

**Tikrit Journal of Pure Science** 

ISSN: 1813 – 1662 (Print) --- E-ISSN: 2415 – 1726 (Online)



Journal Homepage: http://tjps.tu.edu.iq/index.php/j

# Study of Some Kinds of Ridge Regression Estimators in Linear Regression Model

Mustafa Nadhim Lattef, Mustafa I ALheety

Department of Mathematics, College of education for pure science University of Anbar, Anabr, Iraq https://doi.org/10.25130/tjps.v25i5.301

### ARTICLE INFO.

Article history: -Received: 25 / 6 / 2020 -Accepted: 10 / 8 / 2020 -Available online: / / 2020

**Keywords:** Ridge regression, Estimated Ridge parameter, Multicollinearity, Monte Carlo simulation

**Corresponding Author:** 

Name: Mustafa Nadhim Lattef E-mail: <u>mostafaalani89@uoanbar.edu.iq</u> Tel:

# ABSTRACT

In linear regression model, the biased estimation is one of the most

commonly used methods to reduce the effect of the multicollinearity. In this paper, a simulation study is performed to compare the relative efficiency of some kinds of biased estimators as well as for twelve proposed estimated ridge parameter (k) which are given in the literature. We propose some new adjustments to estimate the ridge parameter. Finally, we consider a real data set in economics to illustrate the results based on the estimated mean squared error (MSE) criterion.

According to the results, all the proposed estimators of (k) are superior to ordinary least squared estimator (OLS), and the superiority among them based on minimum MSE matrix will change according to the sample under consideration.

### 1. Introduction

Let

$$y = X \beta + \varepsilon \dots (1.1)$$

be the multiple linear regression model, where *y* is an  $(n \times 1)$  vector of responses, *X* is an  $(n \times p)$  design matrix of the explanatory variables, *p* is the number of the explanatory variables ,  $\beta$  is a  $(p \times 1)$  vector of unknown parameters of interest,  $\varepsilon$  is an  $(n \times 1)$  vector of residuals that follow the standard assumptions, namely,  $E(\varepsilon) = 0$  and  $E(\varepsilon \varepsilon) = \sigma^2 I_n$ .  $I_n$  is an identity matrix of order n.

The OLS of  $\beta$  is the best linear unbiased estimator (BLUE) which is given by

 $\hat{\beta}_{OLS} = (X'X)^{-1}X'y \dots (1.2)$ 

The most important assumption in multiple linear regression model, the explanatory variables must be considered as independent of each other. But, practically, there are probably linear dependencies between these variable values. Mainly, this problem could appear in econometric data and it's called multicollinearity. Multicollinearity influences the regression analysis extremely and it is one of the main problems. The existence of multicollinearity makes the estimates of the correlation coefficients large and very large sampling variances of the OLS estimated Lukman et al.[1]. To overcome this problem, there are various methods have been mentioned in literature and one of them is by using the biased estimators. The common biased estimation method is the ridge regression which was proposed by Hoerl and Kennard [2] and still the researchers working in this area like Kibria, and Banik [3]. They suggested using the ordinary ridge regression (ORR) as bellow:

 $\hat{\beta}_R = (X'X + kI_p)^{-1}X'y$ , ....(1.3)

where k is the ridge parameter and the value of k > 0. The ORR estimator is biased to a certain value of k which is unknown and therefore it should be estimated from real data.

A number of ways for obtaining biased estimates of  $\beta$  with smaller MSE have been developed. By extending Hoerl and Kennard's model, Crouse et al. [4] defined the unbiased ridge regression (URR) estimator as follows:

 $\hat{\beta}(kI,J) = (X'X + kI_p)^{-1}(X'y + kJ), \dots (1.4)$ 

where *J* is a random vector with  $J \sim N(\beta, (\sigma^2/k)I)$ . Battah and Gore [5] proposed a modified unbiased ridge regression (MURR) estimator of  $\beta$  and still the researchers who work in this area like Lukman et al.[6]and Tarima et al. [7] which is denoted as below:  $\hat{\beta}_J(k) = [I - k(X'X + kI_p)^{-1}](X'X + kI_p)^{-1}(X'y + kJ) \dots (1.5)$  the ORR and URR estimators have been combined to obtain the MURR which was driven from ORR by using URR rather than OLS.

