i-Soft Separation Axioms in Soft Topological Spaces

Sabih W. Askandar , Amir A. Mohammed

Department of Mathematics , College of Education for Pure Sciences , University of Mosul , Mosul , Iraq https://doi.org/10.25130/t.jps.v25i6.322

ARTICLEINFO.

Article history:
-Received: 10 /6/2020
-Accepted: 10 / 8 / 2020
-Available online: / / 2020
Keywords: Soft i-open sets, i-Soft Separation Axioms, Soft iContinuous Mappings.
Corresponding Author:
Name:
E-mail:
sabihqaqos@uomosul.edu.iq
amirabdulillah64@gmail.com

Tel:

Abstract

In the current study the researchers have been introduced a modern kind of soft separation axioms which is named i-soft separation axioms by using the concept of soft i-open sets [17] in soft topological spaces, the relations among i-soft separation axioms and many examples about it are investigated. Further, they found that soft separation axioms imply isoft separation axioms, but, the converses may not be true. Also, many theorems have been proved which are clarified the properties of i-soft separation axioms.

1. Introduction and Preliminaries

In 1964(see [1], [2]) (T_{n} spaces, $\mathrm{n}=0,1,2,3,4,5$) for open sets by using (Klomogorov (respect. Frechet, Hausdorrf, Vietors, Urysohn and Titus axioms)) have been studied. In 1963, 1965 (see [3], [4]), the concepts of semi-open sets, α - open sets have been introduced. The concept of soft sets and its properties has been introduced by Molodtsov and many other researchers in 1999, 2003, 2007, 2009, 2011, 2012 and 2015(see [5-12]. Chen, B. in 2013(see [13]) and Kannan, K. in 2012 (see [14]) introduced the concept of semi-open sets and soft α - open sets individually in soft topological spaces. Askandar, S. W. In 2012 (see [15]) and in 2016 (see [16]) have introduced the concept of i-open sets in ordinary topological spaces and i-separation axioms depends on i-open sets as (T_{ni} spaces, $\mathrm{n}=0,1,2,3,4,5,6$). The purpose of this work is to introduce i -soft separation axioms by using soft i-open sets (see [17]). Throughout this work $(X, \tau, E),\left(X, \operatorname{IOS}\left(X_{E}\right)\right)$ and (Y, ρ, H) always are soft topological spaces STS (where $\operatorname{IOS}\left(X_{E}\right)$ is a family of all soft i-open sets in X) and we denotes by $S S$ to the soft sets, $\operatorname{int}(K, E)$ and $C l(K, E)$ denotes soft interior and soft closure of the $S S(K, E)$ Individually. The members of τ are called soft open sets $\operatorname{SOS}\left(X_{E}\right)$ and its complements are called soft closed sets $S C S$ $\left(X_{E}\right) . \emptyset_{E}, X_{E}$ Denote soft null and soft absolute sets.

This paper comprises of four segments. In the second one soft i-open set and its properties in STSs have been introduced. In the third segment the definitions of i-soft separation axioms spaces and the relations among them have been studied. Finally, in the fourth one, some important theorems have been proved to discuss the properties of this new kind of soft separation axioms spaces (see "Theorems 4.1, 4.2, 4.3, 4.4 and Theorem 4.5").

Definition 1.1: [11]. If (K, E) is a soft set over X and $x \in X$. It can be said that $x \widetilde{\in}(K, E)$ whether $x \in$ $K(e), \forall e \in E$.
Definition 1.2: [11]. Consider $x \in X$, as a soft set (x, E) over X, wherein $x_{E}(e)=\{x\}, \forall e \in E$ is denoted by x_{E} and was addressed as the singleton consider on soft point.
Definition 1.3: [11]. A soft set $(K, E) \widetilde{\in} S S\left(X_{E}\right)$ named as a soft point $\operatorname{in} X_{E}$ is indicated by $K(e)=\phi$ $\forall e^{C} \in E-\{e\}$, and e_{K} if $\exists x \in X$ and $e \in E, K(e) \neq$ ϕ.The soft point e_{K} belongs to the soft set (G, E), $e_{K} \widetilde{\epsilon}(G, E)$, whether regarding the factor $e \in E$, $e_{K} \subseteq G(e)$.The group of X whole soft points is indicated by $S P(X)$.
Definition 1.4: [12]. The two "soft sets" (G, A) and (H, A) in $S S\left(X_{A}\right)$ are said to be soft disjoint, written $(G, A) \tilde{\cap}(H, A)=\phi_{A}$, if $G,(e) \cap H(e)=\phi \forall e \in A$.

Definition 1.5: [12]. Two soft points e_{G}, e_{H} in X_{A} are distinct, written $e_{G} \neq e_{H}$, if there corresponding $\operatorname{SSs}(G, A),(H, A)$ are soft disjoint.
Definition 1.6: [18]. Let (X, τ, E) be $S T S$ and $(F, E) \widetilde{\in} S S\left(X_{E}\right)$. Define $\tau_{(F, E)}=\{(G, E) \widetilde{\cap}(F, E):(G, E) \widetilde{\epsilon} \tau \quad$ which considered soft topology on (F, E). The soft topology is called soft relative topology of τ on (F, E) and $\left((F, E), \tau_{(F, E)}\right)$ is named soft subspace of (X, τ, E).
2. Soft i-Open Sets in Soft Topological Spaces.

Definition 2.1: $\operatorname{Consider}(F, E)$ as a soft set in (X, τ, E), therefore, (F, E) is said to be,

1. [17]. Softi-open set (SIOS), whether there is a soft open $\quad \operatorname{set}(G, E) \neq \phi, X \quad$ where $(F, E) \simeq C l((F, E) \tilde{\cap}(G, E))$.
2. [5]. Soft semi - open set (SSOS) if:
a. $(F, E) \subseteq C l(\operatorname{Int}(F, E))$.
b. Whether soft open set exist $(G, E) \neq \phi, X$ where $(G, E) \widetilde{\subseteq}(F, E) \widetilde{\subseteq} C l(G, E)$.
3. [10], [9]. Soft α-open set (S $\alpha O S$) if $(F, E) \widetilde{\subseteq} \operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(F, E)))$.
The complement of SIOS, (resp., SSOS and S $\alpha O S$) known as soft i - closed set (SICS) [17] (resp., soft semi - closed set (SSCS) and soft $\alpha-$ closed set $(S \alpha C S)$). The intersection of all soft $\mathrm{i}-$ closed sets (SICSs) over X containing (F, E) is called soft i - closure of (F, E) and denoted by $i-$ $C l(F, E)[17]$. The union of whole (SIOSs) over X contained in (F, E) known as softi-interior of (F, E) and indicated by $i-\operatorname{Int}(F, E)[17]$. The group of whole SOSs (resp., SIOSs, SSOSs and $S \alpha O S s),(S C S s, S I C S s, S S C S s$ and $S \alpha C S s)$ in (X, τ, E) are indicated by $\operatorname{SOS}\left(X_{E}\right)$ (resp. $\operatorname{SIOS}\left(X_{E}\right), \operatorname{SSOS}\left(X_{E}\right)$, $\operatorname{SaOS}\left(X_{E}\right), \quad \operatorname{SCS}\left(X_{E}\right), \quad \operatorname{SICS}\left(X_{E}\right), \quad \operatorname{SSCS}\left(X_{E}\right) \quad$ and $S \alpha C S\left(X_{E}\right)$).
Example2.1: \quad Consider $X=\{2,4,6\}, \quad \tau=$ $\left\{\phi_{E},\left(F_{1}, E\right),\left(F_{2}, E\right), X_{E}\right\}, E=\{m, l\}$.
Where $\left(F_{1}, E\right)=\{(m,\{2\}),(l,\{2\})\}, \quad\left(F_{2}, E\right)=$ $\{(m,\{2,6\}),(l,\{2,6\})\}$.
Consider, " $(F, E)=\{(m,\{2,4\}),(l,\{2,4\})\} "$.
$\operatorname{SOS}\left(X_{E}\right)=\left\{\emptyset,\left(F_{1}, E\right),\left(F_{2}, E\right), X_{E}\right\}$,
$\operatorname{SCS}\left(X_{E}\right)=\left\{X_{E},\left(F_{1}, E\right)^{c}\right.$

$$
\begin{aligned}
& =\{(m,\{4,6\}),(l,\{4,6\})\},\left(F_{2}, E\right)^{c} \\
& \left.=\{(m,\{4\}),(l,\{4\})\}, \phi_{E}\right\}
\end{aligned}
$$

$\operatorname{SIOS}\left(X_{E}\right)=\left\{\left(\phi_{E},\left(F_{1}, E\right),\left(F_{2}, E\right)\right.\right.$,
$\{(m,\{6\}),(l,\{6\})\}, \quad\{(m,\{2,4\}),(l,\{2,4\})\}$, $\left.\{(m,\{4,6\}),(l,\{4,6\})\}, X_{E}\right\}$. Apparently, (F, E) is SIOS due to the existence $\operatorname{SOS}(G, E)=\left(F_{1}, E\right)$ where $(F, E) \widetilde{\subseteq} C l((F, E) \widetilde{\cap}(G, E))$, yet (F, E)is not SOS.
Theorem2.1: [17] Each "soft open set"(SOS) is a "soft i-open"(SIOS).
Theorem2.2: [17] Each "soft semi-open set"(SSOS) is a "soft i-open"(SIOS).

