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ABSTRACT 

The current research presented the value of the lowest state energy for 

(GaMn)As/GaAs Quantum Well by using the Schrodinger equation and 

the localization landscape method, and a comparison between the 

quantum confinement potential and the wavefunction localization of both 

the landscape method and the Schrödinger method, a great match was 

found between the two methods, where the Landscape method 0.1% 

greater than Schrodinger method. From the Hamiltonian function 

analysis, it was found that the quantum eigenvalues in the discrete wells 

interact only when the corresponding eigenvalues are close to each other. 

Localization appears clearly in the sub-regions of quantum well, so, we 

prove damping in quantum wells, especially near the boundaries of the 

well. The effective quantum potential W was determined. 
 

Introduction 
For the last years, the calculation of the electronic 

structure of nanoscale semiconductors such as 

quantum wells and quantum dots has received wide 

and exciting interest, as knowing these properties 

helps improve the performance and design of those 

devices that vary according to their function, such as 

light-emitting diodes and some semiconductor lasers 

[1]. 

In order to modelling individual particle states of 

quantum dots, wells, and even superlattice structures, 

it requires solving the time-independent Schrödinger 

equation for these systems that contain millions of 

atoms, it is difficult to apply theory of standard 

function density and use experimental models for this 

huge number of atoms. Even if it can be applied, this 

requires solving the problem of the large eigenvalue 

of energy which remains an important numerical 

requirement [2]. When calculating the characteristics 

of the transmitter in its LED device, the numerical 

potential doubles very largely, making the process of 

self-numerical calculations more difficult. 

In the 2012 year, [3] presented the concept of the 

landscape function mathematically by solving the 

function u in the form of �̂�𝑢 = 1, since �̂� is an 

elliptical effect operator, and he demonstrated that 

this function has the ability to predict the shape and 

position of the localization of the low-energy 

eigenfunctions of the �̂�operator. Whether the 

localization was due to voltage disturbance or due to 

field geometry, or both [4]. Recently, [6,5] developed 

a landscape function theory that was originally used 

to compute Anderson's localization, in order to 

circumvent the problem of large eigenvalue 

computations to obtain wave functions in-ground and 

excitable states instead of solving the time-

independent Schrödinger equation [7,8]. 

Since then this method has been used in theoretical 

and experimental physics to predict plate vibration 

and the dual Laplace spectrum with Dirichlet 

boundaries [9], to study the quantitative efficiency of 

GaN light-emitting devices and the spectral properties 

of the Schrödinger equation with the Anderson 

potential within the specified range [10]. 

The research idea is summarized in the solution of the 

equation �̂�𝑢 = 1, where �̂�is the Hamiltonian effect 

in the time-independent Schrödinger equation 

�̂�𝜓𝑖 = 𝐸𝑖𝜓𝑖 , Ψ is the wave function for the state (i), 

and E is the eigenvalue of energy. In order to 

calculate the eigenvalue of the energy of the ground 

state, as well as the wavefunction in Schrodinger's 

equation, the problem of the large eigenvalue can be 
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addressed through the Hamiltonian matrix, which 

corresponds to the �̂�effect, which will be accurately 

constructed depending on the basic electronic 

structure. This structure is for contrasting 

semiconductor structures according to the k.p method 

or effective mass approximations of the beam, where 

the dimension of the matrix depends on the number 

of atoms in the system. Where the landscape theory 

divides the system into weakly connected sub-regions 

to form areas of the spatial distribution of self-

vibrating shapes, which are derived from the value of 

the eigenvalue of energy. Where it can reduce the 

linear behavior of the system to knowing its patterns 

of vibration, which means the functions and the 

eigenvalues of the spatial differential factor 

associated with the wavenumber itself [11]. 

According to this theory, the precise spatial location 

of the quantum states in the potential well V(r) can be 

predicted using u(r) solution of the simplified 

Dirichlet problem, which is called the localization 

scene.  

Theoretical Model 

Localization phenomenon is defined as the 

concentration of the system's eigenfunctions in a 

small part of the surrounding original field and is 

close to or equal to zero in the rest of the regions, 

which leads to preventing its spread completely. The 

wave localization occurs in all vibrating systems in 

nature, starting with traditional mechanics and ending 

with quantum mechanics, where it arises. In irregular 

geometrical systems (weak localization) as well as in 

disordered systems (Anderson localization). 

