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ABSTRACT 

In the current study the researchers  have been introduced a modern 

kind of soft separation axioms which is named i-soft separation axioms 

by using the concept of soft i-open sets [17] in soft topological spaces, 

the relations among i-soft separation axioms and many examples about it 

are investigated. Further, they found that soft separation axioms imply i-

soft separation axioms, but, the converses may not be true. Also, many 

theorems have been proved which are clarified the properties of i-soft 

separation axioms. 

 

 

1. Introduction and Preliminaries 

In 1964(see [1], [2]) ( nT spaces, n=0,1,2,3,4,5) for 

open sets by using (Klomogorov (respect. Frechet, 

Hausdorrf, Vietors, Urysohn and Titus axioms)) have 

been studied. In 1963, 1965 (see [3], [4]), the 

concepts of semi-open sets,  open sets have been 

introduced. The concept of soft sets and its properties 

has been introduced by Molodtsov and many other 

researchers in 1999, 2003, 2007, 2009, 2011, 2012 

and 2015(see [5-12]. Chen, B. in 2013(see [13]) and 

Kannan, K. in 2012 (see [14]) introduced the concept 

of semi-open sets and soft  open sets individually 

in soft topological spaces. Askandar, S. W. In 2012 

(see [15]) and in 2016 (see [16]) have introduced the 

concept of i-open sets in ordinary topological spaces 

and i-separation axioms  depends on i-open sets as      

(
niT spaces, n=0, 1, 2, 3, 4, 5, 6). The purpose of this 

work is to introduce i-soft separation axioms by using 

soft i-open sets (see [17]). Throughout this work

 E,,X  ,  )X(IOS,X E
and  H,,Y  always are soft 

topological spaces STS (where IOS (XE) is a family of 

all soft i-open sets  in X) and we denotes by SSs to the 

soft sets,
 )E,Kint(  and )E,K(Cl denotes soft 

interior and soft closure of the SS )E,K( Individually. 

The members of  are called soft open sets SOS (XE) 

and its complements are called soft closed sets SCS 

(XE). ∅𝐸 , 𝑋𝐸 Denote soft null and soft absolute sets. 

This paper comprises of four segments. In the second 

one soft i-open set and its properties in STSs have 

been introduced. In the third segment the definitions 

of i-soft separation axioms spaces and the relations 

among them have been studied. Finally, in the fourth 

one, some important theorems have been proved to 

discuss the properties of this new kind of soft 

separation axioms spaces (see "Theorems 4.1, 4.2, 

4.3, 4.4 and Theorem 4.5"). 

Definition 1.1: [11]. If (𝐾, 𝐸) is a soft set over 𝑋 

and 𝑥 ∈ 𝑋. It can be said that 𝑥 ∈̃ (𝐾, 𝐸) whether 𝑥 ∈
𝐾(𝑒), ∀𝑒 ∈ 𝐸. 

Definition 1.2: [11]. Consider 𝑥 ∈ 𝑋, as a soft set 

(𝑥, 𝐸)  over 𝑋 , wherein 𝑥𝐸(𝑒) = {𝑥}, ∀𝑒 ∈ 𝐸 is 

denoted by 𝑥𝐸  and was addressed as the singleton 

consider on soft point. 

Definition 1.3: [11]. A soft set (𝐾, 𝐸) ∈̃ 𝑆𝑆(𝑋𝐸) 

named as a soft point in𝑋𝐸 is indicated by 𝐾(𝑒) = 𝜙 

∀𝑒𝐶 ∈ 𝐸 − {𝑒}, and 𝑒𝐾 if ∃𝑥 ∈ 𝑋 and 𝑒 ∈ 𝐸, 𝐾(𝑒) ≠
𝜙.The soft point 𝑒𝐾  belongs to the soft set (𝐺, 𝐸), 

𝑒𝐾 ∈̃ (𝐺, 𝐸), whether regarding the factor 𝑒 ∈ 𝐸, 

𝑒𝐾 ⊆ 𝐺(𝑒).The group of 𝑋 whole soft points is 

indicated by 𝑆𝑃(𝑋). 

Definition 1.4: [12]. The two "soft sets" (𝐺, 𝐴)and 

(𝐻, 𝐴) in 𝑆𝑆(𝑋𝐴) are said to be soft disjoint, written

AA)(H, 
~
 A)(G,  , if AeH(e)  (e)G,  . 

http://tjps.tu.edu.iq/index.php/j
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Definition 1.5: [12]. Two soft points
 HG e,e in 𝑋𝐴 

are 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡, written 𝑒𝐺 ≠ 𝑒𝐻, if there corresponding 

SSs (𝐺, 𝐴), (𝐻, 𝐴) are soft disjoint. 
Definition 1.6: [18]. Let E),(X,  be STS 

and (𝐹, 𝐸) ∈̃ 𝑆𝑆(𝑋𝐸). Define 

𝜏(𝐹,𝐸) = {(𝐺, 𝐸) ∩̃ (𝐹, 𝐸): (𝐺, 𝐸) ∈̃ 𝜏 which 

considered soft topology on (𝐹, 𝐸). The soft topology 

is called soft relative topology of 𝜏 on (𝐹, 𝐸) and 

((𝐹, 𝐸), 𝜏(𝐹,𝐸))  is named soft subspace of E),(X, . 

2. Soft i-Open Sets in Soft Topological Spaces. 

Definition 2.1: Consider E)(F,  as a soft set in

E),(X, , therefore, E)(F,  is said to be, 

1. [17]. setopeniSoft   (SIOS), whether there is a 

soft open set X,E)(G,   where

E))(G, 
~
 E)Cl((F,~E)(F,  . 

2. [5]. setopensemiSoft   (SSOS) if: 

a. E))Cl(Int(F,~E)(F,  . 

b. Whether soft open set exist
 X,E)(G,   

where(𝐺, 𝐸) ⊆̃ (𝐹, 𝐸) ⊆̃ 𝐶𝑙(𝐺, 𝐸).  

3. [10], [9]. setopenSoft   (S𝛼OS) 

if (𝐹, 𝐸) ⊆̃ 𝐼𝑛𝑡(𝐶𝑙(𝐼𝑛𝑡(𝐹, 𝐸))). 

The complement of SIOS, (resp., SSOS and S𝛼OS) 

known as soft i − closed set (SICS) [17] (resp., 

soft semi − closed set (SSCS) and soft α −
closed set (S𝛼CS)). The intersection of all soft i −
closed sets (SICSs) over  𝑋 containing(𝐹, 𝐸) is called 

soft i − closure of (𝐹, 𝐸) and denoted by  𝑖 −

𝐶𝑙(𝐹, 𝐸)[17]. The union of whole (SIOSs) over X  

contained in (𝐹, 𝐸) known as soft i − interior of 

(𝐹, 𝐸) and indicated by 𝑖 − 𝐼𝑛𝑡(𝐹, 𝐸)[17]. The group 

of whole SOSs (resp., SIOSs, SSOSs and 

S𝛼OSs),(SCSs, SICSs, SSCSs and S𝛼CSs) in E),(X,  

are indicated by SOS(XE)(resp. SIOS(XE), SSOS(XE), 

S𝛼OS(XE), SCS(XE), SICS(XE), SSCS(XE) and 

S𝛼CS(XE)). 

Example2.1: Consider }6,4,2{X  , 𝜏 =

{𝜙𝐸 , (𝐹1, 𝐸), (𝐹2, 𝐸), 𝑋𝐸}, }l,m{E  . 

Where(𝐹1, 𝐸) = {(𝑚, {2}), (𝑙, {2})}, (𝐹2, 𝐸) =
{(𝑚, {2,6}), (𝑙, {2,6})}.  

Consider, "(𝐹, 𝐸) = {(𝑚, {2,4}), (𝑙, {2,4})}”. 

𝑆𝑂𝑆(𝑋𝐸) = {∅, (𝐹1, 𝐸), (𝐹2, 𝐸), 𝑋𝐸}, 
𝑆𝐶𝑆(𝑋𝐸) =  {𝑋𝐸 , (𝐹1, 𝐸)𝑐

= {(𝑚, {4,6}), (𝑙, {4,6})}, (𝐹2, 𝐸)𝑐

= {(𝑚, {4}), (𝑙, {4})}, 𝜙𝐸  } 

𝑆𝐼𝑂𝑆(𝑋𝐸) = {(𝜙𝐸 , (𝐹1, 𝐸), (𝐹2, 𝐸), 

{(𝑚, {6}), (𝑙, {6})}, {(𝑚, {2,4}), (𝑙, {2,4})}, 

{(𝑚, {4,6}), (𝑙, {4,6})}, 𝑋𝐸}. Apparently, (𝐹, 𝐸) is 

SIOS due to the existence SOS (𝐺, 𝐸) =  (𝐹1, 𝐸) 

where (𝐹, 𝐸) ⊆̃ 𝐶𝑙((𝐹, 𝐸) ∩̃ (𝐺, 𝐸)), yet (𝐹, 𝐸)is not 

SOS. 