Definition2.2: A $\operatorname{SIOS}(G, E)$ in (X, τ, E) considers soft i - open neighborhood of $x \in X \quad$ if $\quad x \in$ $G(e) \forall e \in E$.
Definition2.3: Let (W, Z) be a $S S$ in (X, τ, Z). A point $x \in X$ considers i - limit point of (W, Z) if for each soft i - open neighborhood (N, Z) of x, $(W, Z) \widetilde{\cap}(N, Z) \widetilde{\Upsilon}\{x\} \neq \emptyset_{E}$. In other words, a point $x \in X$ is $\mathrm{i}-\lim$ it point of (W, Z) if for each SIOS (N, Z) containing $x,(W, Z) \widetilde{\cap}(N, Z) \tilde{\backslash}\{x\} \neq \emptyset_{E}$. The set of whole i - limit points of (W, Z) is called i - derived set of (W, Z) and designated by $i D(W, Z)$. Obviously, a point $x \in X$ is not consider as i - limit point of (W, Z) if there is a $\operatorname{SIOS} \quad(N, Z) \quad$ containing $\quad x \quad$ wherein $(W, Z) \widetilde{\cap}(N, Z) \widetilde{\backslash}\{x\}=\emptyset_{E}$. A $S S(W, Z)$ has been considered as SICS if $i D(W, Z) \widetilde{\subseteq}(W, Z)$ Wherein $i D(W, Z) \cong(e), \forall e \in Z$.
Theorem2.3: Consider $\left(X, \operatorname{SIOS}\left(X_{Z}\right)\right)$ as STS, for SSs $(K, Z),(L, Z)$ in X, so the next phrases hold:
i. $i D(K, Z) \subseteq D(K, Z)$. Where $D(K, Z)$ is derived set of (K, Z)
ii. If $(K, Z) \subseteq(L, Z)$, then $i D(K, Z) \subseteq i D(L, Z)$.
iii. $i D((K, Z) \widetilde{\cup}(L, Z))=i D(K, Z) \cup i D(L, Z)$.
iv. $i D((K, Z) \widetilde{\cap}(L, Z)) \subseteq i D(K, Z) \cap i D(L, Z)$.
v. If $x \in i D(K, Z)$ then $x \in i D((K, Z) \widetilde{\{ } x\})$.

Proof

i. By "Theorem 2.1", we have $i D(K, Z) \subseteq D(K, Z)$.
ii. Let $x \in i D(K, Z)$ then for each $\operatorname{SIOS}(M, Z)$ containing x we get
$((K, Z) \widetilde{\cap}(M, Z)) \widetilde{\lceil }\{x\} \neq \phi \ldots \ldots$. 1)
Since $(K, Z) \widetilde{\subseteq}(L, Z), \Longrightarrow(K, Z) \widetilde{\cap}(M, Z) \subseteq$
$(L, Z), \widetilde{\cap}(M, Z) \quad \Longrightarrow((K, Z) \widetilde{\cap}(M, Z)) \tilde{\}\{x\} \subseteq$ $((L, Z), \widetilde{\cap}(M, Z)) \widetilde{\}\{x\} \neq \phi$.
From (i) we obtain, $((L, Z), \widetilde{\cap}(M, Z)) \tilde{\}\{x\} \neq \phi \Rightarrow$ $x \in i D(L, Z)$,. hence $i D(K, Z) \subseteq i D(L, Z)$.
iii. Since (K, Z)
$\widetilde{\subseteq}(K, Z) \widetilde{U}(L, Z)$
, $(L, Z) \widetilde{\subseteq}(K, Z) \widetilde{\cup}(L, Z)$, By (ii) we get $i D(K, Z)$ $\subseteq i D((K, Z) \widetilde{\cup}(L, Z)$,$) ,$
$i D(L, Z), \subseteq i D((K, Z) \widetilde{\mathrm{U}}(L, Z)$,$) .$
$\Longrightarrow i D(K, Z) \cup i D(L, Z), \subseteq$
$i D((K, Z)$ U ($L, Z),) \ldots \ldots \ldots$. (*) $\left.^{*}\right)$.
Now consider $x \notin i D(K, Z), \quad x \notin i D(L, Z)$, . Then there exists two SIOSs $\left(M_{x}^{K}, Z\right),\left(M_{x}^{L}, Z\right)$ containing x wherein $\left.\left.(K, Z) \tilde{\cap}\left(M_{x}^{K}, Z\right)\right) \tilde{\lceil }\{x\}=\phi, \quad(L, Z) \tilde{\cap}\left(M_{x}^{L}, Z\right)\right)$ $\tilde{\lceil }\{x\}=\phi$.
$\operatorname{Let}_{(M, Z)}=\left(M_{x}^{K}, Z\right) \tilde{\Pi}_{\left(M_{x}^{L}, Z\right)}$. Where $\quad(M, Z)$ is a SIOS, $\left(X, \operatorname{IOS}\left(X_{Z}\right)\right)$ is a STS). $(((K, Z) \widetilde{\cup}(L, Z),) \widetilde{n}(M, Z)) \widetilde{\lceil }\{x\}=$
$((K, Z) \widetilde{\cap}(M, Z)) \widetilde{\cup}((L, Z),) \widetilde{\cap}(M, Z)) \widetilde{\{ }\{x\}$
$=(((K, Z) \widetilde{\cap}(M, Z)) \tilde{\}\{x\}) \widetilde{\cup}(((L, Z),) \widetilde{\cap}(M, Z)) \tilde{\}\{x\})=$ $\emptyset \cup \emptyset=\emptyset . \quad$ Hence $x \notin i D((K, Z) \widetilde{\cup}(L, Z),) \Longrightarrow$ $i D((K, Z) \widetilde{\cup}(L, Z)) \subseteq i D(K, Z) \widetilde{\cup} i D(L, Z) \ldots \ldots \ldots(* *)$
From (*) and $\left({ }^{* *}\right)$ we get, $i D(((K, Z)) \widetilde{u}(L, Z))=$ $i D((K, Z)) \widetilde{u} i D(L, Z)$.
iv. $\quad \operatorname{Since}(K, Z) \widetilde{\cap}(L, Z) \widetilde{\subseteq}\left(F_{1}, E\right)$.
$(K, Z) \widetilde{\cap}(L, Z) \widetilde{\subseteq}(L, Z)$.
From (ii) we obtain that $i D((K, Z) \widetilde{\cap}(L, Z)) \subseteq$ $i D(K, Z), i D((K, Z) \widetilde{\cap}(L, Z)) \subseteq i D(L, Z)$,
Hence, $i D((K, Z) \widetilde{\cap}(L, Z)) \subseteq i D(K, Z) \cap i D(L, Z)$.
$\underline{\boldsymbol{v}}$. Consider $x \in i D(K, Z) \Longrightarrow$ for each $\operatorname{SIOS}(M, Z)$ containing x.
We get, $((K, Z) \widetilde{\cap}(M, Z)) \widetilde{\{x\}} \neq \phi \quad \Longrightarrow$
$((K, Z) \widetilde{\cap}(M, Z)) \widetilde{n}\{x\}^{C}$
$=\left((K, Z) \widetilde{\cap}\{x\}^{C}\right) \widetilde{\cap}\left((M, Z) \widetilde{\cap}\{x\}^{C}\right)=$
$((K, Z) \widetilde{\Upsilon}\{x\}) \widetilde{\cap}((M, Z)) \widetilde{\lceil\{x\}=}$
$((K, Z) \widetilde{\} x\}) \widetilde{n}(M, Z)) \widetilde{\{ }\{x\} \neq \phi \quad \Rightarrow$ $x \in i D((K, Z)\lceil\{x\})$.
Theorem2.4: $\operatorname{Consider}\left(X, \operatorname{SIOS}\left(X_{Z}\right)\right)$ as a "soft topological space"(STS), for "soft sets"(SSs)
$(P, Z),(Q, Z)$ in X, so the next phrases hold:
i. $\quad \operatorname{iCl}(X)=X, \operatorname{iCl}(\phi)=\phi$.
ii. $i C l(P, Z)$ is a SICS.
iii. $(P, Z) \subseteq i C l(P, Z)$.
iv. $(P, Z)=i C l(P, Z)$ if and only $\operatorname{if}(P, Z)$ is a $S I C S$.
v. $i C l(P, Z)$ is the smallest SICS containing (P, Z).
vi. $i C l(P, Z)=\operatorname{iCl}(\operatorname{iCl}(P, Z))$.
vii. $i C l((P, Z) \widetilde{\cup}(Q, Z))=i C l(P, Z) \widetilde{\cup} i C l(Q, Z)$.
viii. $i C l(P, Z)=(P, Z) \widetilde{\sim} i D(P, Z)$.

Proof: viii. By (iii) we obtain $(P, Z) \widetilde{\subseteq} \operatorname{Cl}(P, Z)$ (1)
And by "theory (2.3)(ii)" $\Longrightarrow i D(P, Z) \subseteq i D(i C l(P, Z))$ (2)
Since $i C l(P, Z) \quad$ is \quad a $\quad \operatorname{SICS} \quad \Rightarrow$ $i D(i C l(P, Z)) \subseteq i C l(P, Z) \ldots$ (3)
From (2) and (3) we get $i D(P, Z) \widetilde{\subseteq} i C l(P, Z)$ (4)
From (1) and (4) we have $(P, Z) \widetilde{\sim} i D(P, Z) \widetilde{\subseteq} i C l(P, Z)$.
Now, let $x \widetilde{\in} i C l(P, Z)$. If $x \widetilde{\epsilon}(P, Z)$, then the proof is obtained, If $x \widetilde{\notin(P, Z), \quad \text { each } \operatorname{SIOS}(M, Z)}$ containing x intersects (P, Z) at distinct point from x, so $x \in i D(P, Z)$,
thus
$\operatorname{iCl}(P, Z) \widetilde{\subseteq}(P, Z) \widetilde{U} i D(P, Z)$. Which completes the proof.
Definition2.4: Consider two STSs (X, τ, E) and (Y, ρ, H) with the mappings, $u: X \rightarrow Y, p: E \rightarrow H$ and $f_{p u}: S S\left(X_{E} \rightarrow S S\left(Y_{H}\right)\right.$.Then:

1. [11]. If $f_{p u}(F, E) \widetilde{\in} \operatorname{SOS}\left(Y_{H}\right)$, $\forall(F, E) \widetilde{\in} \operatorname{SOS}\left(X_{E}\right), \quad f_{p u} \quad$ is named soft open mapping $S O M$.
2. [11]. If $f_{p u}(F, E) \widetilde{\in} \operatorname{SCS}\left(Y_{H}\right), \forall(F, E) \widetilde{\in} \operatorname{SCS}\left(X_{E}\right)$, $f_{p u}$ is named soft closed mapping $S C M$.
3. If $f_{p u}(F, E) \widetilde{\in} \operatorname{SIOS}\left(Y_{H}\right), \forall(F, E) \widetilde{\epsilon} \operatorname{SOS}\left(X_{E}\right), \quad f_{p u}$ is named soft i - open mapping SI-OM.
4. If $f_{p u}(F, E) \widetilde{\in} \operatorname{SICS}\left(Y_{H}\right), \forall(F, E) \widetilde{\in} \operatorname{SCS}\left(X_{E}\right), \quad f_{p u}$ is named soft i - closed mapping SI-CM.
5. [11].