There are several types of localization, each of which 

exhibits a specific behavior. First: When it is caused 

by the irregular geometry of the vibration field, here 

it is classified as weak localization characterized by a 

slow decay of the amplitude pattern away from its 

generating region. Secondly, it can arise due to a 

dampening disturbance in the system which is called 

the localization of Anderson who discovered it in 

1958 [12]. The amplitude decay pattern moves away 

from the region of its generation where there is strong 

localization. Finally, there is localization that differs 

from high-frequency localization in specific domains 

possessing stable orbits such as ball bounce mode 

[13]. 

To investigate the localization of the wave function in 

these structures, the carrier wave functions are 

computed by solving the Schrödinger equation and 

the landscape method. This method requires 

knowledge of the potential energy of the well. The 

present calculation of the carrier potential energy 

includes band displacement effects between GaAs 

and GaMnAs (see Figure 1). 

 

 
Fig. 1: illustrates a landscape method for the 

potential energy of a GaAs quantum well, the 

effective mass was taken in the calculations. 
  

The state function u can be formulated on the basis of 

the wave function ψ where H is the Hamiltonian 

operator: 

�̂� = −
ℏ2

2𝑚
∇ + 𝑉 … … . … . . (1)  

The landscape function can be defined by solving the 

equation: 

�̂�𝑢 = −
ℏ2

2𝑚
∇u + 𝑉𝑢 = 1 … … … . (2)  

Ref. (12), shows that the sub-regions in which the 

localization of the eigenfunctions delimited by the 

valleys occurs in the Figure (2). This property is 

obtained from the fundamental inequality satisfied by 

the eigenfunction (𝜓) of the Hamiltonian influence 

with the eigenvalues of energy whose amplitude is 

equal to one. 

|𝜓(𝑟)| ≤ 𝐸𝑢(𝑟) … … … . . … . (3)  

In the other formulation, the small values of (𝑢(𝑟)) 

along the valley lines restrict the amplitude of the 

function (𝜓) to be small on the same lines, and 

therefore the lowest energy eigenfunctions reside 

within the regions surrounded by these lines, and thus 

the Landscape (𝑢) gives a division of the field into a 

set of sub-regions that Each one determines the 

localization the carrier. 

Where u(r) s the landscape function in the quantum 

well width, E is the energy eigenvalue. 

The eigenvalue and its corresponding energies can be 

determined from the function u itself from equation 

(2). All details are available at [9]. 

    The landscape function can be expressed by the 

function u (r) on the basis of the eigenvalues of the 

wave function ψ of the H operator: 

⟨1|𝑢⟩ = ∑ 𝛼𝑖⟨1|𝜓𝑖⟩𝑖 … … … … … … … … . … … . (4)  

Where: 

𝛼𝑖 = ⟨𝑢|𝜓𝑖⟩ = ∭ 𝑢(𝑟)𝜓𝑖(𝑟)𝑑3𝑟 … … … … . … . (5)  

Due to the self-adjacent condition of the Hamiltonian 

H, 𝛼𝑖 (is expansion coefficient) can be determined by 

the equation: 

𝛼𝑖 = ⟨𝑢|𝜓𝑖⟩ =
1

𝐸𝑖
⟨𝑢|𝐻𝜓𝑖⟩ =

1

𝐸𝑖
⟨1|𝜓𝑖⟩ … … . . (6)  
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Observing equation (6), it is showed that the 

contributions of high energy states appear to be fake 

of the wavefunction u and depends on factor 1/Ei, so 

if there is an energy interval between the ground 

states i and the irritant (i+1), then many of these 

states contribute to the expansion of the localization 

scene, and this is not desirable because this leads to a 

large difference in the ground state value of the wave 

function when compared to that result by application 

Schrödinger's equation. 

In the case of a quantum square well, the wave 

function is located in the sub-regions close to the 

potential barriers as in the figure (1) and away from 

the main areas inside the well because that results 

from the strengthening of the less active quantitative 

functions in those sub-regions. 