Theorem2.1: [17] Each "soft open set"(SOS) is a 

"soft i-open"(SIOS). 

Theorem2.2: [17] Each "soft semi-open set"(SSOS) 

is a "soft i-open"(SIOS). 

Definition2.2: A SIOS(𝐺, 𝐸) in (𝑋, 𝜏, 𝐸) considers 

odneighborhoopenisoft  of 𝑥 ∈ 𝑋 if 𝑥 ∈

𝐺(𝑒) ∀𝑒 ∈ 𝐸. 
Definition2.3: Let (𝑊, 𝑍) be a SS in (𝑋, 𝜏, 𝑍). A 

point 𝑥 ∈ 𝑋 considers intpoitlimi  of (𝑊, 𝑍)  if 

for each odneighborhoopenisoft   (𝑁, 𝑍) of 𝑥, 

(𝑊, 𝑍)  ∩̃ (𝑁, 𝑍)\̃{𝑥} ≠ ∅E. In other words, a point 

𝑥 ∈ 𝑋 is intpoitlimi   of (𝑊, 𝑍)if for each SIOS 

(𝑁, 𝑍) containing 𝑥, (𝑊, 𝑍)  ∩̃ (𝑁, 𝑍)\̃{𝑥} ≠ ∅E. The 

set of whole sintpoitlimi   of (𝑊, 𝑍) is called
 

setderivedi  of (𝑊, 𝑍) and designated 

by 𝑖𝐷(𝑊, 𝑍). Obviously, a point 𝑥 ∈ 𝑋 is not 

consider as intpoitlimi   of (𝑊, 𝑍) if there is a 

SIOS (𝑁, 𝑍) containing 𝑥 wherein 

(𝑊, 𝑍)  ∩̃ (𝑁, 𝑍)\̃{𝑥} = ∅E. A SS (𝑊, 𝑍) has been 

considered as SICS if 𝑖𝐷(𝑊, 𝑍)   ⊑̃ (𝑊, 𝑍) Wherein   

𝑖𝐷(𝑊, 𝑍)  ⊑̃ 𝑊(𝑒), ∀𝑒 ∈ 𝑍. 

Theorem2.3: Consider (𝑋, 𝑆𝐼𝑂𝑆(𝑋𝑍)) as STS, for 

SSs (𝐾, 𝑍), (𝐿, 𝑍) in 𝑋, so the next phrases hold: 

i. 𝑖𝐷 (𝐾, 𝑍) ⊆ 𝐷 (𝐾, 𝑍). Where 𝐷 (𝐾, 𝑍) is derived 

set of  (𝐾, 𝑍) 

ii. If (𝐾, 𝑍) ⊆̃ (𝐿, 𝑍), then 𝑖𝐷 (𝐾, 𝑍) ⊆ 𝑖𝐷(𝐿, 𝑍). 

iii. 𝑖𝐷( (𝐾, 𝑍) ∪̃ (𝐿, 𝑍)) = 𝑖𝐷 (𝐾, 𝑍) ∪ 𝑖𝐷(𝐿, 𝑍). 

iv. 𝑖𝐷( (𝐾, 𝑍) ∩̃ (𝐿, 𝑍)) ⊆ 𝑖𝐷 (𝐾, 𝑍)⋂𝑖𝐷(𝐿, 𝑍). 

v. If 𝑥 ∈ 𝑖𝐷 (𝐾, 𝑍) then 𝑥 ∈ 𝑖𝐷( (𝐾, 𝑍)\̃{𝑥}). 

Proof  

i. By "Theorem 2.1", we have 𝑖𝐷(𝐾, 𝑍) ⊆ 𝐷(𝐾, 𝑍). 

ii. Let 𝑥 ∈ 𝑖𝐷(𝐾, 𝑍) then for each SIOS (𝑀, 𝑍) 

containing 𝑥 we get 

 ((𝐾, 𝑍) ∩̃ (𝑀, 𝑍))\̃{𝑥} ≠ ϕ …… (1)  

Since (𝐾, 𝑍) ⊆̃ (𝐿, 𝑍), (𝐾, 𝑍) ∩̃ (𝑀, 𝑍) ⊆

(𝐿, 𝑍), ⋂̃(𝑀, 𝑍)  ((𝐾, 𝑍) ∩̃ (𝑀, 𝑍)) ∖̃ {𝑥} ⊆

((𝐿, 𝑍),∩̃ (𝑀, 𝑍)) ∖̃ {𝑥} ≠ 𝜙. 

From (i) we obtain, ((𝐿, 𝑍),∩̃ (𝑀, 𝑍)) ∖̃ {𝑥} ≠ 𝜙 
 𝑥 ∈ 𝑖𝐷(𝐿, 𝑍),. hence  𝑖𝐷(𝐾, 𝑍) ⊆ 𝑖𝐷(𝐿, 𝑍) . 

iii. Since(𝐾, 𝑍) ⊆̃ (𝐾, 𝑍) ∪̃ (𝐿, 𝑍) 

, (𝐿, 𝑍) ⊆̃ (𝐾, 𝑍) ∪̃ (𝐿, 𝑍), By (ii) we get 𝑖𝐷(𝐾, 𝑍) 

⊆ 𝑖𝐷((𝐾, 𝑍) ∪̃ (𝐿, 𝑍), ), 

𝑖𝐷(𝐿, 𝑍), ⊆ 𝑖𝐷((𝐾, 𝑍) ∪̃ (𝐿, 𝑍), ). 

  𝑖𝐷(𝐾, 𝑍)  ∪ 𝑖𝐷(𝐿, 𝑍), ⊆
𝑖𝐷((𝐾, 𝑍) ∪̃ (𝐿, 𝑍), )……….(*). 

Now consider 𝑥 ∉ 𝑖𝐷(𝐾, 𝑍), 𝑥 ∉ 𝑖𝐷(𝐿, 𝑍), . Then 

there exists two SIOSs )Z,M(),Z,M(
L

x

K

x
 containing 𝑥  

wherein ))Z,M(
~

)Z,K(
K

x
  ∖̃ {𝑥} = 𝜙,

 
))Z,M(

~
)Z,L(

L

x


 ∖̃ {𝑥} = 𝜙. 

 Let )Z,M(
~

)Z,M()Z,M(
L

x

K

x
 . Where )Z,M( is a SIOS, 

(𝑋, 𝐼𝑂𝑆(𝑋𝑍)) is a STS). 

(((𝐾, 𝑍) ∪̃ (𝐿, 𝑍), ) ∩̃ (𝑀, 𝑍)) ∖̃ {𝑥} =

((𝐾, 𝑍) ∩̃ (𝑀, 𝑍)) ∪̃ ((𝐿, 𝑍), ) ∩̃ (𝑀, 𝑍)) ∖̃ {𝑥} 

=(((𝐾, 𝑍) ∩̃ (𝑀, 𝑍)) ∖̃ {𝑥}) ∪̃ (((𝐿, 𝑍), ) ∩̃ (𝑀, 𝑍)) ∖̃ {𝑥}) =

∅ ∪ ∅ = ∅. Hence 𝑥 ∉ 𝑖𝐷((𝐾, 𝑍) ∪̃ (𝐿, 𝑍), )
 𝑖𝐷((𝐾, 𝑍) ∪̃ (𝐿, 𝑍)) ⊆ 𝑖𝐷(𝐾, 𝑍) ∪̃ 𝑖𝐷(𝐿, 𝑍)…............(**)                 

From (*) and (**) we get,  𝑖𝐷 (((𝐾, 𝑍)) ∪̃ (𝐿, 𝑍)) =

𝑖𝐷((𝐾, 𝑍)) ∪̃ 𝑖𝐷(𝐿, 𝑍) . 
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iv. Since(𝐾, 𝑍) ∩̃ (𝐿, 𝑍) ⊆̃ (𝐹1 , 𝐸). 

(𝐾, 𝑍) ∩̃ (𝐿, 𝑍) ⊆̃ (𝐿, 𝑍).  

From (ii) we obtain that  𝑖𝐷((𝐾, 𝑍) ∩̃ (𝐿, 𝑍)) ⊆
𝑖𝐷(𝐾, 𝑍), 𝑖𝐷((𝐾, 𝑍) ∩̃ (𝐿, 𝑍)) ⊆ 𝑖𝐷(𝐿, 𝑍), 

Hence, 𝑖𝐷((𝐾, 𝑍) ∩̃ (𝐿, 𝑍)) ⊆ 𝑖𝐷(𝐾, 𝑍) ∩ 𝑖𝐷(𝐿, 𝑍). 

v. Consider 𝑥 ∈ 𝑖𝐷(𝐾, 𝑍) for each SIOS (𝑀, 𝑍) 

containing x. 