The two- parameter estimator (TPE) proposed by Ozkale and Kacıranlar [8] and still the researchers working in this area like Asar, and Genç [9]. which is denoted as follows:

 $\hat{\beta}(k, d) = (X'X + kI_p)^{-1} (X'y + kd\hat{\beta}_{OLS}) = F_{kd}\hat{\beta}_{OLS}$ ....(1.6)

where  $F_{kd} = (X'X + kI_p)^{-1}(X'X + kdI)$ , k > 0 and *d* is shrinkage parametar such that 0 < d < 1.

To simplify the considerations about the linear model, the canonical form is often used. Therefore, a symmetric matrix S = X'X has an eigenvalue– eigenvector decomposition of the form  $S = T\Lambda T'$ , where *T* is an orthogonal matrix and  $\Lambda$  is a real diagonal matrix. The diagonal elements of  $\Lambda$  are the eigenvalues of *S* and the column vectors of *T* are the eigenvectors of *S*. The orthogonal version of the regression model in (1-1) is

 $y = XTT'\beta + \varepsilon = Z\gamma + \varepsilon \quad \dots (1.7)$ 

where Z = XT,  $\gamma = T'\beta$  and  $Z'Z = \Lambda = dig(\lambda_1, \lambda_2, ..., \lambda_p)$ . The OLS estimator of v is given by

The OLS estimator of  $\gamma$  is given by

 $\hat{\gamma}_{\text{OLS}} = (Z'Z)^{-1}Z'y = \Lambda^{-1}Z$ , ...(1.8)

The goal of this paper is to compare the different biased estimators as well as with different estimated value of k using the MSE as a measure of goodness of fit.

The paper is organized as follows. In Section 2, we present the methodology of different estimators of k and propose some new estimators. A Monte Carlo simulation has been given in Section 3. The discussions of the results of the simulation are given in Section 4. Finally, in Section 5, a real data set as an application of this study is given.

#### 2. Estimation of Ridge Parameter

Hoerl and Kennard [2] showed the properties of ORR in detail. They concluded that the total variance decreases and the squared bias increases as k increases. The variance function is monotonically decreasing and the squared bias function is monotonically increasing. That means, there is a chance that some k exists such that the MSE for ORR is less than MSE for the OLS.

It is well known that k is unknown and estimated from the sample of the study. For this reason, there are many articles proposed different ridge parameters in the literature using different techniques. Recently, many researchers studied this area and proposed different estimates of k. We review available methods in literatures to estimate the value of k as follows:

- Hoerl and Kennard [2] suggested k to be (denoted here by  $\hat{k}_{\rm HK}$  )

$$\hat{k}_{HK} = \frac{\hat{\sigma}^2}{\hat{\gamma}^2_{\max OLS}}, \quad \dots (2.1)$$

where 
$$\hat{\sigma}^2 = \frac{\sum_{i=1}^{n} \hat{e}_i^2}{n-p}$$
 and  $\hat{\gamma}_{\max OLS}$  is the maximum

element of  $\hat{\gamma}_{OLS}$ 

- Hoerl et al. [10] proposed *k* to be (denoted here by  $\hat{k}_{HKB}$ )

$$\hat{k}_{HKB} = \frac{p\hat{\sigma}^2}{\hat{\gamma}'_{OLS}\hat{\gamma}_{OLS}}, \ \dots \ (2.2)$$

- Lawless and Wang [11] suggested k to be (denoted here by  $\hat{k}_{IW}$ )

$$\hat{k}_{LW} = \frac{p\hat{\sigma}^2}{\hat{\gamma}_{oLS}'X'X'\hat{\gamma}_{oLS}}, \quad \dots (2.3)$$

- Hocking et al. [12] suggested k to be(denoted here by(  $\hat{k}_{_{HSL}}$ )

$$\hat{k}_{HSL} = \hat{\sigma}^2 \frac{\sum_{i=1}^{p} (\lambda_i \hat{\gamma}_{iOLS})^2}{\left(\sum_{i=1}^{p} \lambda_i \hat{\gamma}_{iOLS}^2\right)^2}, \dots (2.4)$$

where  $\hat{\gamma}_{OLS}$  is the i<sup>th</sup> element of  $\hat{\gamma}_{OLS}$ 

- Nomura [13] suggested k to be (denoted by  $\hat{k}_{HMO}$ )

$$\hat{k}_{HMO} = \frac{p\hat{\sigma}^{2}}{\sum_{i=1}^{p} \left[ \hat{\gamma}_{iOLS}^{2} / 1 + \left( 1 + \lambda_{i} \left( \frac{\hat{\gamma}_{iOLS}^{2}}{\hat{\sigma}^{2}} \right)^{\frac{1}{2}} \right) \right]}, \quad \dots (2.5)$$

where  $\lambda_i$  is the i<sup>th</sup> eigenvalues.