In many cases, when we consider the radioactive 

recombination within the voltage well of the vectors 

in each sub-wave localization region, the value of u 

can be estimated by: 

⟨1|𝑢⟩ ≅
⟨1|𝜓1

𝑚⟩

𝐸1
𝑚 |𝜓1

𝑚 . ⟩ = 𝛼𝑖|𝜓1
𝑚 . ⟩ … … . . (7)  

Where:  |𝜓1
𝑚 . ⟩ Is the general basic case in the sub-

region Ωm Accordingly to the hypothesis [4], the 

spread of u in the sub-region can be considered as: 

⟨1|𝜓1
𝑚⟩ ≈

|𝑢⟩

‖𝑢‖
… … … … … (8)  

By using equation (8), the ground state energy in the 

sub-region can be approximated: 

𝐸1
𝑚 = ⟨𝜓1

𝑚|�̂�|𝜓1
𝑚⟩ ≈

⟨𝑢|�̂�|𝑢⟩

‖𝑢‖2 =
⟨𝑢|1⟩

‖𝑢‖2  =

∭ 𝑢(𝑟)𝑑3𝑟Ω𝑚

∭ 𝑢2(𝑟)𝑑2𝑟Ω𝑚

… … . . (9)  

From equation (9) we can estimate the eigenvalue of 

the ground state: 𝑢(𝑟) = ⟨𝑟|𝑢⟩ 
The landscape function u(r) is not only for 

determining the ground state of energy and the wave 

function but also for determining the effective 

quantum confining potential W, where w=1/u. Where 

the exponential decay of the localization status is 

determined, starting from the sub-region towards the 

barriers, to start a new concept called the tunnel. 

Solution of localization landscape equation  

The Schrödinger equation gives the ground state of 

energy En the wave equation ψ in the form: 

−
ħ2

2𝑚∗

𝜕2

𝜕𝑧2 𝜓(𝑥) + 𝑉𝜓(𝑥) = 𝐸𝜓(𝑥) … … … … … (10)  

𝐸1 =
𝜋2ℏ2

2𝑚𝐿2 … … … (11)  

𝜓𝑛(𝑥) = √
2

𝐿
sin (

𝑛𝜋𝑥

𝐿
) ,   0 < 𝑥 < 𝐿 … . . (12)  

E1 represent the ground state energy, 𝜓𝑛(𝑥) is the 

wavefunction of n state. 

By equation (11) and Concept of localization scene 

theory according to Hilbert space we can get: 

𝑢 = ∑ 𝛼𝑛𝜓𝑛 … … … … … . (13)  

By seen the equations (6) and (13), we can conclude 

three main observations. Firstly, the quantum states 

of low energy contribute more to u function than the 

high energy states, secondly, in a certain sub-

localization region, the lower energy functions enter 

(i) In the analysis of equation (6) which is basically 

the local quantum states of this sub-region, thirdly, in 

each sub-region, the ground state has a shape similar 

to a small protruding protrusion, while the higher-

energy state takes orthogonally, positive and negative 

values, so that the numerical results become From the 

equation (13) it almost fades away.  

Note that this cancellation also occurs for non-

specified system states with high power. As a result, 

substituting (13) by (�̂�𝑢 = 𝐸𝑖𝑢) we get: 

�̂�𝑢 = ∑ 𝐸𝑛𝛼𝑛𝜓𝑛 = 1𝑛 … … . … . (14)  

And substituting (12): 

∑ 𝛼𝑛𝐸1𝑛2√
2

𝐿
sin (

𝑛𝜋𝑧

𝐿
) = 1𝑛 … … … . (15)  

We can rewrite equation (15) as [14]: 
4

𝜋
∑

1

𝑛

∞
𝑛𝑜𝑜𝑑

sin (
𝑛𝜋𝑧

𝐿
) = 1 … … . (16 )  

From above equations, 𝛼𝑛 equal to zero for even 

value of n, but it taken odd value, where: 

𝛼𝑛 =
2√2𝐿

𝐸1𝑛3𝜋
… … … … … … . . (17)  

So, from eq. (13) and eq. (17) we can get: 

𝑢(𝑧) = ∑
2√2𝐿

𝐸1𝑛3𝜋
𝜓𝑛(𝑧)∞

𝑛𝑜𝑑𝑑
  

𝑢(𝑧) =
2√2𝐿

𝐸1𝜋
∑

𝜓2𝑚−1(𝑧)

(2𝑚−1)3
∞
𝑚=1 ⇒  

= 𝜂 [𝜓1(𝑧) +
1

27
𝜓3(𝑧) +

1

125
𝜓5(𝑧) + ⋯ ] … … … … (18)  

Where:   𝜂 =
2√2𝐿

𝐸1𝜋
 . From equation (18) it is noticed 

that the series u converges for every 1/n
3
. This means 

that the Landscape method gives a satisfactory 

approximation of the ground state within the range [0, 

L]. 