 We get, ((𝐾, 𝑍) ∩̃ (𝑀, 𝑍))\̃{𝑥} ≠ ϕ 
 ((𝐾, 𝑍) ∩̃ (𝑀, 𝑍)) ∩̃ {𝑥}𝐶  

= ((𝐾, 𝑍) ∩̃ {𝑥}𝐶) ∩̃ ((𝑀, 𝑍) ∩̃ {𝑥}𝐶) =

((𝐾, 𝑍)\̃{𝑥}) ∩̃ ((𝑀, 𝑍))\̃{𝑥} =

((𝐾, 𝑍)\̃{𝑥}) ∩̃ (𝑀, 𝑍))\̃{𝑥} ≠ ϕ   

𝑥 ∈ 𝑖𝐷((𝐾, 𝑍)\̃{𝑥}).▄ 

Theorem2.4: Consider(𝑋, 𝑆𝐼𝑂𝑆(𝑋𝑍))  as a "soft 

topological space"(STS), for "soft sets"(SSs) 

(𝑃, 𝑍), (𝑄, 𝑍) in 𝑋, so the next phrases hold: 

i. 𝑖𝐶𝑙(𝑋) = 𝑋, 𝑖𝐶𝑙(𝜙) = 𝜙. 

ii. 𝑖𝐶𝑙(𝑃, 𝑍) is a SICS. 

iii. (𝑃, 𝑍) ⊆̃ 𝑖𝐶𝑙(𝑃, 𝑍). 

iv. (𝑃, 𝑍) = 𝑖𝐶𝑙(𝑃, 𝑍) if and only if(𝑃, 𝑍)is a SICS. 

v. 𝑖𝐶𝑙(𝑃, 𝑍) is the smallest SICS containing (𝑃, 𝑍). 

vi. 𝑖𝐶𝑙(𝑃, 𝑍) = 𝑖𝐶𝑙(𝑖𝐶𝑙(𝑃, 𝑍)). 

vii. 𝑖𝐶𝑙((𝑃, 𝑍) ∪̃ (𝑄, 𝑍)) = 𝑖𝐶𝑙(𝑃, 𝑍) ∪̃ 𝑖𝐶𝑙(𝑄, 𝑍).  

viii. 𝑖𝐶𝑙(𝑃, 𝑍) = (𝑃, 𝑍) ∪̃ 𝑖𝐷(𝑃, 𝑍).  

Proof: viii. By (iii) we obtain(𝑃, 𝑍) ⊆̃ 𝑖𝐶𝑙(𝑃, 𝑍) 

……… (1) 

And by "theory (2.3)(ii)" 𝑖𝐷(𝑃, 𝑍) ⊆ 𝑖𝐷(𝑖𝐶𝑙(𝑃, 𝑍)) 

……… (2) 

Since 𝑖𝐶𝑙(𝑃, 𝑍) is a SICS   

𝑖𝐷(𝑖𝐶𝑙(𝑃, 𝑍)) ⊆̃ 𝑖𝐶𝑙(𝑃, 𝑍)…. (3) 

From (2) and (3) we get  𝑖𝐷(𝑃, 𝑍) ⊆̃ 𝑖𝐶𝑙(𝑃, 𝑍) 

……….. (4) 

From (1) and (4) we 

have(𝑃, 𝑍) ∪̃ 𝑖𝐷(𝑃, 𝑍) ⊆̃ 𝑖𝐶𝑙(𝑃, 𝑍).  

Now, let 𝑥 ∈̃ 𝑖𝐶𝑙(𝑃, 𝑍). If 𝑥 ∈̃ (𝑃, 𝑍), then the proof 

is obtained, If 𝑥 ∉̃ (𝑃, 𝑍), each SIOS(𝑀, 𝑍) 

containing 𝑥 intersects (𝑃, 𝑍)at distinct point from 𝑥, 

so  𝑥 ∈ 𝑖𝐷(𝑃, 𝑍), thus 

𝑖𝐶𝑙(𝑃, 𝑍) ⊆̃ (𝑃, 𝑍) ∪̃ 𝑖𝐷(𝑃, 𝑍).Which completes the 

proof. ▄ 

Definition2.4: Consider two STSs (𝑋, 𝜏, 𝐸) and 

(𝑌, 𝜌, 𝐻) with the mappings,𝑢: 𝑋 ⟶ 𝑌, 𝑝: 𝐸 ⟶ 𝐻 

and  𝑓𝑝𝑢: 𝑆𝑆(𝑋𝐸 ⟶ 𝑆𝑆(𝑌𝐻).Then: 

1. [11]. If 𝑓𝑝𝑢(𝐹, 𝐸) ∈̃ 𝑆𝑂𝑆(𝑌𝐻) , 

∀(𝐹, 𝐸) ∈̃ 𝑆𝑂𝑆(𝑋𝐸), fpu is  named 

soft open mapping SOM. 

2. [11]. If 𝑓𝑝𝑢(𝐹, 𝐸) ∈̃ 𝑆𝐶𝑆(𝑌𝐻),∀(𝐹, 𝐸) ∈̃ 𝑆𝐶𝑆(𝑋𝐸), 

fpu is named soft closed mapping SCM. 

3. If 𝑓𝑝𝑢(𝐹, 𝐸) ∈̃ 𝑆𝐼𝑂𝑆(𝑌𝐻),∀(𝐹, 𝐸) ∈̃ 𝑆𝑂𝑆(𝑋𝐸), fpu 

is named soft i − open mapping SI-OM. 

4. If 𝑓𝑝𝑢(𝐹, 𝐸) ∈̃ 𝑆𝐼𝐶𝑆(𝑌𝐻),∀(𝐹, 𝐸) ∈̃ 𝑆𝐶𝑆(𝑋𝐸), fpu 

is named soft i − closed mapping SI-CM. 

5. [11]. If 𝑓𝑝𝑢
−1(𝐺, 𝐻) ∈̃ 𝑆𝑂𝑆(𝑋𝐸) 

,∀(𝐺, 𝐻) ∈̃ 𝑆𝑂𝑆(𝑌𝐻), fpu is  named soft continuous 

mapping SContM. 

6.  If 𝑓𝑝𝑢
−1(𝐺, 𝐻) ∈̃ 𝑆𝐼𝑂𝑆(𝑋𝐸) ,∀(𝐺, 𝐻) ∈̃ 𝑆𝑂𝑆(𝑌𝐻), 

fpu is  named soft i-continuous mapping SI-ContM. 

7. If 𝑓𝑝𝑢
−1(𝐺, 𝐻) ∈̃ 𝑆𝐼𝐶𝑆(𝑋𝐸) ∀(𝐺, 𝐻) ∈̃ 𝑆𝐼𝐶𝑆(𝑌𝐻),  

fpu is named soft i − irresolute mapping SI-IreM.  

Theorem2.5: Each SContM is SI-ContM. 

Proof: Consider 𝑓𝑝𝑢: 𝑆𝑆(𝑋𝐸 ⟶ 𝑆𝑆(𝑌𝐻)as SContM. If 

(𝐺, 𝐻) is a SOS in(𝑌, 𝜌, 𝐻) we have 𝑓𝑝𝑢
−1(𝐺, 𝐻) is SOS 

in (𝑋, 𝜏, 𝐸)(by suppose). By "Theory (2.1)", we 

obtain 𝑓𝑝𝑢
−1(𝐺, 𝐻) is a SIOS in(𝑋, 𝜏, 𝐸). Hence, 𝑓𝑝𝑢is a 

SI-ContM.▄ 

3. i-Soft Separation Axioms 

Definition 3.1: [19]. Consider 𝑒𝑃 , 𝑒𝑄 as any two 

distinct soft points in(𝑋, 𝜏, 𝑍), then(𝑋, 𝜏, 𝑍) is 

considered:  

1. spaceTsemiSoft 0 , if there exist 

SSOSs(𝑃, 𝑍) 𝑜𝑟 (𝑄, 𝑍) wherein,𝑒𝑃 ∈̃ (𝑃, 𝑍), 𝑒𝑄 ∉

(𝑃, 𝑍) ,𝑒𝑄 ∈̃ (𝑄, 𝑍), 𝑒𝑃 ∉ (𝑄, 𝑍), for each 𝑒𝑃, 𝑒𝑄  𝑖𝑛 𝑋. 

2. spaceTsemiSoft 1 , if there exist two SSOSs 

(𝑃, 𝑍) 𝑎𝑛𝑑(𝑄, 𝑍)Wherein, 𝑒𝑃 ∈̃ (𝑃, 𝑍),  𝑒𝑄 ∉̃ (𝑃, 𝑍), 

𝑒𝑄 ∈̃ (𝑄, 𝑍), 𝑒𝑃 ∉̃ (𝑄, 𝑍), for each 𝑒𝑃 , 𝑒𝑄 𝑖𝑛 𝑋. 

3. spaceTsemiSoft 2 , if there exist two disjoint 

SSOSs(𝑃, 𝑍) 𝑎𝑛𝑑(𝑄, 𝑍)wherein,𝑒𝑃 ∈̃ (𝑃, 𝑍), 

𝑒𝑄 ∈̃ (𝑄, 𝑍), for each 𝑒𝑃 , 𝑒𝑄 𝑖𝑛 𝑋. 