If $f_{p u}^{-1}(G, H) \widetilde{\in} \operatorname{SOS}\left(X_{E}\right)$ $, \forall(G, H) \widetilde{\in} \operatorname{SOS}\left(Y_{H}\right), f_{p u}$ is named soft continuous mapping SContM.
6. If $f_{p u}^{-1}(G, H) \widetilde{\in} \operatorname{SIOS}\left(X_{E}\right) \quad, \forall(G, H) \widetilde{\in} \operatorname{SOS}\left(Y_{H}\right)$, $f_{p u}$ is named soft i-continuous mapping SI-ContM.
7. If $f_{p u}^{-1}(G, H) \widetilde{\in} \operatorname{SICS}\left(X_{E}\right) \forall(G, H) \widetilde{\in} \operatorname{SICS}\left(Y_{H}\right)$, $f_{p u}$ is named soft i - irresolute mapping SI-IreM.
Theorem2.5: Each SContM is SI-ContM.
Proof: Consider $f_{p u}: S S\left(X_{E} \rightarrow S S\left(Y_{H}\right)\right.$ as SContM. If (G, H) is a SOS in (Y, ρ, H) we have $f_{p u}^{-1}(G, H)$ is $S O S$ in (X, τ, E)(by suppose). By "Theory (2.1)", we obtain $f_{p u}^{-1}(G, H)$ is a $\operatorname{SIOS} \operatorname{in}(X, \tau, E)$. Hence, $f_{p u}$ is a SI-ContM.■
3. i-Soft Separation Axioms

Definition 3.1: [19]. Consider e_{P}, e_{Q} as any two distinct soft points $\operatorname{in}(X, \tau, Z)$, then (X, τ, Z) is considered:

1. Soft semi $-\mathrm{T}_{0}$ space, if there exist $\operatorname{SSOSs}(P, Z)$ or $(Q, Z) \quad$ wherein, $e_{P} \widetilde{\in}(P, Z), \quad e_{Q} \notin$ $(P, Z), e_{Q} \widetilde{\in}(Q, Z), e_{P} \notin(Q, Z)$, for each e_{P}, e_{Q} in X.
2. Soft semi $-\mathrm{T}_{1}$ space, if there exist two SSOSs (P, Z) and (Q, Z) Wherein, $e_{P} \widetilde{\in}(P, Z), \quad e_{Q} \widetilde{\notin}(P, Z)$, $e_{Q} \widetilde{\in}(Q, Z), e_{P} \widetilde{\not}(Q, Z)$, for each e_{P}, e_{Q} in X.
3. Soft semi $-\mathrm{T}_{2}$ space, if there exist two disjoint $\operatorname{SSOSs}(P, Z)$ and (Q, Z) wherein, $e_{P} \widetilde{\in}(P, Z)$,
$e_{Q} \widetilde{\in}(Q, Z)$, for each e_{P}, e_{Q} in X.
Definition 3.2: [20]. Consider x, y as any two distinct points $\operatorname{in}(X, \tau, L)$, then (X, τ, L) is considered:
4. Soft T_{0} space, if there exists a $\operatorname{SOS}(O, L)$ wherein either $x \widetilde{\in}(O, L), y \widetilde{\nexists}(O, L) \operatorname{or} y \widetilde{\in}(O, L), x \widetilde{\notin}(O, L)$, for each x, y in X.
5. Soft T_{1} space, if there exist two $\operatorname{SOSs}(O, L)$, (J, L) wherein, $x \widetilde{\in}(O, L), y \widetilde{\notin}(O, L)$ and $y \widetilde{\in}(J, L)$, $x \widetilde{\nexists}(J, L)$, for each x, y in X.
6. Soft T_{2} space, if there exist two disjoint $\operatorname{SOSs}(O, L),(J, L)$ wherein, $x \widetilde{\epsilon}(O, L)$ and $y \widetilde{\epsilon}(J, L)$, for each x, y in X.
Definition 3.3: Consider x, y as any two distinct points $\operatorname{in}(X, \tau, L)$ then (X, τ, L) is considered:
7. Softi- T_{0} space, if there exists a $\operatorname{SIOS}(O, L)$ wherein either, $x \widetilde{\in}(O, L), y \widetilde{\notin}(O, L)$ or $y \widetilde{\in}(O, L)$,

8. Softi- T_{1} (Individually, Soft semi- T_{1} and soft Soft $\alpha-\mathrm{T}_{1}$ space), if there exist two SIOSs (Individually, SSOSs and $S \alpha O S s)(O, L),(J, L)$ wherein, $x \widetilde{\in}(O, L), \quad y \widetilde{\not}(O, L)$ and $y \widetilde{\epsilon}(J, L)$,

9. Soft $\mathrm{i}-\mathrm{T}_{2}$ space, if there exist two disjoint $\operatorname{SIOSs}(O, L),(J, L)$ wherein $x \widetilde{\epsilon}(O, L)$ and $y \widetilde{\epsilon}(J, L)$, for each x, y in X.
Example3.1. Let $X=\{3,5\}, \tau=\left\{\phi_{E},\left(F_{1}, E\right), X_{E}\right\}$,
$E=\{s, r\}^{\prime \prime}$
Where, $\left(F_{1}, E\right)=\{(s,\{3\}),(r,\{3\})\}, \quad \operatorname{SIOS}\left(X_{E}\right)=$ $\left\{\phi_{E},\left(F_{1}, E\right), X_{E}\right\}$.
$3,5 \in X(3 \neq 5) \quad \exists\left(F_{1}, E\right) \in \operatorname{SIOS}\left(X_{E}\right) \quad$ Wherein $3 \tilde{\in}\left(F_{1}, E\right), 5 \tilde{\notin}\left(F_{1}, E\right) . \quad$ Therefore; (X, τ, E) is Soft i- T_{0} space .

Example3.2:

Let $X=\{7,8,9\}$
, $\tau=$
$\left\{\phi_{E},\left(F_{1}, E\right),\left(F_{2}, E\right),\left(F_{3}, E\right),\left(F_{4}, E\right),\left(F_{5}, E\right),\left(F_{6}, E\right), X_{E}\right\}$
$E=\{w, z\}^{\prime \prime}$ Where $\left(F_{1}, E\right)=\{(w,\{7\}),(z,\{7\})\}$,
$\left(F_{2}, E\right)=\{(w,\{8\}),(z,\{8\})\}$,
$\left(F_{3}, E\right)=$
$\{(w,\{9\}),(z,\{9\})\} .{ }^{\prime \prime}$
$\left(F_{4}, E\right)=\{(w,\{7,8\}),(z,\{7,8\})\}, \quad\left(F_{5}, E\right)=$
$\{(w,\{7,9\}),(z,\{7,9\})\}$,
$\left(F_{6}, E\right)=\{(w,\{8,9\}),(z,\{8,9\})\} . \operatorname{SOS}\left(X_{E}\right)=$
$\operatorname{SIOS}\left(X_{E}\right)=\operatorname{SSOS}\left(X_{E}\right)=\operatorname{S\alpha OS}\left(X_{E}\right)=\tau$.
$7,8 \in X(7 \neq 8) \quad \exists\left(F_{1}, E\right),\left(F_{2}, E\right) \in \operatorname{SOS}\left(X_{E}\right)$,
$\operatorname{SIOS}\left(X_{E}\right), \operatorname{SSOS}\left(X_{E}\right), \operatorname{S\alpha OS}\left(X_{E}\right)$.
Wherein
$7 \tilde{\epsilon}\left(F_{1}, E\right), 8 \widetilde{\notin}\left(F_{1}, E\right), 8 \tilde{\in}\left(F_{2}, E\right), 7 \tilde{\notin}\left(F_{2}, E\right)$.
$7,9 \in X(7 \neq 9) \exists\left(F_{1}, E\right),\left(F_{3}, E\right) \in \operatorname{SOS}\left(X_{E}\right)$,
$\operatorname{SIOS}\left(X_{E}\right), \operatorname{SSOS}\left(X_{E}\right), \operatorname{S\alpha OS}\left(X_{E}\right)$.
Wherein
$7 \tilde{\in}\left(F_{1}, E\right), 9 \widetilde{\notin}\left(F_{1}, E\right)$,
$9 \tilde{\in}\left(F_{3}, E\right), 7 \widetilde{\notin}\left(F_{3}, E\right)$.
$8,9 \in X(8 \neq 9) \exists\left(F_{2}, E\right),\left(F_{3}, E\right) \in \operatorname{SOS}\left(X_{E}\right)$,
$\operatorname{SIOS}\left(X_{E}\right), \operatorname{SSOS}\left(X_{E}\right), \operatorname{S\alpha OS}\left(X_{E}\right)$.
Wherein,
$8 \widetilde{\in}\left(F_{2}, E\right), 9 \widetilde{\notin}\left(F_{2}, E\right), 9 \tilde{\epsilon}\left(F_{3}, E\right), 8 \widetilde{\notin}\left(F_{3}, E\right)$.
Therefore; $\quad(X, \tau, E)$ is $\quad \operatorname{Soft}_{1}, \quad \operatorname{Soft} \alpha-\mathrm{T}_{1}$,
Soft semi- T_{1} and Soft $\mathrm{i}-\mathrm{T}_{1}$ space.
Definition3.4: $\quad(X, \tau, E)$ is said to be Soft i - regular space (SI-RS) if it satisfies the next condition: If (F, E) is a SICS in X and $x \in X, x \widetilde{\notin}(F, E)$
$\exists\left(G_{l}, E\right),\left(G_{2}, E\right) \in O S\left(X_{E}\right),\left(G_{l}, E\right) \tilde{\cap}\left(G_{2}, E\right)=\phi_{E}$
wherein, $(F, E) \simeq\left(G_{I}, E\right), x \widetilde{\in}\left(G_{2}, E\right)$.
Definition3.5: A Softi- T_{1} space is named $\operatorname{Softi}-\mathrm{T}_{3}$ if it is SIRS.
Definition3.6: $\quad(X, \tau, E) \quad$ considers
Softi - normal space (SI-NS) if the next condition satisfied: if $\left(F_{1}, E\right),\left(F_{2}, E\right)$ are two disjoint SICSs in $X \exists\left(G_{I}, E\right),\left(G_{2}, E\right) \in O S\left(X_{E}\right),\left(G_{I}, E\right) \tilde{\cap}\left(G_{2}, E\right)=\phi_{E}$.
Wherein $\left(F_{1}, E\right) \simeq\left(G_{1}, E\right),\left(F_{2}, E\right) \simeq\left(G_{2}, E\right)$.
Definition3.7: A Soft $\mathrm{i}-\mathrm{T}_{1}$ space is named $\operatorname{Softi}-\mathrm{T}_{4}$ if it is SINS.
Definition3.8: $\quad(X, \tau, E) \quad$ considers Soft i - completely regular space (SI-CRS) if the next condition satisfied: If $\left(F_{1}, E\right)$ is a SICS in X and $\quad x \in X, x \widetilde{\notin}\left(F_{1}, E\right)$, there exists $S I$ ContM $f_{p u}: S S\left(X_{E} \rightarrow S S\left(Y_{H}\right), \quad u: X \rightarrow Y, \quad p: E \rightarrow\right.$ $H,(X, \tau, E)$ and (Y, ρ, H) are STSs, $Y=[0,1]$, $\rho=\left\{\emptyset_{H}, Y\right\}$ Wherein $f_{p u}\left(F_{1}, E\right)=1_{H}, \quad(u(x)=$ $\left.1 \forall x \widetilde{\in}\left(F_{1}, E\right)\right), \quad f_{p u}\left(x_{E}\right)=0_{H},\left(u(x)=0, x \widetilde{\notin}\left(F_{1}, E\right)\right)$.
Definition3.9: A Soft $\mathrm{i}-\mathrm{T}_{1}$ space is named $\operatorname{softi}-\mathrm{T}_{(31 / 2)}$ if it is SI-CRS.