To calculate the value of ground state energy 𝐸1
𝑚 for 

a square one-dimensional potential well: 

𝐸1
𝑚 =

∫ 𝑢.𝐻.𝑢∗𝑑𝑧

‖𝑢‖2 =
2𝜂√2𝐿

𝜋𝜂2

∑
1

(2𝑚−1)4
∞
𝑚=1

∑
1

(2𝑚−1)6
∞
𝑚=1

=

20√2𝐿

𝜂𝜋3 … … … . (19)  

𝐸1
𝑚 ≅ 1.0210 𝐸1  

We notice that the ground state energy within the 

range (0, r) is largely consistent with the result 

obtained from solving the time-independent 

Schrödinger equation, and it is greater than it by 9%. 

Results and discussion 
The numerical solution by Landscape method will be 

compared to the time-independent Schrödinger 

analytical solution, using tables and graphs as 

comparison tools, and we will verify whether the 

Landscape solution, which has been mathematically 

constructed for the wavefunction, is physically 

acceptable with regard to the energy of the ground 

state of well width, with respect Equation (10) and 

boundary conditions. The results obtained for the 

lowest eigenvalues inside the potential well represent 

the first family of what would be expected from the 

effect of quantum well width on the lower energy 

eigenvalue . 

In numerical terms, we have seen more exponential 

separation and decay than what mathematical 

equations express. The approximate solutions 
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generated through the Landscape method show the 

energy quantization characteristic at each 

wavefunction with a slight error due to the calibration 

of the Hamiltonian factor, and there is another 

condition that the approximate solution must fulfill, 

which is the continuity property for the range (0, r), 

where it appears that solutions are physically 

acceptable, see Table (1.)  

Figure (2) shows the localization landscape method, 

where Figure (a) shows the limits of localization for 

the function u, while Figure (b) represents the 

landscape function u as solutions to the equation (2), 

(c) represents a two-dimensional view of the gradient 

of the bound states inside the potential quantum well, 

(d) represent the effective localization potential W for 

the sub-regions shown in (a).  
 

 
Fig. 2: The localization landscape method: (a) the valley network with blue lines represents the localization limits for 

the function (u), (b) the landscape function (u) represents the solutions of equation (2), (c) represents a two-

dimensional view of the bound states gradient inside the quantum potental well., (d) represents the effective 

localization potential (W) for the sub-regions shown in (a) where W = u-1. 
 

Localization appears clearly in the sub-regions in the 

quantum well, Therefore, we prove the presence of 

decay in quantitative wells, especially near the 

boundaries of the well. By Comparing of the effective 

potential of a square well with infinitely high 

potential bollards. The infinite square well potential is 

given by the Black line. The effective confining 

potential calculated by the landscape is given by the 

red dotted line. Ground states of Energy obtained for 

Localization Landscape via two different Method. is 

given by the green and blue lines, see Figure (3), 

noting that up to this moment the resonance tunneling 

was not taken into account, as it was found that there 

is a strong interaction between the eigenfunctions in 

the separate wells when the eigenvalues are close. 

 

 
Fig. 3: Shows a comparison between the possibility of quantum confinement and wavefunction localization for the 

Landscape and Schrodinger method, it is clearly that there is a high congruence in the two methods, as the error rate 

is approximately 0.1% between the two methods, width of the well is 50 A with infinite barriers. 
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As presented from numerical and analytical solutions, 

it clear that there is congruence with the exact 

solution of the time-independent Schrödinger 

equation (see Figure 4), but in order for the 

Landscape solution to be physically acceptable, it 

must achieve a state of quantization energy and thus 

the emergence of bound states and wave localization 

Inside the potential well, through the probability 

density of the wavefunction which is related to the 

quantization of energy, as in Figure (5 ) . 
 

 
Fig. 4: Shows the lowest three states of energy 

eigenvalue in a GaAs potential well, width of 50 A 

surrounded by infinite barriers. It is clearly that all 

three states appear coherent with decreasing energy 

value during increasing the well width. 

 

Fig. 5: Shows the approximate solution and the 

probability density of the wave function at the ground 

state energy n = 1, for a single potential well (GaAs) 

width of 10 nm. 
 

While, Figure (6) Shows the wavefunction for the 

first three quantum states of energy as a function of 

the well width, as it is observed that the wave 

function is decay continuously when increasing the 

quantum well width, which predicts the need to 

adhere to the limits of the quantum well to produce 

the bound states that located inside the quantum well. 