- Kibria [14] proposed the following estimators for *k* based on arithmetic mean (AM), geometric mean (GM), and median of  $\hat{\sigma}^2/\hat{\gamma}_i^2$ . These are defined as follows:

The estimator based on AM (denoted by  $\hat{k}_{AM}$ )

$$\hat{k}_{AM} = \frac{1}{p} \sum_{i=1}^{p} \frac{\hat{\sigma}^2}{\hat{\gamma}_{iOLS}^2} \dots (2.6)$$

The estimator based on GM (denoted by  $\hat{k}_{GM}$  )

$$\hat{k}_{GM} = \frac{\hat{\sigma}^2}{\left(\prod_{i=1}^{p} \hat{\gamma}_{iOLS}^2\right)^{\frac{1}{p}}} \dots \dots (2.7)$$

The estimator based on median (denoted by  $\hat{k}_{MED}$ )

$$\hat{k}_{MED} = Median \left\{ \frac{\hat{\sigma}^2}{\hat{\gamma}_{iOLS}^2} \right\}, \qquad i=1,2,\dots,p \quad \dots (2.8)$$

- Based on modification of  $\hat{k}_{HK}$ , Khalaf and Shukur [15] suggested *k* to be

(denoted by  $\hat{k}_{KS}$ )

$$\hat{k}_{KS} = \frac{\lambda_{\max}\hat{\sigma}^2}{(n-p)\hat{\sigma}^2 + \lambda_{\max}\hat{\gamma}^2_{\max}OLS} \dots (2.9)$$

where  $\lambda_{\max}$  is the maximum eigenvalue of the matrix **X'X**.

- Following Kibria [14] and Khalaf and Shukur [15], Alkhamisi et al. [16] proposed the following three estimators of *k*:

$$\hat{k}_{arith}^{KS} = \frac{1}{p} \sum_{i=1}^{p} \frac{\lambda_{i} \hat{\sigma}^{2}}{(n-p)\hat{\sigma}^{2} + \lambda_{i} \hat{\gamma}_{iOLS}^{2}} \dots (2.10)$$

$$\hat{k}_{max}^{KS} = \max\left(\frac{\lambda_{i}^{2} \hat{\sigma}^{2}}{(n-p)\hat{\sigma}^{2} + \lambda_{i} \hat{\gamma}_{iOLS}^{2}}\right) \quad i=1,...,p \quad \dots (2.11)$$

$$\hat{k}_{KS}^{KS} = \left(\frac{\lambda_{i} \hat{\sigma}^{2}}{(n-p)\hat{\sigma}^{2} + \lambda_{i} \hat{\gamma}_{iOLS}^{2}}\right) \dots (2.12)$$

$$\hat{k}_{md} = median\left(\frac{\lambda_i \sigma}{(n-p)\hat{\sigma}^2 + \lambda_i \hat{\gamma}_{iOLS}^2}\right) \qquad i=1,...,p \qquad \dots (2.12)$$

Now, we propose some new methods based as follows:

$$\hat{k}_{MU1} = \frac{\lambda_{med} \sum_{i=1}^{p} \hat{\gamma}_{iOLS}^{2}}{\lambda_{max}} \dots (2.13)$$

$$\hat{k}_{MU2} = \left| \frac{p \hat{\sigma}^{2}}{\hat{\gamma}_{OLS} \hat{\gamma}_{OLS}} - \frac{p \hat{\sigma}^{2}}{\hat{\gamma}_{OLS} X X \hat{\gamma}_{OLS}} \right| \dots (2.14)$$

$$\hat{k}_{MU3} = \min\left(\sqrt{\frac{\lambda_{\min} \sum_{i=1}^{p} \hat{\gamma}_{iOLS}^{2}}{\hat{\sigma}^{2}}}\right) \dots (2.15)$$

$$\hat{k}_{MU4} = \max\left(\sqrt{\frac{\lambda_{\min} \sum_{i=1}^{p} \hat{\gamma}_{iOLS}^{2}}{\hat{\sigma}^{2}}}\right) \dots (2.16)$$

$$\hat{k}_{MU5} = \max\left(\frac{\lambda_{\min} \sum_{i=1}^{p} \hat{\gamma}_{iOLS}^{2}}{\sqrt{\hat{\sigma}^{2}}}\right) \dots (2.17)$$