Definition 3.2: [20]. Consider  𝑥, 𝑦  as any two 

distinct points in(𝑋, 𝜏, 𝐿), then (𝑋, 𝜏, 𝐿)  is 

considered: 

1. spaceTSoft 0
, if there exists a SOS (𝑂, 𝐿) wherein 

either 𝑥 ∈̃ (𝑂, 𝐿), 𝑦 ∉̃ (𝑂, 𝐿)or 𝑦 ∈̃ (𝑂, 𝐿), 𝑥 ∉̃ (𝑂, 𝐿), 

for each 𝑥, 𝑦 𝑖𝑛 𝑋. 

2. spaceTSoft 1 , if there exist two SOSs (𝑂, 𝐿), 

(𝐽, 𝐿)wherein,𝑥 ∈̃ (𝑂, 𝐿), 𝑦 ∉̃ (𝑂, 𝐿)and  𝑦 ∈̃ (𝐽, 𝐿), 

𝑥 ∉̃ (𝐽, 𝐿), for each 𝑥, 𝑦 𝑖𝑛 𝑋. 

3. spaceTSoft 2
, if there exist two disjoint 

SOSs(𝑂, 𝐿), (𝐽, 𝐿) wherein, 𝑥 ∈̃ (𝑂, 𝐿)and 𝑦 ∈̃ (𝐽, 𝐿), 

for each 𝑥, 𝑦 𝑖𝑛 𝑋. 

Definition 3.3:  Consider x, y as any two distinct 

points in(𝑋, 𝜏, 𝐿) then (𝑋, 𝜏, 𝐿) is considered: 

1. spaceTiSoft 0 , if there exists a SIOS (𝑂, 𝐿)  

wherein either,𝑥 ∈̃ (𝑂, 𝐿), 𝑦 ∉̃ (𝑂, 𝐿)or  𝑦 ∈̃ (𝑂, 𝐿), 

𝑥 ∉̃ (𝑂, 𝐿), for each 𝑥, 𝑦 𝑖𝑛 𝑋. 

2. 
1TiSoft   (Individually, 

1TsemiSoft   and soft

1TSoft  space), if there exist two SIOSs 

(Individually, SSOSs and S𝛼OSs) (𝑂, 𝐿), (𝐽, 𝐿) 

wherein, 𝑥 ∈̃ (𝑂, 𝐿),  𝑦 ∉̃ (𝑂, 𝐿) and  𝑦 ∈̃ (𝐽, 𝐿), 

𝑥 ∉̃ (𝐽, 𝐿)for each 𝑥, 𝑦 𝑖𝑛 𝑋. 

3. spaceTiSoft 2 , if there exist two disjoint 

SIOSs (𝑂, 𝐿), (𝐽, 𝐿) wherein 𝑥 ∈̃ (𝑂, 𝐿)and 𝑦 ∈̃ (𝐽, 𝐿), 

for each 𝑥, 𝑦 𝑖𝑛 𝑋.  

Example3.1. Let }5,3{X  ,𝜏 = {𝜙𝐸 , (𝐹1, 𝐸), 𝑋𝐸},

}r,s{E  " 

Where,(𝐹1, 𝐸) = {(𝑠, {3}), (𝑟, {3})}, 𝑆𝐼𝑂𝑆(𝑋𝐸) =
{𝜙𝐸 , (𝐹1, 𝐸), 𝑋𝐸}.  

)X(SIOS)E,F()53(X5,3 E1  Wherein

)E,F(~5),E,F(~3 11  . Therefore;(𝑋, 𝜏, 𝐸)is 

spaceTiSoft 0 .
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Example3.2: 

Let }9,8,7{X

,𝜏 =
{𝜙𝐸 , (𝐹1, 𝐸), (𝐹2, 𝐸), (𝐹3, 𝐸), (𝐹4, 𝐸), (𝐹5, 𝐸), (𝐹6, 𝐸), 𝑋𝐸} 

}z,w{E  "Where(𝐹1, 𝐸) = {(𝑤, {7}), (𝑧, {7})}, 

(𝐹2, 𝐸) = {(𝑤, {8}), (𝑧, {8})}, (𝐹3, 𝐸) =
{(𝑤, { 9}), (𝑧, {9})}." 

(𝐹4, 𝐸) = {(𝑤, {7,8}), (𝑧, {7,8})}, (𝐹5, 𝐸) =
{(𝑤, {7,9}), (𝑧, {7,9})},  

(𝐹6, 𝐸) = {(𝑤, {8,9}), (𝑧, {8,9})}. 𝑆𝑂𝑆(𝑋𝐸) =
𝑆𝐼𝑂𝑆(𝑋𝐸) = 𝑆𝑆𝑂𝑆(𝑋𝐸) = 𝑆𝛼𝑂𝑆(𝑋𝐸) = 𝜏. 

).(),(),(

,)(),(),,()87(8,7 21

EEE

E

XOSSXSSOSXSIOS

XSOSEFEFX




 

Wherein 

)E,F(~8),E,F(~7 11  , ).E,F(~7),E,F(~8 22   

).(),(),(

,)(),(),,()97(9,7 31

EEE

E

XOSSXSSOSXSIOS

XSOSEFEFX



  

Wherein 

)E,F(~9),E,F(~7 11  , 

).E,F(~7),E,F(~9 33   

).(),(),(

,)(),(),,()98(9,8 32

EEE

E

XOSSXSSOSXSIOS

XSOSEFEFX



  

Wherein,
 

)E,F(~9),E,F(~8 22  , ).E,F(~8),E,F(~9 33 

Therefore; (𝑋, 𝜏, 𝐸)is 
1TSoft ,

 1TSoft  ,

1TsemiSoft  and spaceTiSoft 1 . 

Definition3.4: (𝑋, 𝜏, 𝐸) is said to be 

spaceregulariSoft   (SI-RS) if it satisfies the next 

condition: If )E,F(  is a SICS in 𝑋and 

)E,F(~x,Xx 

E21E21 )E,G(
~

)E,G(),X(OS)E,G(),E,G(  

wherein, ).E,G(~x),E,G(~)E,F( 21   

Definition3.5: A spaceTiSoft 1  is named 
3TiSoft 

if it is SIRS. 

Definition3.6: (𝑋, 𝜏, 𝐸) considers 

spacenormaliSoft   (SI-NS) if the next condition 

satisfied: if )E,F(),E,F( 21
are two disjoint SICSs 

in 𝑋
 E21E21 )E,G(

~
)E,G(),X(OS)E,G(),E,G(   .  

Wherein ).E,G(~)E,F(),E,G(~)E,F( 2211   

Definition3.7: A spaceTiSoft 1 is named 
4TiSoft   

if it is SINS.  

Definition3.8: (𝑋, 𝜏, 𝐸) considers 

spaceregularcompletelyiSoft   (SI-CRS) if the 

next condition satisfied: If )E,F( 1
 is a SICS 

in 𝑋and )E,F(~x,Xx 1 , there exists SI-

ContM  𝑓𝑝𝑢: 𝑆𝑆(𝑋𝐸 ⟶ 𝑆𝑆(𝑌𝐻), 𝑢: 𝑋 ⟶ 𝑌, 𝑝: 𝐸 ⟶

𝐻, (𝑋, 𝜏, 𝐸) and (𝑌, 𝜌, 𝐻) are STSs,  1,0Y  , 

𝜌 = {∅𝐻 , 𝑌}Wherein  𝑓𝑝𝑢(𝐹1, 𝐸) = 1𝐻, (𝑢(𝑥) =

1 ∀𝑥 ∈̃ (𝐹1, 𝐸)),   𝑓𝑝𝑢(𝑥𝐸) = 0𝐻, (𝑢(𝑥) = 0 , 𝑥 ∉̃ (𝐹1, 𝐸)). 

Definition3.9: A spaceTiSoft 1  is named 

)
2

13(
Tisoft   if it is SI-CRS. 

Definition3.10: 

 (𝑋, 𝜏, 𝐸) Considers spacenormalcompletelyiSoft   (SI-

CNS) if the next condition satisfied: If

,)E,F(~)E,F(),X(SS~)E,F(),E,F( E21E21 

),(~),(),,(~),(.)(~),(),,( 221121 EIEFEIEFtsXIOSEIEI E 

Wherein
E21 )E,I(~)E,I(  .  

Definition3.11: A spaceTiSoft 1  is named
5TiSoft   

if it is SI-CNS. 