 

 
Fig. 6: The eigenfunctions of the ground state (n=1) and 

the excited states (n=2,3), corresponding to the self-

energy states computed using the time-independent 

Schrödinger equation. 
 

In this and other Similar studies, the ground state 

energy is the desired goal in all semiconductor 

applications, as it is concerned with the stability of 

the device's operation. 

Table 1: A comparison between the landscape 

method of localization and the Schrödinger method to 

calculate the lowest eigenvalue of energy for a GaAs 

potential square well, width 50A surrounded by 

infinite walls. The effective mass was taken into 

Schrödinger's equation, 0.067m0. 
Index n Well width 

(Ả) 

Energy by LLT 

(eV) 

Energy by SE 

(eV) 

1 5 22.953348 22.503282 

10 5.738337 5.625821 

15 2.550372 2.500365 

20 1.434584 1.406455 

25 0.918134 0.900131 

30 0.637593 0.625091 

35 0.468436 0.459251 

40 0.358646 0.351614 

45 0.283375 0.277818 

50 0.229533 0.225033 
 

Conclusions 
In this work we applied the landscape method to 

build a mathematical model for quantum 

semiconductor devices. The Schrodinger equation 

was replaced by the landscape equation whose 

solution is called the (u) localization landscape. The 

inverted (u) gives us the effective landscape 

localization potential (W). We were able to provide a 

good picture of wave function localization in a GaAs 

potential well of finite width and surrounded by 

GaMnAs infinite using the scene method and 

Schrödinger's equation. 

Landscape method provides a convenient method for 

determining the decay of a quantum state far from its 

point of origin. This decay corresponds to the tunnel 

effect and is more common in quantum mechanics. 

The results showed a great agreement between the 

ground state energy 𝐸1
𝑚 in the region (0, L) by 

Landscape method and the exact solution of 

Schrödinger's equation, it is about 1% greater than 

(E1) and it is acceptable from a physical point of 
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view, especially with regard to the ground state 

energy of the infinitely high potential well and the 

limited width. 

Calculation time is reduced with Localization 

Landscape Method compared to the traditional 

Schrödinger equation, making this model ideal for 

simulating and designing quantum devices. 

Nevertheless, we believe that this work is a profound 

fundamental step towards explaining the localization 

of all the values of the eigenvalues in the (1/u) sub-

regions strongly defined by [8,9]. The emission and 

absorption in the quantum system can also be framed 

precisely in terms of calculating the intrinsic energy 

depending on this concept. 
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 باستخدام طريقة  As/GaAs(GaMn)تحديد طاقة الحالة الأرضية لبئر الجهد الكمي 
 لاند سكيب المحددة

 3مصطفى صائم الدهر ، 2صبري جاسم محمد  ، 1مبارك حمد عكلة

 العراقتكريت ،  ، تكريت، جامعة  العمليات النفطية، كلية هندسة  قسم هندسة سيطرة المنظومات النفطية 1
 ، تكريت ، العراق ، العراق ، جامعة تكريت ، كلية التربية للعلوم الصرفة قسم الفيزياء 2
 سوريادمشق ، ،  ، جامعة دمشق ، كلية العلوم قسم الفيزياء 3
 

 الملخص
وطريقة شرودنجر غير المعتمدة على الزمن  بواسطة معادلة As/GaAs(GaMn) تحديد طاقة الحالة الارضية لبئر الجهدفي البحث الحالي تم 

ق لاندسكيب المحددة، ومقارنة بين إمكانية الحصر الكمي وتوطين دالة الموجة لكل من طريقة لاندسكيب وطريقة شرودنجر، تم العثور على تطاب
من تحليل الهاميلتون، وجد أن القيم الذاتية  . %0.1شرودنجر بحدودكبير بين الطريقتين، حيث ان طريقة لاندسكيب المحددة اكبر من طريقة 

اذ يظهر التحديد بوضوح في المناطق الفرعية  .الكمية في الآبار المنفصلة تتفاعل فقط عندما تكون القيم الذاتية المقابلة قريبة من بعضها البعض
 .Wتم تحديد الجهد الكمي الفعال .ة بالقرب من حدود البئرللبئر الكمي، لذلك، نثبت وجود الاضمحلال في الآبار الكمية، خاص

 