Definition3.10:

(X, τ, E) Considers Soft i - completely normal space (SI$C N S$) if the next condition satisfied: If $\left(F_{1}, E\right),\left(F_{2}, E\right) \tilde{\in} S S\left(X_{E}\right),\left(F_{1}, E\right) \widetilde{\cap}\left(F_{2}, E\right)=\phi_{E}$,
$\exists\left(I_{1}, E\right),\left(I_{2}, E\right) \tilde{\in} \operatorname{IOS}\left(X_{E}\right) \operatorname{s.t}\left(F_{1}, E\right) \subseteq\left(I_{1}, E\right),\left(F_{2}, E\right) \tilde{\subseteq}\left(I_{2}, E\right)$
Wherein $\left(I_{1}, E\right) \widetilde{\cap}\left(I_{2}, E\right)=\phi_{E}$.
Definition3.11: A Soft $\mathrm{i}-\mathrm{T}_{1}$ space is named $\operatorname{Soft} \mathrm{i}-\mathrm{T}_{5}$ if it is SI-CNS.

Definition3.12:

(X, τ, E) considers Soft i - perefectly normalspace (SI$P N S$)if the next condition satisfied: If $\left(F_{1}, E\right),\left(F_{2}, E\right)$ are disjoint SICSs in X, there exists SI-ContM $f_{p u}: S S\left(X_{E} \rightarrow S S\left(Y_{H}\right), \quad u: X \rightarrow Y\right.$, $p: E \rightarrow H,(X, \tau, E)$ and (Y, ρ, H) are STSs, $Y=[0,1]$, $\rho=\left\{\emptyset_{H}, Y\right\}$. Wherein $f_{p u}^{-1}\left\{0_{H}\right\}=\left(F_{1}, E\right),\left(u^{-1}(0)=\right.$ $\left.x, \forall x \widetilde{\in}\left(F_{1}, E\right)\right), f_{p u}^{-1}\left\{1_{H}\right\}=\left(F_{2}, E\right), \quad\left(u^{-1}(1)=\right.$ $\left.x, \forall x \widetilde{\in}\left(F_{2}, E\right)\right)$.

Definition3.13:

A Soft i- T_{1} space considers Soft $\mathrm{i}-\mathrm{T}_{6}$ if it is SI-PNS.
Example3.3:
Let $X=\{6,9\}, \tau=\left\{\phi_{E},\left(F_{1}, E\right),\left(F_{2}, E\right), X_{E}\right\}$,
$E=\{q, r\}$
.${ }^{\prime}$ Where, $\left(F_{1}, E\right)=\{(q,\{6\}),(r,\{6\})\},\left(F_{2}, E\right)=$
$\{(q,\{9\}),(r,\{9\})\}, \operatorname{SOS}\left(X_{E}\right)=\operatorname{SIOS}\left(X_{E}\right)=\tau$.
$\operatorname{SICS}\left(X_{E}\right)\left\{X_{E},\left(F_{1}, E\right)^{c}=\left(F_{2}, E\right),\left(F_{2}, E\right)^{c}\right.$

$$
\left.=\left(F_{1}, E\right), \phi_{E}\right\}
$$

1. $6,9 \in X(6 \neq 9) \quad \exists\left(F_{1}, E\right),\left(F_{2}, E\right) \in \operatorname{SIOS}\left(X_{E}\right)$.

Wherein $6 \tilde{\in}\left(F_{1}, E\right), 9 \tilde{\notin}\left(F_{1}, E\right)$,
$9 \tilde{\in}\left(F_{2}, E\right), 6 \widetilde{\not}\left(F_{2}, E\right)$. Therefore; (X, τ, E) is Soft i- T_{1} space .
2. $6,9 \in X(6 \neq 9) \quad \exists\left(F_{l}, E\right),\left(F_{2}, E\right) \in \operatorname{SIOS}\left(X_{E}\right),\left(F_{l}, E\right) \tilde{\cap}\left(F_{2}, E\right)=\phi_{E}$.

Wherein $6 \tilde{\in}\left(F_{1}, E\right), 9 \tilde{\in}\left(F_{2}, E\right)$.
therefore; (X, τ, E) is Soft $\mathrm{i}-\mathrm{T}_{2}$ space.
3. $\left(F_{2}, E\right)$ Is a SICS in X and $6 \in X, 6 \widetilde{\notin}\left(F_{2}, E\right)$
$\exists\left(F_{1}, E\right),\left(F_{2}, E\right) \in \operatorname{SIOS}\left(X_{E}\right),\left(F_{1}, E\right) \tilde{\cap}\left(F_{2}, E\right)=\phi_{E}$.
Wherein $\quad\left(F_{2}, E\right) \subseteq\left(F_{2}, E\right), 6 \tilde{\in}\left(F_{1}, E\right)$.therefore, (X, τ, E) is $S I-R S$.
4. $\left(F_{1}, E\right) \operatorname{And}\left(F_{2}, E\right)$ are $S I C S s$ in X, $\exists\left(F_{1}, E\right),\left(F_{2}, E\right) \in \operatorname{SIOS}\left(X_{E}\right),\left(F_{1}, E\right) \tilde{\cap}\left(F_{2}, E\right)=\phi_{E}$.
Wherein $\quad\left(F_{2}, E\right) \subseteq\left(F_{2}, E\right),\left(F_{1}, E\right) \subseteq\left(F_{1}, E\right)$. therefore, (X, τ, E) is $S I-N S$.
5. From (1) and (3) we obtain (X, τ, E) is Soft i-T3 space .
6. From (1) and (4) we obtain (X, τ, E) is Soft i-T T_{4} space .
7. Let $\quad f_{p u}: S S\left(X_{E} \rightarrow S S\left(Y_{H}\right)\right.$,be SI-ContM, $u: X \rightarrow Y, \quad p: E \rightarrow H, \quad Y=[0,1], \quad \rho=\left\{\emptyset_{H}, Y\right\}$, $\left(F_{2}, E\right)$ is \quad a \quad SICS \quad in $\quad X$ and $\quad 6 \widetilde{\notin}\left(F_{2}, E\right)$ Wherein $f_{p u}\left(F_{2}, E\right)=1_{H}, \quad\left(u(x)=1 \forall x \widetilde{\in}\left(F_{2}, E\right)\right)$, $f_{p u}\left(6_{E}\right)=0_{H}, \quad\left(u(6)=0,6 \widetilde{\notin}\left(F_{2}, E\right)\right)$.
Therefore, (X, τ, E) is SI-CRS.
8. (X, τ, E) is soft $\mathrm{i}-\mathrm{T}_{(31 / 2)}$ which is obtained from (1) and (7).
9.Since
$\left(F_{1}, E\right),\left(F_{2}, E\right) \tilde{\in} S S\left(X_{E}\right),\left(F_{1}, E\right) \widetilde{\sim}\left(F_{2}, E\right)=\phi_{E}$
$\exists\left(F_{1}, E\right),\left(F_{2}, E\right) \tilde{\subseteq} \operatorname{SIOS}\left(X_{E}\right) \operatorname{s.t}\left(F_{1}, E\right) \tilde{\subseteq}\left(F_{1}, E\right),\left(F_{2}, E\right) \tilde{\subseteq}\left(F_{2}, E\right)$.
Therefore, (X, τ, E) is SI-CNS.
10. (X, τ, E) is soft $\mathrm{i}-\mathrm{T}_{5}$ which is obtained from (1) and (9).
11. Consider $f_{p u}: S S\left(X_{E} \longrightarrow S S\left(Y_{H}\right)\right.$ as, SI-ContM $u: X \rightarrow Y, p: E \rightarrow H, \quad Y=[0,1], \rho=\left\{\emptyset_{H}, Y\right\}$, since $\left(F_{1}, E\right),\left(F_{2}, E\right)$ are two SICSs and since $f_{p u}^{-1}\left\{0_{H}\right\}=\left(F_{1}, E\right)$,
$\left(u^{-1}(0)=x, \forall x \widetilde{\in}\left(F_{1}, E\right)\right), f_{p u}^{-1}\left\{1_{H}\right\}=\left(F_{2}, E\right)$,
$\left(u^{-1}(1)=x, \forall x \widetilde{\in}\left(F_{2}, E\right)\right)$.Therefore, (X, τ, E) is SI-PNS.
12. (X, τ, E) is soft $\mathrm{i}-\mathrm{T}_{6}$ which is obtained by (1) and (9).

