronic gastritis, and bleeding from duodenal or gastric ulcers related to H pylori infection, which plays an important role in the development of iron deficiency in adults. In response to Helicobacter. pylori chronic gastric inflammation, the epithelial cells in the mucosa are damaged, leading to detachment and apoptosis. In the absence of bleeding lesions, the possible mechanisms by which.
Helicobacter pylori is involved in the development of IDA remain not understanding, studies suggest that the growth and proliferation of Helicobacter pylori requires iron from the host and that some Helicobacter, pylori strains have an ability to interfere with iron metabolism by binding iron to their outer membrane proteins.[13]. Moreover, Boggs reviewed that eradication of Helicobacter, pylori with a triple therapy consisting of clarithromycin, amoxicillin and lansoprazole for deficiency. Role of Helicobacter pylori gastritis. JAMA; 277:1135–9.

References