#### 3. A simulation study

The aim of the current study is to perform a comparison of different biased estimators for variate estimates of ridge parameter which are given in (2.1-2.17) and identify some good estimators for practitioners. We conduct a simulation study using Matlab. This simulation has been designed depends on specific factors that are expected to influence the properties of estimators which be subjected to a statistical investigation Lukman et al.[17]. Since the degree of the collinearity among several explanatory variables (Xs) is very essential, Kibria [14] was followed to generate X's using the following equation:

$$X_{ij} = \left(1 - \varphi^2\right)^{\frac{1}{2}} z_{ij} + \varphi z_{ip}, \ i=1,2,...,n, j=1,2,...,p, \dots (3.1)$$

where the  $z_{ij}$  independent standard normal pseudorandom numbers and  $\varphi$  represents the correlation between any two X's. These various are standardized so that X'X is being in correlation forms. The response variable y is considered by

$$y_i = \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_p X_{ip} + e_i, \quad i=1,2,\dots,n, \dots (3.2)$$

where the  $e_i$  is i.i.d. N(0,  $\sigma^2$ ). Therefore, zero intercept for (3.2) will be assumed. Also the number of explanatory variables p = 5, while the values of  $\sigma$ are chose as (1, 5, 10, 20). The correlation  $\varphi$  will choose as (0.75, 0.85, 0.90, 0.95) and sample size n=(50, 100, 150). The coefficients  $\beta_1$ ,  $\beta_2$ , ...,  $\beta_p$  are selected as the eigenvectors corresponding to the largest eigenvalue of the matrix X'X subject to constraint  $\beta'\beta = 1$ . Thus, for  $n, p, \beta, \lambda, \varphi$ , and  $\sigma$ , sets of Xs are created. Then the experiment was repreformed 10000 times by creating new error terms. The estimated MSE for each estimator is calculated as follows:

$$mse(\beta^*) = \frac{1}{10000} \sum_{i=1}^{10000} (\beta^* - \beta)'(\beta^* - \beta), \dots (3.3)$$

where  $\beta^*$  would be any of the estimators (OLS, ORR, MURR, or TPE).

#### 4. The discussion of simulation results

In this section we present the results of our Monte Carlo experiment concerning the properties of the different methods used to choose the ridge parameter K, when multicollinearity among the columns of the design matrix of the explanatory variables exist. The simulation results are presented in Tables 1–12 and we will discuss the results by dividing the results in three parts:

# 4-1 The simulation results according to the different estimators

Table (4-1) shows an explanation of the preference of the estimators mentioned in this paper, where we can observe the following:

1- The MURR estimator is the best estimator that has the lowest MSE compared to the rest of the estimators in different sample sizes in all correlations and  $\sigma$ . This is what we note in Table (4-1) as well as Tables (1-12) attached in this paper.

2- In case (n=50,  $\sigma = 1$ ,  $\varphi = 0.75$ , 0.90) and (n=100, 150,  $\sigma = 1$ ,  $\varphi = 0.85$ ) the ORR estimator is better than others which can give us an indicator for using it instead of MURR in case we need that.