Theorem3.1:

Each soft i-T T_{1} space considers soft $\mathrm{i}-\mathrm{T}_{0}$.
Proof: By using "(Definition 3.3(1and2))" we get the required proof.
Theorem3.2: Each soft semi $-T_{1}$ space considers soft i-T .
Proof: By using "(Definitions (3.1(2), 3.3(2))" and by "(Theorem 2.2) ", we get the required proof. The converse is not true, Indeed:

Example3.4:

Let $X=\{2,4,6,8\}, \tau=\left\{\phi_{E},\left(F_{1}, E\right),\left(F_{2}, E\right),\left(F_{3}, E\right), X_{E}\right\}$,
$E=\{k, w\}$.Where $\left(F_{1}, E\right)=\{(k,\{2\}),(w,\{2\})\}$,
$\left(F_{2}, E\right)=\{(k,\{2,4\}),(w,\{2,4\})\}$,
$\left(F_{3}, E\right)=\{(k,\{2,4,6\}),(w,\{2,4,6\})\} .{ }^{\prime \prime}$
${ }^{\prime}\left(F_{4}, E\right)=\{(k,\{2,6\}),(w,\{2,6\})\}$,
$\left(F_{5}, E\right)=\{(k,\{2,8\}),(w,\{2,8\})\}$,
$\left(F_{6}, E\right)=\{(k,\{2,6,8\}),(w,\{2,6,8\})\}$,
$\left(F_{7}, E\right)=\{(k,\{2,4,8\}),(w,\{2,4,8\})\}$.
$\operatorname{SOS}\left(X_{E}\right)=\tau$.
$\operatorname{SSOS}\left(X_{E}\right)=\operatorname{S\alpha OS}\left(X_{E}\right)=$
$\left\{\phi_{E},\left(F_{1}, E\right),\left(F_{2}, E\right),\left(F_{3}, E\right), "\{(k,\{2,6\}),(w,\{2,6\})\}\right.$,
$\{(k,\{2,8\}),(w,\{2,8\})\},\{(k,\{2,6,8\}),(w,\{2,6,8\})\}$,
$\left.\{(k,\{2,4,8\}),(w,\{2,4,8\})\} X_{E}\right\}$.
$\operatorname{SIOS}\left(X_{E}\right)=$
$\left\{\phi_{E},\left(F_{1}, E\right),\left(F_{2}, E\right),\left(F_{3}, E\right), '\{(k,\{4\}),(w,\{4\})\}\right.$,
$\{(k,\{6\}),(w,\{6\})\},\{(k,\{2,6\}),(w,\{2,6\})\}$,
$\left.\{(k,\{4,6\}),(w,\{4,6\})\}, X_{E}\right\}$.

1. (X, τ, E) is not soft T_{1}, because it is impossible to find two $\operatorname{SOSs} \quad\left(F_{1}, E\right),\left(F_{2}, E\right) \quad$ Wherein
$x_{1} \tilde{\in}\left(F_{1}, E\right), x_{2} \widetilde{\notin}\left(F_{1}, E\right)$,
$x_{2} \tilde{\in}\left(F_{2}, E\right), x_{1} \widetilde{\notin}\left(F_{2}, E\right)$.
2. Similarly (X, τ, E) is not soft $\alpha-\mathrm{T}_{1}$.
3. (X, τ, E) Is not soft semi $-\mathrm{T}_{1}$
4. $(X, \tau, E) \quad$ Is soft $\mathrm{i}-\mathrm{T}_{1}$. \quad Since
$\forall x_{1}, x_{2} \in X\left(x_{1} \neq x_{2}\right) \quad \exists\left(F_{1}, E\right),\left(F_{2}, E\right) \in \operatorname{SIOS}\left(X_{E}\right)$

Wherein $x_{1} \tilde{\in}\left(F_{1}, E\right), x_{2} \tilde{\notin}\left(F_{1}, E\right)$,
$x_{2} \tilde{\in}\left(F_{2}, E\right), x_{1} \tilde{\not}\left(F_{2}, E\right)$.

Theorem3.3:

Each soft i $-\mathrm{T}_{2}$ space considers soft $\mathrm{i}-\mathrm{T}_{1}$ and soft $\mathrm{i}-\mathrm{T}_{0}$

Fig. 1: The Relations among soft $\mathrm{i}-\mathrm{T}_{2}$ space, soft $\mathrm{i}-\mathrm{T}_{1}$ and soft $\mathrm{i}-\mathrm{T}_{0}$.
Theorem3.4: Each SI-CRS is a SI-RS.
Proof: By using "(Definitions (3.4 and 3.8)", we get the required proof.
Theorem3.5: Each soft $\mathrm{i}-\mathrm{T}_{31 / 2}$ space considers softi-T T_{3}.
Proof: By using "(Definitions (3.5 and 3.9)", we get the required proof.
Theorem3.6: (X, τ, E) is named $S I-N S$ if Whether it fulfills the next state: For each two separated SICSs $\left(F_{1}, E\right),\left(F_{2}, E\right)$ in X, and for each real numbers closed interval $[a, b]$ there exists SI-ContM $f_{p u}: S S\left(X_{E} \rightarrow S S\left(Y_{H}\right), \quad u: X \rightarrow Y, \quad p: E \rightarrow H\right.$, $Y=[a, b], \rho=\left\{\emptyset_{H}, Y\right\}, f_{p u}\left(F_{1}, E\right)=a_{H},(u(x)=$ $\left.a \forall x \widetilde{\in}\left(F_{1}, E\right)\right), \quad f_{p u}\left(F_{2}, E\right)=b_{H}, \quad(u(x)=b, \forall x \in$ $\left(F_{2}, E\right)$.
Theorem3.7: Each soft $i-T_{4}$ space considers softi- $\mathrm{T}_{31 / 2}$.
Proof: Consider (X, τ, E) satisfies soft $-\mathrm{T}_{4}$ space definition, which leads to softi- $\mathrm{T}_{31 / 2}$ definition, the proof is complete "Theorem3.6".
Theorem3.8: Each softi- T_{5} space is softi- T_{4}
Proof: Consider $\quad(X, \tau, E) \quad$ satisfies soft $\mathrm{i}-\mathrm{T}_{5}$ space definition, which leads to softi- T_{4} definition, hence the proof is complete (since each two discrete SICSs are separated)
Theorem 3.9: Each soft subspace of softi- T_{2} space is a softi- T_{2}.
Proof: Consider (X, τ, Z) is softi- T_{2} and (W, δ, Z) as soft subspace of X, x and y are two distinct points in W, we shall prove that x and y contained in disjoint SIOSs in soft subspace topology for W. Since x and y are distinct points of X, there exists two disjoint SIOSs of X, as, $\left(K_{1}, Z\right),\left(K_{2}, Z\right)$ Wherein $x \widetilde{\in}\left(K_{1}, Z\right)$, $\quad y \widetilde{\in}\left(K_{2}, Z\right)$. $\operatorname{Consider}\left(K_{1}, Z\right) \widetilde{\cap} W \operatorname{and}\left(K_{2}, Z\right) \widetilde{\cap} W$ are soft subsets of W.
Clearly:

1. $x \in W$ and $x \widetilde{\in}\left(K_{1}, Z\right)$, so $x \widetilde{\in}\left(K_{1}, Z\right) \widetilde{\cap} W$. Similarly, $y \widetilde{\in}\left(K_{2}, Z\right) \widetilde{\cap} W$.
2. $\quad\left(K_{1}, Z\right) \widetilde{\cap} W$ And $\left(K_{2}, Z\right) \widetilde{\cap} W$ are disjoint since $\left(K_{1}, Z\right),\left(K_{2}, Z\right)$ are disjoint.
3. $\left(K_{1}, Z\right) \widetilde{\cap} W$ is SIOS relative over W, because it is the intersection with W of SIOS in X. Similarly, $\left(K_{2}, Z\right) \widetilde{\cap} W$ is also SIOS over W. Hence, we get two disjoint SIOSs containing x and y, over the subspace topology of W. Therefore W is soft $\mathrm{i}-\mathrm{T}_{2}$ space
Theorem3.10: Each soft subspace of $S I-R S$ is $S I-R S$. Proof: Consider (X, τ, L) is $S I-R S$ and R as soft subspace, $\quad x \in R \quad$ and $\quad\left(M_{1}, L\right)$ soft i - closed subset in R. Right away x may be a side of the point over $X, \quad\left(M_{1}, L\right)$ is soft i - closed subset of X, wherein $\left(M_{l}, L\right) \tilde{\cap} R=\left(M_{l}, L\right)$. Such ($\left.M_{I}, L\right)$ exists by the way that soft subspace topology is defined. Obviously, whatever (M_{1}, L) is Picked dependent upon for those motivation, x impossible softly belongs to $\left(M_{l}, L\right)$, because the only points in $\left(M_{1}, L\right) \tilde{\cap} R$ are in a SS not containing x. Since X is $S I-R S$, we can find SIOSs $\left(J_{1}, L\right)$ and $\left(J_{2}, L\right)$ in X wherein, $x \tilde{\in}\left(J_{1}, L\right)$, $\left(M_{1}, L\right) \subseteq\left(J_{2}, L\right)$ and $\left(J_{1}, L\right),\left(J_{2}, L\right)$ are soft disjoint. Now, $\quad\left(J_{1}, L\right) \tilde{\cap} R$ and $\left(J_{2}, L\right) \tilde{\cap} R \quad$ are disjoint soft i - open subsets of R, with $x \in\left(J_{1}, L\right) \tilde{\cap} R$ and $\left(M_{1}, L\right) \tilde{\subseteq}\left(J_{2}, L\right) \tilde{\cap} R$.