Definition3.12: 

(𝑋, 𝜏, 𝐸) considers lspacenormaperefectlyiSoft   (SI-

PNS)if the next condition satisfied: If 

)E,F(),E,F( 21
 are disjoint SICSs in 𝑋, there exists 

SI-ContM  𝑓𝑝𝑢: 𝑆𝑆(𝑋𝐸 ⟶ 𝑆𝑆(𝑌𝐻), 𝑢: 𝑋 ⟶ 𝑌, 

𝑝: 𝐸 ⟶ 𝐻, (𝑋, 𝜏, 𝐸) and (𝑌, 𝜌, 𝐻) are STSs,  1,0Y  , 

𝜌 = {∅𝐻 , 𝑌}. Wherein 𝑓𝑝𝑢
−1{0𝐻} = (𝐹1, 𝐸), (𝑢−1(0) =

𝑥, ∀𝑥 ∈̃ (𝐹1, 𝐸)),  𝑓𝑝𝑢
−1{1𝐻} = (𝐹2, 𝐸), (𝑢−1(1) =

𝑥, ∀𝑥 ∈̃ (𝐹2, 𝐸)). 

Definition3.13: 

 A spaceTiSoft 1  considers 
6TiSoft   if it is SI-PNS. 

Example3.3: 

Let }9,6{X  ,𝜏 = {𝜙𝐸 , (𝐹1, 𝐸), (𝐹2, 𝐸), 𝑋𝐸}, 

}r,q{E 

."Where,(𝐹1, 𝐸) = {(𝑞, {6}), (𝑟, {6})}, (𝐹2, 𝐸) =
{(𝑞, {9}), (𝑟, {9})}, 𝑆𝑂𝑆(𝑋𝐸) = 𝑆𝐼𝑂𝑆(𝑋𝐸) =  𝜏. 

𝑆𝐼𝐶𝑆(𝑋𝐸) {𝑋𝐸 , (𝐹1, 𝐸)𝑐 = (𝐹2, 𝐸), (𝐹2, 𝐸)𝑐

=  (𝐹1, 𝐸), 𝜙𝐸  } 

.)X(SIOS)E,F(),E,F()96(X9,6.1 E21 

Wherein )E,F(~9),E,F(~6 11  , 

).E,F(~6),E,F(~9 22  Therefore; (𝑋, 𝜏, 𝐸) is

spaceTiSoft 1 . 

E21E21 )E,F(~)E,F(),X(SIOS)E,F(),E,F()96(X9,6.2  . 

Wherein ),E,F(~6 1 , ).E,F(~9 2

therefore; (𝑋, 𝜏, 𝐸) is spaceTiSoft 2 . 

3. (𝐹2, 𝐸) Is a SICS in 𝑋 and )E,F(~6,X6 2

E21E21 )E,F(
~

)E,F(),X(SIOS)E,F(),E,F(   .  

Wherein ).E,F(~6),E,F(~)E,F( 122  therefore, 

(𝑋, 𝜏, 𝐸) is SI-RS. 

4. (𝐹1, 𝐸)And(𝐹2, 𝐸) are SICSs in 𝑋, 

E21E21 )E,F(
~

)E,F(),X(SIOS)E,F(),E,F(   . 

Wherein
 ).E,F(~)E,F(),E,F(~)E,F( 1122 

therefore, (𝑋, 𝜏, 𝐸)is SI-NS. 

5. From (1) and (3) we obtain (𝑋, 𝜏, 𝐸) is

spaceTiSoft 3 . 

6. From (1) and (4) we obtain (𝑋, 𝜏, 𝐸) is

spaceTiSoft 4 . 

7. Let    𝑓𝑝𝑢: 𝑆𝑆(𝑋𝐸 ⟶ 𝑆𝑆(𝑌𝐻),be SI-ContM, 

𝑢: 𝑋 ⟶ 𝑌, 𝑝: 𝐸 ⟶ 𝐻,  1,0Y  , 𝜌 = {∅𝐻 , 𝑌} , 

)E,F( 2
is a SICS in X and  6 ∉̃ (𝐹2, 𝐸) 

Wherein  𝑓𝑝𝑢(𝐹2, 𝐸) = 1𝐻, (𝑢(𝑥) = 1 ∀𝑥 ∈̃ (𝐹2, 𝐸)), 

  𝑓𝑝𝑢(6𝐸) = 0𝐻, (𝑢(6) = 0 , 6 ∉̃ (𝐹2, 𝐸)).  

Therefore, (𝑋, 𝜏, 𝐸)  is SI-CRS. 
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8.  (𝑋, 𝜏, 𝐸) is 
)

2
13(

Tisoft   which is obtained from 

(1) and (7). 

9.Since

E21E21 )E,F(~)E,F(),X(SS~)E,F(),E,F( 

)E,F(~)E,F(),E,F(~)E,F(t.s)X(SIOS~)E,F(),E,F( 2211E21  . 

Therefore, (𝑋, 𝜏, 𝐸) is SI-CNS. 

10. (𝑋, 𝜏, 𝐸) is 5Tisoft   which is obtained from 

(1) and (9). 

11. Consider  𝑓𝑝𝑢: 𝑆𝑆(𝑋𝐸 ⟶ 𝑆𝑆(𝑌𝐻) as, SI-ContM 

𝑢: 𝑋 ⟶ 𝑌, 𝑝: 𝐸 ⟶ 𝐻,  1,0Y  , 𝜌 = {∅𝐻 , 𝑌}, since 

)E,F(),E,F( 21  are two SICSs and 

since 𝑓𝑝𝑢
−1{0𝐻} = (𝐹1, 𝐸), 

(𝑢−1(0) = 𝑥, ∀𝑥 ∈̃ (𝐹1, 𝐸)),  𝑓𝑝𝑢
−1{1𝐻} = (𝐹2, 𝐸), 

(𝑢−1(1) = 𝑥, ∀𝑥 ∈̃ (𝐹2, 𝐸)).Therefore, (𝑋, 𝜏, 𝐸)  is 

SI-PNS. 

12. (𝑋, 𝜏, 𝐸)  is 6Tisoft   which is obtained by (1) 

and (9). 

Theorem3.1: 

 Each spaceTisoft 1 considers
0Tisoft  . 

Proof: By using "(Definition 3.3(1and2))" we get the 

required proof.  

Theorem3.2: Each spaceTsemisoft 1  considers

1Tisoft  .  

Proof: By using "(Definitions (3.1(2), 3.3(2))" and by 

"(Theorem 2.2) ", we get the required proof. The 

converse is not true, Indeed: 

Example3.4: 

Let }8,6,4,2{X  ,𝜏 = {𝜙𝐸 , (𝐹1, 𝐸), (𝐹2, 𝐸), (𝐹3, 𝐸),XE},

}w,k{E  .Where(𝐹1, 𝐸) = {(𝑘, {2}), (𝑤, {2})}, 

(𝐹2, 𝐸) = {(𝑘, {2,4}), (𝑤, {2,4})}, 

 (𝐹3, 𝐸) = {(𝑘, {2,4,6}), (𝑤, {2,4,6})}." 

"(𝐹4, 𝐸) = {(𝑘, {2,6}), (𝑤, {2,6})}, 

 (𝐹5, 𝐸) = {(𝑘, {2,8}), (𝑤, {2,8})},  

(𝐹6, 𝐸) = {(𝑘, {2,6,8}), (𝑤, {2,6,8})}, 

 (𝐹7, 𝐸) = {(𝑘, {2,4,8}), (𝑤, {2,4,8})}. 
𝑆𝑂𝑆( 𝑋𝐸) = 𝜏. 

𝑆𝑆𝑂𝑆( 𝑋𝐸) = 𝑆𝛼𝑂𝑆( 𝑋𝐸) =
 {𝜙𝐸 , (𝐹1, 𝐸), (𝐹2, 𝐸), (𝐹3, 𝐸),"{(𝑘, {2,6}), (𝑤, {2,6})}, 

{(𝑘, {2,8}), (𝑤, {2,8})},{(𝑘, {2,6,8}), (𝑤, {2,6,8})}, 

{(𝑘, {2,4,8}), (𝑤, {2,4,8})}𝑋𝐸}. 

 𝑆𝐼𝑂𝑆( 𝑋𝐸) =
{𝜙𝐸 , (𝐹1, 𝐸), (𝐹2, 𝐸), (𝐹3, 𝐸),"{(𝑘, {4}), (𝑤, {4})}, 

{(𝑘, {6}), (𝑤, {6})},{(𝑘, {2,6}), (𝑤, {2,6})}, 
{(𝑘, {4,6}), (𝑤, {4,6})}, 𝑋𝐸}. 

1.  E,,X   is not 1Tsoft , because it is impossible to 

find two SOSs )E,F(),E,F( 21
 Wherein

)E,F(~x),E,F(~x 1211  ,
 

)E,F(~x),E,F(~x 2122  .  

2. Similarly  E,,X    is not
1Tsoft  . 

3.  E,,X   Is not 
1Tsemisoft   

4.  E,,X   Is
1Tisoft  . Since

 
)X(SIOS)E,F(),E,F()xx(Xx,x E212121 

Wherein )E,F(~x),E,F(~x 1211  , 

).E,F(~x),E,F(~x 2122   

Theorem3.3:  

Each spaceTisoft 2 considers 
1Tisoft   and 

0Tisoft   
 

 
Fig. 1: The Relations among spaceTisoft 2 , 

1Tisoft  and
0Tisoft  . 

 

Theorem3.4: Each SI-CRS is a SI-R.S. 