### Tikrit Journal of Pure Science Vol. 25 (5) 2020

| Table | n   | $\sigma$ | φ    | Best estimator | Table | n   | $\sigma$ | φ    | Best estimator |
|-------|-----|----------|------|----------------|-------|-----|----------|------|----------------|
| 1-4   | 50  | 1        | 0.75 | ORR            | 8-12  | 150 | 1        | 0.75 | MURR           |
|       |     |          | 0.85 | MURR           |       |     |          | 0.85 | ORR            |
|       |     |          | 0.90 | ORR            |       |     |          | 0.90 | MURR           |
|       |     |          | 0.95 | MURR           |       |     |          | 0.95 | MURR           |
|       |     | 5        | 0.75 | MURR           |       |     | 5        | 0.75 | MURR           |
|       |     |          | 0.85 | MURR           |       |     |          | 0.85 | MURR           |
|       |     |          | 0.90 | MURR           |       |     |          | 0.90 | MURR           |
|       |     |          | 0.95 | MURR           |       |     |          | 0.95 | MURR           |
|       |     | 10       | 0.75 | MURR           |       |     | 10       | 0.75 | MURR           |
|       |     |          | 0.85 | MURR           |       |     |          | 0.85 | MURR           |
|       |     |          | 0.90 | MURR           |       |     |          | 0.90 | MURR           |
|       |     |          | 0.95 | MURR           |       |     |          | 0.95 | MURR           |
|       |     | 20       | 0.75 | MURR           |       |     | 20       | 0.75 | MURR           |
|       |     |          | 0.85 | MURR           |       |     |          | 0.85 | MURR           |
|       |     |          | 0.90 | MURR           |       |     |          | 0.90 | MURR           |
|       |     |          | 0.95 | MURR           |       |     |          | 0.95 | MURR           |
| 4-8   | 100 | 1        | 0.75 | MURR           |       |     |          |      |                |
|       |     |          | 0.85 | ORR            |       |     |          |      |                |
|       |     |          | 0.90 | MURR           |       |     |          |      |                |
|       |     |          | 0.95 | MURR           |       |     |          |      |                |
|       |     | 5        | 0.75 | MURR           |       |     |          |      |                |
|       |     |          | 0.85 | MURR           |       |     |          |      |                |
|       |     |          | 0.90 | MURR           |       |     |          |      |                |
|       |     |          | 0.95 | MURR           |       |     |          |      |                |
|       |     | 10       | 0.75 | MURR           |       |     |          |      |                |
|       |     |          | 0.85 | MURR           |       |     |          |      |                |
|       |     |          | 0.90 | MURR           |       |     |          |      |                |
|       |     |          | 0.95 | MURR           |       |     |          |      |                |
|       |     | 20       | 0.75 | MURR           |       |     |          |      |                |
|       |     |          | 0.85 | MURR           |       |     |          |      |                |
|       |     |          | 0.90 | MURR           |       |     |          |      |                |
|       |     |          | 0.95 | MURR           |       |     |          |      |                |

#### Table 4-1: The simulation results according to the best estimators in each case

# 4-2 The simulation results according to the different estimated ridge parameter

In order to know the preference of the estimated ridge parameter that mentioned in this paper, Tables (4-2 to 4-5) show an explanation that, where we can observe the following:

1- By increasing the sample size, we observe others estimated of ridge parameter which gives lowest MSE and still MED, HKB, and LW give well performance as we observed in Table (4-2).

2- From Tables( (4-3 ) to (4-5)) and Tables (1-12), the proposed estimated ridge parameter (MU1-MU5) are working well compared to other estimated ridge parameter, especially with MURR estimator and this is the case for all situations as well as it compared with OLS estimator.

3- From Tables( (4-3) to (4-5)) in general we observe that all estimated ridge parameter working well with MURR estimator which is the best estimator according to this study, that means we can use any one of them to find the MURR estimator.