Theorem3.11: Each soft i - closed subspace of $S I-N S$ is SI-NS.
Proof: Since the subspace is already soft i -closed, soft i - closed subsets of it are already SICSs in the whole space. So we do not have to expand the soft i-closed subsets. Now we separate soft i -closed subsets in the whole space. We have disjointed SIOSs of the whole space. Now, simply intersect these SIOSs with the soft subspace, to get disjoint SIOS of the subspace separating the two disjoint SICSs.

Corollaries3.1:

1. Each ${ }_{\text {softi- }}^{3}$ (respect., softi- $\mathrm{T}_{31 / 2}$, $\operatorname{softi}-\mathrm{T}_{4}$, soft $\mathrm{i}-\mathrm{T}_{5}$ and soft $\mathrm{i}-\mathrm{T}_{6}$ space) is soft $\mathrm{i}-\mathrm{T}_{1}$ but the converse is not necessary to be true because softi- T_{1} space is not necessary to be $S I-R S$ (respect.SI-CRS, SI-NS, SI-CNS and SI-PNS).
Proof: By using "(Definitions (3.5, 3.7, 3.9, 3.11, 3.13 and $3.3(2)$)"we get the required proof.
2. Each soft T_{0} space (respect., soft $T_{1}, \operatorname{soft} T_{2}$) is softi- T_{0} (respect. softi- T_{1}, softi- T_{2} space) but the converse is not necessary to be true.
Proof: The proof is obtained from "Theory 2.1".
From above we have the next diagram as appear in the Figure 2:

Fig. 2: The Relations among i-Soft Separation Axioms

Example3.5: Let $X=\{6,7\}, \tau=\left\{\phi_{E},\left(F_{1}, E\right), X_{E}\right\}$, $E=\{q, r\}$. "Where, $\left(F_{1}, E\right)=\{(q,\{6\}),(r,\{6\})\}$, $\operatorname{SOS}\left(X_{E}\right)=\operatorname{SIOS}\left(X_{E}\right)=\tau$.
$\operatorname{SICS}\left(X_{E}\right)=\left\{X_{E},\left(F_{1}, E\right)^{c}=\{(q,\{7\}),(r,\{7\})\}, \phi_{E}\right\}$, $6,7 \in \mathrm{X}(6 \neq 7) \exists\left(\mathrm{F}_{1}, \mathrm{E}\right) \tilde{\in} \operatorname{SIOS}\left(\mathrm{X}_{\mathrm{E}}\right)$. Wherein
$6 \tilde{\in}\left(F_{1}, E\right), 7 \tilde{\notin}\left(F_{1}, E\right)$, Therefore; $\quad(X, \tau, E) \quad$ is Softi- T_{0} space. But it is notSofti- T_{1} space. Thus, (X, τ, E) is notSofti- T_{2} space, also it is not Softi-T T_{3} space, it is notSofti- T_{4} space, etc.

4. New Results

Theorem 4.1: (X, τ, E) is softi-T。if and only if every two different points of X have a different soft i - closure:
$\forall x, y \in X(x \neq y), i C l(x, E) \neq i C l(y, E)$.
Proof: 1.Let $x \neq y$ to need $i C l(x, E) \neq i C l(y, E)$. For each two different points x and y in X. since the two $\operatorname{SSs} i C l(x, E), i C l(y, E)$ are different, there
exist a point z in X belongs only to one of these two SSs and let $z \tilde{\epsilon} i C l(x, E), z \tilde{\notin i C l}(y, E)$. If $x \tilde{\in} i C l(y, E)$ then
$i C l(x, E) \simeq i C l(i C l(y, E))=i C l(y, E)$. We have, $z \tilde{\in} i C l(y, E) \simeq i C l(y, E), \quad$ contradiction. Then
 2.4" containing x not y.

1. Then again let X be softi-T, space and let x, y be two different points in X. By softi- T_{o} space definition there exists $\operatorname{SIOS}(G, E)$ containing one of these two points not the other. Let $x \tilde{\in}(G, E), y \notin(G, E)$ then $(G, E)^{c}$ is SICS "Theorem 2.4"containing x not y. By $i C l(y, E))$ definition, we have $y \tilde{\in} i C l(y, E))$ but
 $i C l(x, E)) \neq i C l(y, E))$.