Proof: By using "(Definitions (3.4 and 3.8)", we get 

the required proof. 

Theorem3.5: Each spaceTisoft
2

13
  considers

3Tisoft   . 

Proof: By using "(Definitions (3.5 and 3.9)", we get 

the required proof. 

Theorem3.6:  E,,X   is named SI-NS if Whether it 

fulfills the next state: For each two separated SICSs

)E,F(),E,F( 21
 in 𝑋, and for each real numbers 

closed interval  b,a  there exists SI-ContM 

  𝑓𝑝𝑢: 𝑆𝑆(𝑋𝐸 ⟶ 𝑆𝑆(𝑌𝐻), 𝑢: 𝑋 ⟶ 𝑌, 𝑝: 𝐸 ⟶ 𝐻, 

 b,aY  , 𝜌 = {∅𝐻 , 𝑌} ,  𝑓𝑝𝑢(𝐹1, 𝐸) = 𝑎𝐻  , (𝑢(𝑥) =

𝑎 ∀𝑥 ∈̃ (𝐹1, 𝐸)),   𝑓𝑝𝑢(𝐹2, 𝐸) = 𝑏𝐻, (𝑢(𝑥) = 𝑏 , ∀𝑥 ∈

(𝐹2, 𝐸). 

Theorem3.7: Each spaceTisoft 4  considers

2
13

Tisoft  . 

Proof: Consider  E,,X   satisfies spaceTisoft 4  

definition, which leads to 
2

13
Tisoft  definition, the 

proof is complete "Theorem3.6". ▄ 

Theorem3.8: Each spaceTisoft 5  is 
4Tisoft   

Proof: Consider
  E,,X   satisfies 

spaceTisoft 5 definition, which leads to 

4Tisoft  definition, hence the proof is complete 

(since each discretetwo  SICSs are separated ).▄ 

Theorem 3.9: Each soft subspace of 

spaceTisoft 2  is a
2Tisoft  . 

Proof: Consider  Z,,X   is 
2Tisoft   and  Z,,W    

as soft subspace of X , yandx  are two distinct 

points inW , we shall prove that yandx  contained 

in disjoint SIOSs in soft subspace topology forW . 

Since yandx  are distinct points of X , there exists 

two disjoint SIOSs of X , as,
 )Z,K(),Z,K( 21

 

Wherein 𝑥 ∈̃ (𝐾1, 𝑍), 𝑦 ∈̃ (𝐾2, 𝑍). 

Consider(𝐾1, 𝑍) ∩̃ 𝑊 and(𝐾2, 𝑍) ∩̃ 𝑊 are soft subsets 

ofW . 

Clearly: 

1. Wx  and  𝑥 ∈̃ (𝐾1, 𝑍), so  𝑥 ∈̃ (𝐾1, 𝑍) ∩̃ 𝑊. 

Similarly, 𝑦 ∈̃ (𝐾2, 𝑍) ∩̃ 𝑊. 

 Soft i-T2
 Soft i-T1

 Soft i-T0
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2. (𝐾1, 𝑍) ∩̃ 𝑊 And (𝐾2, 𝑍) ∩̃ 𝑊 are disjoint since

)Z,K(),Z,K( 21
are disjoint. 

3. (𝐾1, 𝑍) ∩̃ 𝑊 is SIOS relative overW , because it 

is the intersection withW  of SIOS in X . Similarly, 

(𝐾2, 𝑍) ∩̃ 𝑊 is also SIOS overW . Hence, we get two 

disjoint SIOSs containing x  and y , over the subspace 

topology ofW . Therefore W  is spaceTisoft 2 .▄ 

Theorem3.10: Each soft subspace of SI-RS is SI-RS. 

Proof: Consider  L,,X  is SI-RS and R  as soft 

subspace,  Rx  and )L,M( 1
  

subsetclosedisoft   in R . Right away x  may be a 

side of the point over X , )L,M( 1
 is 

subsetclosedisoft   of X , wherein

)L,M(R
~

)L,M( 11  . Such )L,M( 1
exists by the way 

that soft subspace topology is defined. Obviously, 

whatever )L,M( 1
  is Picked dependent upon for 

those motivation, x  impossible softly belongs to

)L,M( 1
, because the only points in R

~
)L,M( 1   are in 

a SS not containing x . Since X is SI-RS, we can find 

SIOSs )L,J( 1
 and )L,J( 2

 in X wherein, )L,J(~x 1 , 

(M1,L) ~ (J2,L) and )L,J( 1
, )L,J( 2

 are soft disjoint. 

Now, R
~

)L,J( 1  and R
~

)L,J( 2   are disjoint 

subsetsopenisoft   of R , with R
~

)L,J(x 1   and

R
~

)L,J(~)L,M( 21  .▄ 

Theorem3.11: Each subspaceclosedisoft   of 

SI-NS is SI-NS. 

Proof: Since the subspace is already closedisoft  , 

subsetsclosedisoft   of it are already SICSs in the 

whole space. So we do not have to expand the

subsetsclosedisoft  . Now we separate 

subsetsclosedisoft   in the whole space. We have 

disjointed SIOSs of the whole space. Now, simply 

intersect these SIOSs with the subspacesoft , to get 

disjoint SIOS of the subspace separating the two 

disjoint SICSs. ▄ 

Corollaries3.1: 

1. Each
3Tisoft   (respect.,

 2
13

Tisoft   ,
4Tisoft  , 

5Tisoft  and spaceTisoft 6 ) is 
1Tisoft  but the 

converse is not necessary to be true because 

spaceTisoft 1  is not necessary to be SI-RS 

(respect.SI-CRS, SI-NS, SI-CNS and SI-PNS). 

Proof: By using "(Definitions (3.5, 3.7, 3.9, 3.11, 

3.13 and 3.3(2))"we get the required proof. 

2. Each spaceTsoft 0
 (respect.,

1Tsoft , 
2Tsoft ) is 

0Tisoft   (respect. 
1Tisoft  , spaceTisoft 2 ) but 

the converse is not necessary to be true. 

Proof: The proof is obtained from "Theory 2.1".  

From above we have the next diagram as appear in 

the Figure 2: 
 

 
Fig. 2: The Relations among i-Soft Separation Axioms 

 

Example3.5: Let }7,6{X  ,𝜏 = {𝜙𝐸 , (𝐹1, 𝐸), 𝑋𝐸}, 

}r,q{E  ."Where,(𝐹1, 𝐸) = {(𝑞, {6}), (𝑟, {6})}, 

𝑆𝑂𝑆(𝑋𝐸) = 𝑆𝐼𝑂𝑆(𝑋𝐸) =  𝜏. 

𝑆𝐼𝐶𝑆(𝑋𝐸) =  {𝑋𝐸 , (𝐹1, 𝐸)𝑐 = {(𝑞, {7}), (𝑟, {7})}, 𝜙𝐸  },

.)X(SIOS~)E,F()76(X7,6 E1  Wherein

)E,F(~7),E,F(~6 11  , Therefore; (𝑋, 𝜏, 𝐸) is

spaceTiSoft 0 . But it is not spaceTiSoft 1 . Thus, 

(𝑋, 𝜏, 𝐸) is not spaceTiSoft 2 , also it is not

spaceTiSoft 3 , it is not spaceTiSoft 4 , etc. 

4. New Results 
Theorem 4.1: (𝑋, 𝜏, 𝐸) is  

Tisoft   if and only if 

every two different points of X  have a different

closureisoft  :  

).E,y(iCl)E,x(iCl,)yx(Xy,x   

Proof:  1.Let yx   to need )E,y(iCl)E,x(iCl  . 

For each two different points 𝑥 𝑎𝑛𝑑 𝑦 in 𝑋. since the 

two SSs ),E,x(iCl )E,y(iCl  are different, there 

exist a point 𝑧 in 𝑋 belongs only to one of these two 

SSs and let )E,y(iCl~z),E,x(iCl~z  . If

)E,y(iCl~x  then 

).E,y(iCl))E,y(iCl(iCl~)E,x(iCl  We have,

)E,y(iCl~)E,y(iCl~z  , contradiction. Then

)E,y(iCl~x , therefore; C)E,y(iCl  is SIOS "Theorem 

2.4" containing 𝑥 not  𝑦. 
1. Then again let 𝑋 be spaceTisoft    and let 𝑥, 𝑦 be 

two different points in 𝑋. By spaceTisoft   definition 

there exists SIOS )E,G( containing one of these two 

points not the other. Let )E,G(y),E,G(~x   then 
C)E,G( is SICS "Theorem 2.4"containing 𝑥 not 𝑦. By 

))E,y(iCl definition, we have ))E,y(iCl~y  but 

))E,y(iCl~x  because C)E,G(~x . Therefore; 

)).E,y(iCl))E,x(iCl  ▄  

 Soft i-T0
 

Soft i-T1
 

Soft i-T5
 Soft i-T4

 Soft i-T3(1/2)
 Soft i-T3
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Theorem 4.2: (𝑋, 𝜏, 𝐸) is spaceTisoft 1  on the 

off chance that and just if each singleton SS belongs 

to it is SICS. 

Proof: 1. Consider for each singleton SS belongs 

to(𝑋, 𝜏, 𝐸) is SICS and 𝑥, 𝑦 be two different points 

in 𝑋. Then C)E,x(  is SIOS containing xnoty , 
C)E,y( is SIOS containing ynotx . Therefore; 

(𝑋, 𝜏, 𝐸) is a 
1Tisoft  . 

2. Consider(𝑋, 𝜏, 𝐸) is a
1Tisoft   , Xx . From 

1Tisoft  definition we obtain, for each two different 

points in X
 )yx,Xy,x(   there exists SIOS 

)E,G( y
containing 𝑦 not 𝑥 wherein

C

y )E,x()E,G(~y  .Then,

.)E,x(~)}E,x(~)E,y(:)E,y{(
~

)E,x( CC   Therefore; 
C)E,x(  is the union of SIOSs, then it is SIOS. Then 

)E,x(  is SICS x  in 𝑋.▄ 

Theorem 4.3:  (𝑋, 𝜏, 𝐸) is SI-RS if and only if  

Xx   and for each SIOS )E,G( containing 𝑥 

there exists a SIOS )E,G( *  wherein )E*,G(~x  and

).E,G(~)E*,G(iCl   

Proof: 1. Consider (𝑋, 𝜏, 𝐸) as SI-RS and let 

)E,G(~x  
 where )E,G(  is SIOS in 𝑋 . Then 

(𝐹, 𝐸) = 𝑋𝐸 ∖̃ (𝐺, 𝐸) is SICS not contains 𝑥. By SI-

RS definition, there exist two discrete SIOSs )E,G( x
 

and )E,G( F
wherein )E,G(~x x and )E,G(~)E,F( F . 

Since C

Fx )E,G(~)E,G(  , then

).E,G()E,F(~)E,G()E,G(iCl~)E,G(iCl CC

F

C

Fx   

Therefore; )E,G(~x x and ).E,G(~)E,G(iCl x   Then

)E,G( is SIOS which we need. 

2. Consider the condition above is true and we will 

show (𝑋, 𝜏, 𝐸) is SI-RS. Let )E,F(~x where )E,F( , 

is SICS. Then C)E,F(~x   where C)E,F( is SIOS 

in 𝑋. Then there exists SIOS )E*,G( wherein

)E*,G(~x  and C)E,F(~)E*,G(iCl  . Obviously, 

)E*,G(
 

and C))E*,G(iCl( are discrete SIOSs 

wherein C))E*,G(iCl(~)E,F(),E*,G(~x   . Therefore; 

(𝑋, 𝜏, 𝐸) is SI-RS.▄ 

Theorem 4.4: (𝑋, 𝜏, 𝐸) is SI-NS if and only if for 

each SICS (𝐹, 𝐸)and for each SIOS (𝐺, 𝐸) containing 

(𝐹, 𝐸)there exists SIOS )E*,G( wherein 

)E*,G(~)E,F(   and .)E,G(~)E*,G(iCl   

Proof: 1. Consider(𝑋, 𝜏, 𝐸) be SI-NS be and let(𝐹, 𝐸) 

be SICS contained in SIOS (𝐺, 𝐸)  then (𝐾, 𝐸) =

𝑋𝐸 ∖̃ (𝐺, 𝐸) is SICS, where )E,F(and)E,K(  are 

discrete SSs. By SI-NS definition there exist two 

SIOSs )E,G(and)E,G( FK
 wherein

)E,G(~)E,F(and)E,G(~)E,K( FK  . Since

~)E,G( F
𝑋𝐸 ∖̃ (𝐺𝐾 , 𝐸)then ~)E,G(iCl F

𝑖𝐶𝑙(𝑋𝐸 ∖̃ (𝐺𝐾 , 𝐸))= 𝑋𝐸 ∖̃ (𝐺𝐾 , 𝐸) =⊆̃ 𝑋𝐸 ∖̃ (𝐾, 𝐸) =

(𝐺, 𝐸). Therefore, )E,G(~x x and )E,G(~)E,G(iCl x 

.Then )E,G( F
is the wanted SIOS. 

2. Think about the condition above is valid; we will 

demonstrate that (𝑋, 𝜏, 𝐸) is SI-NS. Consider )E,F( 1
  

and )E,F( 2
as two discrete SICSs in 𝑋, 

then(𝐹1, 𝐸) ⊆̃ (𝑋𝐸 ∖̃ (𝐹2, 𝐸)) where𝑋𝐸 ∖̃ (𝐹2, 𝐸) , is 

SIOS in 𝑋. Then there exists SIOS )E*,G(  wherein 

)E*,G(~)E,F( 1  and 𝑖𝐶𝑙(𝐺∗, 𝐸) ⊆̃ (𝑋𝐸 ∖̃ (𝐹2, 𝐸)). 

obviously )E*,G(  and 𝑋𝐸 ∖̃ 𝑖𝐶𝑙(𝐺∗, 𝐸) are discrete 

SIOSs wherein  

)E*,G(~)E,F( 1  , (𝐹2, 𝐸) ⊆̃ (𝑋𝐸 ∖̃ 𝑖𝐶𝑙(𝐺∗, 𝐸). Hence, 

(𝑋, 𝜏, 𝐸) is SI-NS.▄ 

Theorem 4.5: (𝑋, 𝜏, 𝐸) is SI-NS if and only if for any 

disjoint SICSs )E,F(),E,F( 21
, there exists SI-ContM, 

 𝑓𝑝𝑢: 𝑆𝑆(𝑋𝐸)  ⟶ 𝑆𝑆(𝑌𝐻)(where 𝑢: 𝑋 ⟶ 𝑌 , 𝑝: 𝐸 ⟶

𝐻,  1,0Y  , 𝜌 = {∅𝐸 , 𝑌}), wherein }0{)E,F(f H1pu  , 

,(𝑢(𝑥) = 0, ∀𝑥 ∈̃ (𝐹1, 𝐸)), }1{)E,F(f H2pu  , (𝑢(𝑥) =

1, ∀𝑥 ∈̃ (𝐹2, 𝐸)). 

Proof: Let (𝑋, 𝜏, 𝐸) be SI-NS and let )E,F(),E,F( 21
 

be two SICSs in 𝑋. Set ),( 10 EF  to be )E,F( 1
, and set 

)E,F( 11
to be 𝑋. Let )E,F( 2/1/1

 be a set containing 

)E,F( 10
 whose closureisoft  is contained in

)E,F( 11
. When all is said in done, inductively 

characterize for every normal number n and for every 

single regular number
1n2a  , )E,F(

)
2

1a2
(1

n


to be 

a soft set containing
)E,F(

)
2

a
(1

1n

 whose 

closureisoft   is contained within the complement 

of )E,F(
)

2

1a
(1

1n


 . This defines )E,F( k1

 where k is a 

rational number in the interval ]1,0[  expressible in 

the form
n2

a
 where nanda  are entire numbers. 

Now define the mapping 𝑓𝑝𝑢: 𝑆𝑆(𝑋𝐸)  ⟶ 𝑆𝑆(𝑌𝐻) to 

be 𝑓𝑝𝑢(𝑘𝐸) = inf {𝑥: 𝑘 ∈̃ (𝐹1𝑥 , 𝐸)}, (𝑢(𝑘) =

𝑖𝑛𝑓{𝑥: 𝑘 ∈ (𝐹1𝑥(𝑒), ∀𝑒 ∈ 𝐸)}. Consider any 

element 𝑥  within SNS X , and consider any open 

interval (𝑎, 𝑏) around𝑓𝑝𝑢(𝑥). There exists rational 

numbers 𝑐 and 𝑑 in that expressible open interval in 

the form
n2

k  where 𝑘 and 𝑛 are whole numbers, 

wherein 𝑐 < 𝑓𝑝𝑢(𝑥) < 𝑑. If  𝑐 < 0, then replace it 

with 0, and if 𝑑 > 1, then replace it with 1. Then the 

intersection of the complement of the set )E,F( c1
 and 

the set )E,F( d1
 is odneighborhoopensoft  of )x(f  

with image with(𝑎, 𝑏) (a, b), obtaining the map is 

SContM. Since each SContM is SI-ContM "Theorem 

2.5" we obtain, fpu 
is SI-ContM. 