Theorem 4.2: (X, τ, E) is soft $\mathrm{i}-\mathrm{T}_{1}$ space on the off chance that and just if each singleton $S S$ belongs to it is SICS.
Proof: 1. Consider for each singleton $S S$ belongs to (X, τ, E) is SICS and x, y be two different points in X. Then $(x, E)^{c}$ is SIOS containing y not x, $(y, E)^{c}$ is SIOS containing x not y. Therefore; (X, τ, E) is a soft $\mathrm{i}-\mathrm{T}_{1}$.
2. Consider (X, τ, E) is a soft $\mathrm{i}-\mathrm{T}_{1}, x \in X$. From soft $\mathrm{i}-\mathrm{T}_{1}$ definition we obtain, for each two different points in $X \quad(x, y \in X, x \neq y)$ there exists SIOS $\left(G_{y}, E\right)$ containing $y \quad$ not $\quad x \quad$ wherein $y \tilde{\epsilon}\left(G_{y}, E\right) \subseteq(x, E)^{c}$. Then,
$(x, E)^{c}=\tilde{U}\{(y, E):(y, E) \tilde{\neq}(x, E)\} \tilde{\subseteq}(x, E)^{c}$. Therefore; $(x, E)^{c}$ is the union of SIOSs, then it is SIOS. Then (x, E) is $\operatorname{SICS} \forall x$ in X.
Theorem 4.3: (X, τ, E) is $S I-R S$ if and only if $\forall x \in X$ and for each $\operatorname{SIOS}(G, E)$ containing x there exists a $\operatorname{SIOS}\left(G^{*}, E\right)$ wherein $x \tilde{\in}\left(G^{*}, E\right)$ and $i C l\left(G^{*}, E\right) \cong(G, E)$.
Proof: 1. Consider (X, τ, E) as $S I-R S$ and let $x \tilde{\in}(G, E)$ where (G, E) is SIOS in X. Then $(F, E)=X_{E} \tilde{\}(G, E)$ is SICS not contains x. By SI$R S$ definition, there exist two discrete $\operatorname{SIOSs}\left(G_{x}, E\right)$ and $\left(G_{F}, E\right)$ wherein $x \tilde{\epsilon}\left(G_{x}, E\right)$ and $(F, E) \simeq\left(G_{F}, E\right)$. Since $\left(G_{x}, E\right) \simeq\left(G_{F}, E\right)^{c}$, then $i C l\left(G_{x}, E\right) \simeq i C l\left(G_{F}, E\right)^{c}=\left(G_{F}, E\right)^{c} \simeq(F, E)^{c}=(G, E)$. Therefore; $\quad x \tilde{\in}\left(G_{x}, E\right)$ and $i C l\left(G_{x}, E\right) \tilde{\subseteq}(G, E)$. Then (G, E) is SIOS which we need.
2. Consider the condition above is true and we will show (X, τ, E) is $S I-R S$. Let $x \tilde{\notin}(F, E)$ where (F, E), is SICS. Then $x \tilde{\epsilon}(F, E)^{c}$ where $(F, E)^{c}$ is SIOS in X. Then there exists $\operatorname{SIOS}\left(G^{*}, E\right)$ wherein $x \tilde{\in}\left(G^{*}, E\right) \quad$ and $i C l\left(G^{*}, E\right) \tilde{\subseteq}(F, E)^{c}$. Obviously, $\left(G^{*}, E\right)$ and $\left(i C l\left(G^{*}, E\right)\right)^{c}$ are discrete SIOSs wherein $x \tilde{\Theta}\left(G^{*}, E\right),(F, E) \subseteq\left(i C l\left(G^{*}, E\right)\right)^{c}$. Therefore; (X, τ, E) is $S I-R S$.
Theorem 4.4: (X, τ, E) is SI-NS if and only if for each $\operatorname{SICS}(F, E)$ and for each $\operatorname{SIOS}(G, E)$ containing (F, E) there exists $\operatorname{SIOS}\left(G^{*}, E\right)$ wherein
$(F, E) \subseteq\left(G^{*}, E\right)$ and $i C l\left(G^{*}, E\right) \simeq(G, E)$.
Proof: 1. Consider (X, τ, E) be $S I-N S$ be and $\operatorname{let}(F, E)$ be SICS contained in $\operatorname{SIOS}(G, E)$ then $(K, E)=$ $X_{E} \tilde{\}(G, E)$ is SICS, where (K, E) and (F, E) are discrete $S S s$. By $S I-N S$ definition there exist two $\operatorname{SIOSs}\left(G_{K}, E\right)$ and $\left(G_{F}, E\right) \quad$ wherein
$(K, E) \simeq\left(G_{K}, E\right)$ and $(F, E) \subseteq\left(G_{F}, E\right)$. Since
$\left(G_{F}, E\right) \subseteq X_{E} \tilde{\}\left(G_{K}, E\right)$ then $i C l\left(G_{F}, E\right) \simeq$
$\operatorname{iCl}\left(X_{E} \widetilde{\}\left(G_{K}, E\right)\right)=X_{E} \tilde{\}\left(G_{K}, E\right) \quad=\widetilde{\subseteq} X_{E} \widetilde{\}(K, E)=$
(G, E). Therefore, $x \tilde{\epsilon}\left(G_{x}, E\right)$ and $i C l\left(G_{x}, E\right) \tilde{\subseteq}(G, E)$.Then $\left(G_{F}, E\right)$ is the wanted SIOS.
2. Think about the condition above is valid; we will demonstrate that (X, τ, E) is SI-NS. Consider $\left(F_{1}, E\right)$ and $\quad\left(F_{2}, E\right)$ as two discrete SICSs in X, then $\left(F_{1}, E\right) \widetilde{\subseteq}\left(X_{E} \widetilde{\}\left(F_{2}, E\right)\right)$ where $X_{E} \widetilde{\}\left(F_{2}, E\right)$, is SIOS in X. Then there exists $\operatorname{SIOS}\left(G^{*}, E\right)$ wherein $\left(F_{1}, E\right) \simeq\left(G^{*}, E\right)$ and $\quad i C l\left(G^{*}, E\right) \simeq\left(X_{E} \widetilde{\Upsilon}\left(F_{2}, E\right)\right)$. obviously $\left(G^{*}, E\right)$ and $X_{E} \tilde{\lceil } \operatorname{iCl}\left(G^{*}, E\right)$ are discrete SIOSS wherein
$\left(F_{l}, E\right) \simeq\left(G^{*}, E\right),\left(F_{2}, E\right) \simeq\left(X_{E} \widetilde{\backslash} \operatorname{Cl}\left(G^{*}, E\right)\right.$. Hence, (X, τ, E) is $S I-N S$.
Theorem 4.5: (X, τ, E) is $S I-N S$ if and only if for any disjoint SICSs $\left(F_{1}, E\right),\left(F_{2}, E\right)$, there exists SI-ContM, $f_{p u}: S S\left(X_{E}\right) \rightarrow S S\left(Y_{H}\right)($ where $u: X \rightarrow Y, p: E \rightarrow$ $\left.H, Y=[0,1], \rho=\left\{\varnothing_{E}, Y\right\}\right)$, wherein $f_{p u}\left(F_{l}, E\right)=\left\{0_{H}\right\}$, $,\left(u(x)=0, \forall x \widetilde{\epsilon}\left(F_{1}, E\right)\right), \quad f_{p u}\left(F_{2}, E\right)=\left\{1_{H}\right\}, \quad(u(x)=$ $\left.1, \forall x \widetilde{\in}\left(F_{2}, E\right)\right)$.
Proof: Let (X, τ, E) be $S I-N S$ and $\operatorname{let}\left(F_{1}, E\right),\left(F_{2}, E\right)$ be two SICSs in X. Set $\left(F_{10}, E\right)$ to be $\left(F_{1}, E\right)$, and set $\left(F_{I I}, E\right)$ to be X. Let $\left(F_{1 / / / 2}, E\right)$ be a set containing $\left(F_{10}, E\right)$ whose soft i - closureis contained in $\left(F_{I I}, E\right)$. When all is said in done, inductively characterize for every normal number n and for every single regular number $a \prec 2^{n-1}$, $\left(F_{l\left(\frac{2 a+1}{2^{n}}\right)}, E\right)$ to be
 soft i -closure is contained within the complement $\operatorname{of}_{\left(F_{1\left(\frac{a+1}{2^{n-1}}\right.}, E\right)}$. This defines $\left(F_{l k}, E\right)$ where k is a rational number in the interval [0,1] expressible in the form $\frac{a}{2^{n}}$ where a and n are entire numbers. Now define the mapping $f_{p u}: S S\left(X_{E}\right) \rightarrow S S\left(Y_{H}\right)$ to be $f_{p u}\left(k_{E}\right)=\inf \left\{x: k \widetilde{\in}\left(F_{1 x}, E\right)\right\}, \quad(u(k)=$ $\inf \left\{x: k \in\left(F_{1 x}(e), \forall e \in E\right)\right\}$. Consider any element x within $S N S X$, and consider any open interval (a, b) around $f_{p u}(x)$. There exists rational numbers c and d in that expressible open interval in the form $\frac{k}{2^{n}}$ where k and n are whole numbers, wherein $c<f_{p u}(x)<d$. If $c<0$, then replace it with 0 , and if $d>1$, then replace it with 1 . Then the intersection of the complement of the set $\left(F_{I c}, E\right)$ and the set $\left(F_{I d}, E\right)$ is soft open neighborhood of $f(x)$ with image with $(a, b)(a, b)$, obtaining the map is SContM. Since each SContM is SI-ContM "Theorem $2.5^{\prime \prime}$ we obtain, $f_{p u}$ is SI-ContM.
Conversely, considers for any two disjoint SICSs, there is SI -ContM
$f_{p u}: S S\left(X_{E}\right) \rightarrow S S\left(Y_{H}\right)($ where $u: X \rightarrow Y \quad, \quad p: E \rightarrow$ $\left.H, \quad Y=[0,1], \quad \rho=\left\{\emptyset_{E}, Y\right\}\right), \quad$ wherein $f_{p u}(x)=\left\{0_{H}\right\}$ $,\left(u(x)=0, \forall x \widetilde{\epsilon}\left(F_{1}, E\right)\right), f_{p u}(x)=\left\{1_{H}\right\}, \quad,(u(x)=$ $\left.1, \forall x \widetilde{\in}\left(F_{2}, E\right)\right)$. Since the disjoint $S S([0,0.5), E)$ and $((0.5,1], E)$ are $S I O S s$ and under those soft topology subspace, the inverses $f_{p u}^{-l}([0,0.5))$, which contains X, and $f_{p u}^{-1}([0.5,1])$, which contains Y, are also SIOSs and disjoint.
Remark4.1: Consider $\left(X^{*}, \tau^{*}, E\right)$ as a partial $S T S$ of (X, τ, E) and (F, E) be $S S$ in X^{*} then $\tau^{*} \subseteq \tau \subseteq \operatorname{IOS}\left(X_{E}\right)$ if and only if $X^{*} \in \tau$.
Theorem4.6: $(X, \tau, L) \quad$ is $S I-C N S$ in the event that and just if partial STS of it is SI-NS.

Proof:

1. Consider (X, τ, L) as SI-CNS and let $\left(X^{*}, \tau^{*}, E\right) \quad$ be a partial $S T S$ of X. Let (W, L), (N, L) be two discrete SICSs in X, then:
$(W, L) \tilde{n}_{i C l}(N, L)=i C l(W, L) \tilde{n}_{i} C l(N, L)=X * \tilde{n}_{i C l}(W, L) \tilde{n}_{i} C l(N, L)$ $=i C l^{*}(W, L) \tilde{\cap}_{i} i l^{*}(N, L)=(W, L) \tilde{\cap}(N, L)=\phi$. Then
$(W, L),(N, L)$ are separated $S S s$ in X. By SI-CNS definition there exists two $\operatorname{SIOSs}\left(J_{1}, L\right),\left(j_{2}, L\right)$ wherein $(W, L) \simeq\left(J_{1}, L\right), \quad(N, L) \simeq\left(J_{2}, L\right)$ then $X * \tilde{\cap}\left(J_{l}, L\right), X * \tilde{\cap}\left(J_{2}, L\right)$ are discrete SIOSs in $X *$. Where $\quad(W, L) \widetilde{\subseteq} X * \tilde{\cap}\left(J_{l}, L\right),(N, L) \simeq X * \cap\left(J_{2}, L\right)$. Therefore; $\left(X^{*}, \tau^{*}, E^{*}\right)$ is SI-NS.
2. Then again, consider each partial STS of (X, τ, L) as $S I-N S$ and prove that X is SI-CNS. Let $\left(B_{1}, L\right),\left(B_{2}, L\right)$ be separated sets in X and let SIOS $\left[i C l\left(B_{1}, L\right) \tilde{\cap} i C l\left(B_{2}, L\right)\right]^{c}=X *$ be a partial STS of X, this space is SI-NS (by suppose) and $X * \tilde{\cap}_{i} C l\left(B_{l}, L\right), X * \tilde{\cap}_{i C l}\left(B_{2}, L\right)$ are two discrete SICSs in X^{*}. At that point there exist two discrete SIOSs $\left(J_{B 1}, L\right),\left(J_{B 2}, L\right)$ in $\quad X^{*} \quad$ wherein $X * \tilde{\cap} i C l\left(B_{1}, L\right) \simeq\left(J_{B l}, L\right), X * \tilde{\cap} i C l\left(B_{2}, L\right) \widetilde{\subseteq}\left(J_{B 2}, L\right)$.
Since, $X *$ is SIOS in X, then $\left(J_{B I}, L\right),\left(J_{B 2}, L\right)$ are SIOSs in X too "Remark 4.1".Then $\left(B_{1}, L\right) \tilde{\subseteq} X * \tilde{\bigcap} i C l\left(B_{1}, L\right) \tilde{\subseteq}\left(J_{B 1}, L\right),\left(B_{2}, L\right) \simeq X * \tilde{\cap} i C l\left(B_{2}, L\right) \simeq\left(J_{B 2}, L\right)$. Therefore; (X, τ, E) is $S I-C N S$.
Theorem 4.7: If (X, τ, E) is $S I-N S$, and then it considers as $S I-C R S$ in also just if it is $S I-R S$.
Proof: It is enough to prove each $S I-N S$ and $S I-R S$ space is $S I-C R S$ "Theory 3.4 ". Let $x \tilde{\notin}(F, E)$ where,
(F, E) is SICS in X, then $x \tilde{\in}(F, E)^{C}$ where $(F, E)^{c}$ is SIOS. Then there exists $\operatorname{SIOS}\left(G^{*}, E\right)$ wherein $x \tilde{\epsilon}\left(G^{*}, E\right)$ and $\quad i C l\left(G^{*}, E\right) \tilde{\subseteq}(F, E)^{c}$ "Theory 4.3". Since (F, E) and $i C l\left(G^{*}, E\right)$ are discrete SICSs in SI-NS (X, τ, E) and by "Theorem3.6", there exists $S I$ ContM $f_{p u}: S S\left(X_{E}\right) \rightarrow S S\left(Y_{H}\right)$ wherein
$f_{p u}(F, E)=\left\{1_{H}\right\},(u(x)=1, \forall x \widetilde{\in}(F, E))$,
$f_{p u}\left(i C l\left(G^{*}, E\right)\right)=\left\{O_{H}\right\},(u(x)=0, \forall x \widetilde{\in} \operatorname{iCl}(G *$
$, E)$ and \quad since $x \tilde{\epsilon}\left(G^{*}, E\right)$ then $f_{p u}(x, E)=\left\{O_{H}\right\}$.
Therefore; (X, τ, E) is SI-CRS.
Remark4.2: The "Definition 2.4(7)" is also true for SIOSs by taking the soft complements of it.
Theorem4.8: Let (X, τ, E) be $S T S$ and (Y, δ, H) is softi- T_{2} space. If $f_{p u}: S S\left(X_{E}\right) \rightarrow S S\left(Y_{H}\right)$ is injective 1-1 and SI-IreM, then X is softi- T_{2} space .
Proof: Consider $x, y \in X$ such that $x \neq y$. Since $f_{p u}$ is $1-1$, then $f_{p u}\left(x_{E}\right) \neq f_{p u}\left(y_{E}\right)$. Since (Y, δ, H) is softi $-\mathrm{T}_{2}$, at that point there exist two SIOSs $\left(G_{l}, H\right),\left(G_{2}, H\right) \quad$ in $\quad Y \quad$ wherein $f_{\text {put }}(x) \tilde{\epsilon}\left(G_{l}, H\right), f_{\text {put }}(y) \tilde{\epsilon}\left(G_{2}, H\right) \quad$ and $\left(G_{l}, H\right) \tilde{\cap}\left(G_{2}, H\right)=\phi . \quad$ Since $f_{p u}$ is SI-IreM then $f^{-1}\left(G_{l}, H\right), f^{-1}\left(G_{2}, H\right)$ are two SIOSs in X. $x \tilde{\in} f^{-I}\left(G_{l}, H\right), y \tilde{\epsilon} f^{-1}\left(G_{2}, H\right)$.
$f^{-1}\left(G_{l}, H\right) \tilde{\cap} f^{-1}\left(G_{2}, H\right)=\phi . \quad$ Hence $\quad X$ is softi- T_{2} space .
Theorem4.9: Let (X, τ, E) be $S T S$ and (Y, δ, E) is softi- T_{2} space. If $f_{p u}: S S\left(X_{E}\right) \rightarrow S S\left(Y_{H}\right) \quad$ is injective (one-one) and $S I$-ContM, then X is softi-T T_{2} space.
Proof: Similarly as in"Theory4.8", and using $f_{p u}$ as SI-ContM instead of SI-IreM.
Theorem4.10: Let (X, τ, E) and (Y, δ, H) be $S T S s$ and Y is SI-RS. If $f_{p u}: S S\left(X_{E}\right) \rightarrow S S\left(Y_{H}\right)$ is SICM, SIIreM and 1-1, then X is SI-RS.
 $f_{p u}$ is SICM, then $f_{p u}(F, E)$ is SICS in Y. $f_{p u}\left(x_{E}\right)=y_{E} \tilde{\notin} f_{p u}(F, E)$. But Y is $S I-R S$, then there are two $\operatorname{SIOSs}\left(G_{1}, H\right),\left(G_{2}, H\right) \quad$ in $\quad Y \quad$ wherein $f_{p u}(F, E) \tilde{\cong}\left(G_{l}, H\right) y \tilde{\in}\left(G_{l}, H\right) \quad$ and $\left(G_{l}, H\right) \tilde{\cap}\left(G_{2}, H\right)=\phi$. Since $f_{p u}$ is SI-IreM and 1-1, so $f_{p u}^{-l}\left(G_{l}, H\right), f_{p u}^{-l}\left(G_{2}, H\right) \quad$ are SIOSs in $X \quad$ and $x \tilde{\in} f_{p u}^{-1}\left(G_{l}, H\right),(F, E) \widetilde{\subseteq} f_{p u}^{-1}\left(G_{2}, H\right)$,
$f_{p u}^{-1}\left(G_{1}, H\right) \tilde{\cap} f_{p u}^{-1}\left(G_{2}, H\right)=\phi$. Hence X is SI-RS.
Theorem4.11: Consider $f_{p u}: S S\left(X_{E}\right) \rightarrow S S\left(Y_{H}\right)$ as SICM and SI-IreM from (X, τ, E) into (Y, δ, H). If Y is $S I-N S$, so is X.
Proof: Let $\left(F_{1}, E\right),\left(F_{2}, E\right)$ be SICSs in X wherein, $\left(F_{1}, E\right) \tilde{\cap}\left(F_{2}, E\right)=\phi$. Since $f_{p u}$ is SICM, then $f_{p u}\left(F_{l}, E\right), f_{p u}\left(F_{2}, E\right)$ are two SICSs in Y and $f_{p u}\left(F_{1}, E\right) \tilde{\cap} f_{p u}\left(F_{2}, E\right)=\phi$. Since Y is SI-NS and $f_{p u}$ is SI-IreM, then there are two SIOSs $\left(G_{l}, H\right),\left(G_{2}, H\right) \quad$ in $\quad Y \quad$ wherein

$$
\begin{array}{llr}
f_{p u}\left(F_{1}, E\right) \simeq\left(G_{1}, H\right), f_{p u}\left(F_{2}, E\right) \simeq\left(G_{2}, H\right) & \text { and } \\
\left(G_{1}, H\right) \tilde{\cap}\left(G_{2}, H\right)=\phi, & \text { also } & f_{p u}^{-1}\left(G_{1}, H\right), f_{p u}^{-1}\left(G_{2}, H\right) \\
\text { are } \\
\text { two } & \text { in } & X \text { and } \\
\left(F_{1}, E\right) \simeq f_{p u}^{-1}\left(G_{1}, H\right),\left(F_{2}, E\right) \subseteq f_{p u}^{-1}\left(G_{2}, H\right), & \\
f_{p u}^{-1}\left(G_{1}, H\right) \tilde{\cap} f_{p u}^{-1}\left(G_{2}, H\right)=\phi . \text { Hence } X \text { is } S I-N S .
\end{array}
$$

References

[1] Pervin W.J. (1985). Foundations of General Topology, Mosul University: Translated by Attallah Thamir Al-Ani.
[2] Pervin W.J. (1964). Foundations of General Topology, New York: Academic Press Inc: 201 pp.
[3] Levine N. (1963). Semi-open sets and semicontinuity in topological space, Amer. Math., Monthly, 70: 36-41.
[4] Njastad O. (1965). On some classes of nearly open sets, Pacific J. Math., 15: 961-970.
[5] Molodtsov D.A. (1999). Soft set theory-first results, Comp. Math. App., 37(4): 19-31.
[6] Maji P. K.; Biswas R. and Roy A. R. (2003). Soft set theory, Comp. Math., App., 45(4): 555-562.
[7] Aktas H. and Cagman N. (2007). Soft sets and soft groups, Information Sciences, 1(77): 2726-2735.
[8] Ali M. I.; Feng F.; Liu X.; Min W. K. and Shabir M. (2009). On some new operations in soft set theory, Comp. Math. App., 57(9): 1547-1553.
[9] Shabir M. and Naz M. (2011). On soft topological space, Comp. Math., App., 61(7): 1786-1799.
[10] Hussain S. and Ahmad B. (2011). Some properties of soft topological spaces, Comp. Math., App. 62(11): 4058-4067.
[11] Zorlutuna I.; Akdag M.; Min W.; and Atmaca S. (2012), Remarks on soft topological spaces, Annals of fuzzy mathematics and informatics, 3(2): 171-185.
[12] Hussain S. (2015). A note on soft connectedness, Journal of Egyptian Mathematical society, 23(1): 611.

Acknowledgment: The Authors are very grateful to the University of Mosul/ College of Education for Pure Sciences for their provided facilities, which helped to improve the quality of this work.
[13] Chen B. (2013). Soft semi-open sets and related properties in soft topological spaces, Appl. Math. Inf. Sci., 7(1): 287-294.
[14] Kannan K. (2012). Soft generalized closed sets in soft topological spaces, journal of theoretical and applied information technology, 37(1): 17-21.
[15] Askandar S.W. (2012). The property of extended and non-extended topologically for semi-open, α open and i-open sets with the application, M.Sc. Thesis. Mosul University, Mosul, Iraq.
[16] Askandar S. W. (2016). On i-separation axioms, international journal of scientific and engineering research, 7(5): 367-373.
[17] Askandar S.W. and Mohammed A.A. (2020). Soft ii-open sets in soft topological spaces, Open Access Library Journal, 7(5): 1-18.
[18] Nazmal S. and Samanta S. (2013). Neighborhood properties of soft topological spaces, Annals of Fuzzy Mathematics and Informatics, 6(1): 1-15.
[19] Hussain S. (2017). On some properties of weak soft axioms, European Journal of pure and applied mathematics, 10(2): 199-210.
[20] Georgiou D.N.; Megaritis A.C. and Petropoulos V.I. (2013), On soft topological spaces, Appl. Math., Inf. Sci, 7(5): 1889-1901.

> بديهيات الفصل الناعمة من النمط i-i في فضاءات تبولوجية ناعمة صبيح وديع اسكندر ، عامر عبد الاله محمد
> قسم الرياضيات ، كلية الترببية للعلوم الصرفة ، جامعة الموصل ، الموصل ، العرق الالـ

> الملخص
> في الدراسة الحالية ادخل الباحثان نوعا حديثا من بديهيات الفصل الناعمة اسمياه بديهيات الفصل الناعمة من النمط-i باستخدام تعريف
> المجموعات الهeتوحة الناعمة من النمط-i في فضاءات تبولوجية ناعمة (انظر [17])، العلاقات بين بديهيات النصل الناعمة من النمط-i والعديد
> من الامثلة تم اعطائها، علاوة على ذلك، الباحثان وجدا بان بديهيات الفصل الناعمة تؤدي الى بديهيات الفصل الناعمة من النمط-i النا ولكن العكس
> ليس من الضروري ان يكون صحيحا. ايضا، تم برهان العديد من المبرهنات حول بديهيات الفصل الناعمة من النمط-i.