Conversely, considers for any two disjoint SICSs, 

there is SI-ContM  
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𝑓𝑝𝑢: 𝑆𝑆(𝑋𝐸)  ⟶ 𝑆𝑆(𝑌𝐻)(where 𝑢: 𝑋 ⟶ 𝑌 , 𝑝: 𝐸 ⟶

𝐻,  1,0Y  , 𝜌 = {∅𝐸 , 𝑌}), wherein }0{)x(f Hpu 

,(𝑢(𝑥) = 0, ∀𝑥 ∈̃ (𝐹1, 𝐸)), }1{)x(f Hpu  , ,(𝑢(𝑥) =

1, ∀𝑥 ∈̃ (𝐹2, 𝐸)). Since the disjoint SS )E),5.0,0([  

and )E],1,5.0(( are SIOSs and under those soft 

topology subspace, the inverses ))5.0,0([f 1

pu

 , which 

contains 𝑋 , and ])1,5.0([f 1

pu

  , which contains 𝑌, are 

also SIOSs and disjoint. ▄ 

Remark4.1: Consider )E*,*,X(  as a partial STS of

)E,,X(   and )E,F(  be SS in *X  then 

)X(IOS* E  if and only if .*X   

Theorem4.6: )L,,X(     is SI-CNS in the event that 

and just if partial STS of it is SI-NS. 

Proof:  

1. Consider )L,,X(    as SI-CNS and let 

)E*,*,X(    be a partial STS of 𝑋. Let )L,W( , 

)L,N( be two discrete SICSs in 𝑋, then: 

)L,N(iCl
~

)L,W(iCl
~

*X)L,N(iCl
~

)L,W(iCl)L,N(iCl
~

)L,W( *  

.)L,N(
~

)L,W()L,N(iCl
~

)L,W(iCl **   Then

)L,W( , )L,N(  are separated SSs in 𝑋. By SI-CNS 

definition there exists two SIOSs )L,J( 1
, )L,j( 2

 

wherein )L,J(~)L,W( 1 , )L,J(~)L,N( 2  then 

)L,J(
~

*X),L,J(
~

*X 21  are discrete SIOSs in *X . 

Where ).L,J(*X~)L,N(),L,J(
~

*X~)L,W( 21    

Therefore; )E,,X( ***   is SI-NS. 

4. Then again, consider each partial STS of 

)L,,X(   as SI-NS and prove that X   is SI-CNS. Let 

)L,B(,)L,B( 21
 be separated sets in X and let SIOS 

  *X)L,B(iCl
~

)L,B(iCl
C

21  be a partial STS of X  , 

this space is SI-NS (by suppose) and

)L,B(iCl
~

*X),L,B(iCl
~

*X 21   are two discrete SICSs 

in *X . At that point there exist two discrete SIOSs 

)L,J(,)L,J( 2B1B
in *X  wherein

).L,J(~)L,B(iCl
~

*X),L,J(~)L,B(iCl
~

*X 2B21B1    

Since, *X is SIOS in X , then )L,J(,)L,J( 2B1B
are 

SIOSs in X too "Remark 4.1".Then

).,(~),(
~

*~),(),,(~),(
~

*~),( 222111 LJLBiClXLBLJLBiClXLB BB  

Therefore;
 )E,,X(   is SI-CNS. ▄ 

Theorem 4.7: If  E,,X   is SI-NS, and then it 

considers as SI-CRS in also just if it is SI-RS. 

Proof: It is enough to prove each SI-NS and SI-RS 

space is SI-CRS "Theory 3.4". Let )E,F(~x  where,

)E,F( is SICS in X , then 
C)E,F(~x   where 

C)E,F( is SIOS. Then there exists SIOS )E,G( *  

wherein )E,G(~x * and C* )E,F(~)E,G(iCl  "Theory 

4.3". Since )E,F(  and )E,G(iCl *  are discrete SICSs in 

SI-NS  E,,X   and by "Theorem3.6", there exists SI-

ContM 𝑓𝑝𝑢: 𝑆𝑆(𝑋𝐸)  ⟶ 𝑆𝑆(𝑌𝐻)wherein

}1{)E,F(f Hpu  ,(𝑢(𝑥) = 1, ∀𝑥 ∈̃ (𝐹, 𝐸)),

}0{))E*,G(iCl(f Hpu  ,(𝑢(𝑥) = 0, ∀𝑥 ∈̃ 𝑖𝐶𝑙(𝐺 ∗

, 𝐸))and since )E,G(~x * then }0{)E,x(f Hpu  . 

Therefore;  E,,X   is SI-CRS. 

Remark4.2: The "Definition 2.4(7)" is also true for 

SIOSs by taking the soft complements of it. 

Theorem4.8: Let  E,,X   be STS and  H,,Y   is

spaceTisoft 2 . If  𝑓𝑝𝑢: 𝑆𝑆(𝑋𝐸)  ⟶ 𝑆𝑆(𝑌𝐻) is 

injective 1-1 and SI-IreM, then X is spaceTisoft 2 . 

Proof: Consider Xy,x   such that .yx   Since 

puf is 11  , then ).y(f)x(f EpuEpu   Since  H,,Y   is 

2Tisoft  , at that point there exist two SIOSs 

)H,G(),H,G( 21
 in Y  wherein 

)H,G(~)y(f),H,G(~)x(f 2(pu1(pu   and 

)H,G(
~

)H,G( 21  . Since
puf  is SI-IreM then 

)H,G(f),H,G(f 2

1

1

1   are two SIOSs in X .

)H,G(f~y),H,G(f~x 2

1

1

1   .

 )H,G(f
~

)H,G(f 2

1

1

1  . Hence X is

spaceTisoft 2 . ▄ 

Theorem4.9: Let  E,,X   be STS and  E,,Y   is

spaceTisoft 2 . If 𝑓𝑝𝑢: 𝑆𝑆(𝑋𝐸)  ⟶ 𝑆𝑆(𝑌𝐻)  is

injective  (one-one) and SI-ContM, then X  is

spaceTisoft 2 . 

Proof: Similarly as in"Theory4.8", and using puf  as 

SI-ContM instead of SI-IreM. ▄ 

Theorem4.10: Let  E,,X   and  H,,Y   be STSs and 

Y is SI-RS. If  𝑓𝑝𝑢: 𝑆𝑆(𝑋𝐸)  ⟶ 𝑆𝑆(𝑌𝐻)  is SICM, SI-

IreM and 1-1, then X  is SI-RS.  

Proof: Let )E,F( be SCS in X , ).E,F(~x Since 

 𝑓𝑝𝑢 is SICM, then )E,F(f pu
 is SICS inY . 

)E,F(f~y)x(f puEEpu  . But Y is SI-RS, then there are 

two SIOSs )H,G(),H,G( 21
 in Y  wherein

)H,G(~)E,F(f 1pu  )H,G(~y 1  and

)H,G(
~

)H,G( 21  . Since 𝑓𝑝𝑢 is SI-IreM and 1-1, so 

)H,G(f),H,G(f 2

1

pu1

1

pu

  are SIOSs in X  and

)H,G(f~)E,F(),H,G(f~x 2

1

pu1

1

pu

  , 

 )H,G(f
~

)H,G(f 2

1

pu1

1

pu   . Hence X is SI-RS. ▄ 

Theorem4.11: Consider  𝑓𝑝𝑢: 𝑆𝑆(𝑋𝐸)  ⟶ 𝑆𝑆(𝑌𝐻) as 

SICM and SI-IreM from  E,,X   into  H,,Y  . IfY is 

SI-NS, so is .X   

Proof: Let )E,F(),E,F( 21
 be SICSs in X wherein, 

),(
~

),( 21 EFEF  . Since   𝑓𝑝𝑢is SICM, then

)E,F(f),E,F(f 2pu1pu
 are two SICSs in Y and

)E,F(f
~

)E,F(f 2pu1pu  . SinceY  is SI-NS and 

 𝑓𝑝𝑢 is SI-IreM, then there are two SIOSs 

)H,G(),H,G( 21
 in Y  wherein
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)H,G(~)E,F(f),H,G(~)E,F(f 22pu11pu   and

)H,G(
~

)H,G( 21  , also )H,G(f),H,G(f 2

1

pu1

1

pu

  are 

two SIOSs in X and

)H,G(f~)E,F(),H,G(f~)E,F( 2

1

pu21

1

pu1

  , 

 )H,G(f
~

)H,G(f 2

1

pu1

1

pu   . Hence X is SI-NS.▄ 
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 في فضاءات تبولوجية ناعمة i–بديهيات الفصل الناعمة من النمط 
 صبيح وديع اسكندر ، عامر عبد الاله محمد

 ، العراق ، الموصل ، جامعة الموصل للعلوم الصرفة، كلية التربية  قسم الرياضيات
 

 الملخص
باستخدام تعريف  i-في الدراسة الحالية ادخل الباحثان نوعا حديثا من بديهيات الفصل الناعمة اسمياه بديهيات الفصل الناعمة من النمط

والعديد  i-لعلاقات بين بديهيات الفصل الناعمة من النمط(، ا [17]في فضاءات تبولوجية ناعمة )انظر i-المجموعات المفتوحة الناعمة من النمط
، ولكن العكس i-من الامثلة تم اعطائها، علاوة على ذلك، الباحثان وجدا بان بديهيات الفصل الناعمة تؤدي الى بديهيات الفصل الناعمة من النمط

 .i-يهيات الفصل الناعمة من النمطليس من الضروري ان يكون صحيحا. ايضا، تم برهان العديد من المبرهنات حول بد
 