# Tikrit Journal of Pure Science Vol. 25 (5) 2020

| Table | n   | $\sigma$ | φ    | Best estimator | Table | n   | $\sigma$ | φ    | Best estimator |
|-------|-----|----------|------|----------------|-------|-----|----------|------|----------------|
|       |     |          |      | of k           |       |     |          |      | of k           |
| 1-5   | 50  | 1        | 0.75 | GM             | 10-15 | 150 | 1        | 0.75 | HKB            |
|       |     |          | 0.85 | HKB            |       |     |          | 0.85 | MU3            |
|       |     |          | 0.90 | HKB            |       |     |          | 0.90 | MED            |
|       |     |          | 0.95 | GM             |       |     |          | 0.95 | MU2            |
|       |     | 5        | 0.75 | MED            |       |     | 5        | 0.75 | LW             |
|       |     |          | 0.85 | MED            |       |     |          | 0.85 | MU5            |
|       |     |          | 0.90 | MU2            |       |     |          | 0.90 | HMO            |
|       |     |          | 0.95 | GM             |       |     |          | 0.95 | MU5            |
|       |     | 10       | 0.75 | MED            |       |     | 10       | 0.75 | HSL            |
|       |     |          | 0.85 | AM             |       |     |          | 0.85 | GM             |
|       |     |          | 0.90 | MU4            |       |     |          | 0.90 | AM             |
|       |     |          | 0.95 | HMO            |       |     |          | 0.95 | MU5            |
|       |     | 20       | 0.75 | MU4            |       |     | 20       | 0.75 | MU2            |
|       |     |          | 0.85 | AM             |       |     |          | 0.85 | GM             |
|       |     |          | 0.90 | AM             |       |     |          | 0.90 | MED            |
|       |     |          | 0.95 | MU4            |       |     |          | 0.95 | MU3            |
| 5-10  | 100 | 1        | 0.75 | LW             |       |     |          |      |                |
|       |     |          | 0.85 | HKB            |       |     |          |      |                |
|       |     |          | 0.90 | HKB            |       |     |          |      |                |
|       |     |          | 0.95 | GM             |       |     |          |      |                |
|       |     | 5        | 0.75 | HK             |       |     |          |      |                |
|       |     |          | 0.85 | LW             |       |     |          |      |                |
|       |     |          | 0.90 | LW             |       |     |          |      |                |
|       |     |          | 0.95 | MU2            |       |     |          |      |                |
|       |     | 10       | 0.75 | MU3            |       |     |          |      |                |
|       |     |          | 0.85 | LW             |       |     |          |      |                |
|       |     |          | 0.90 | GM             |       |     |          |      |                |
|       |     |          | 0.95 | HK             |       |     |          |      |                |
|       |     | 20       | 0.75 | AM             |       |     |          |      |                |
|       |     |          | 0.85 | MU4            |       |     |          |      |                |
|       |     |          | 0.90 | AM             |       |     |          |      |                |
|       |     |          | 0.95 | MED            | 1     |     |          |      |                |

#### Table 4-2 The simulation results according to the different estimated ridge parameter

|           | MU5   |         | IFE   | TPE  | TPE  | ORR  | MUS   |       | MURR | MURR | MURR | MURR | MUS   |       | MURR | MURR | MURR | MURR | MU5   |       | MURR | MURR | MURR | MURR |
|-----------|-------|---------|-------|------|------|------|-------|-------|------|------|------|------|-------|-------|------|------|------|------|-------|-------|------|------|------|------|
|           | MU4   |         | 1     | 1    | I    | TPE  | MU4   |       | ORR  | MURR | ORR  | ORR  | MU4   |       | MURR | MURR | MURR | MURR | MU4   |       | MURR | MURR | MURR | MURR |
|           | MU3   |         | IFE   | 1    | 1    | ORR  | MU3   |       | MURR | MURR | MURR | ORR  | MU3   |       | MURR | MURR | MURR | MURR | MU3   |       | MURR | MURR | MURR | MURR |
| n=50      | MU2   |         | MUKK  | MURR | ORR  | MURR | MU2   |       | MURR | MURR | MURR | MURR | MU2   |       | MURR | MURR | MURR | MURR | MU2   |       | MURR | MURR | MURR | MURR |
| r when    | MU1   |         | MUKK  | MURR | MURR | MURR | MU1   |       | MURR | MURR | MURR | MURR | MU1   |       | MURR | MURR | MURR | MURR | MU1   |       | MURR | MURR | MURR | MURR |
| ramete    | KS md |         | MUKK  | MURR | MURR | MURR | KS md |       | MURR | MURR | MURR | MURR | KS md |       | MURR | MURR | MURR | MURR | KS md |       | MURR | MURR | MURR | MURR |
| ridge pa  | KS    | VEIII V | MUKK  | MURR | MURR | MURR | RS    | max   | MURR | MURR | MURR | MURR | KS    | max   | MURR | MURR | MURR | MURR | KS    | MaN   | MURR | MURR | MURR | MURR |
| imated    | SZ 1  |         | MUKK  | MURR | MURR | MURR | KS    | arith | MURR | MURR | MURR | MURR | KS    | arith | MURR | MURR | MURR | MURR | KS    | arith | MURR | MURR | MURR | MURR |
| best est  | KS    |         | MUKK  | MURR | MURR | MURR | KS    |       | MURR | MURR | MURR | MURR | KS    |       | MURR | MURR | MURR | MURR | KS    |       | MURR | MURR | MURR | MURR |
| g to the  | MED   | 440     | UKK   | ORR  | TPE  | MURR | MED   |       | MURR | MURR | MURR | MURR | MED   |       | MURR | MURR | MURR | MURR | MED   |       | MURR | MURR | MURR | MURR |
| ccordin   | GM    | 440     | UKK   | ORR  | TPE  | MURR | GM    |       | MURR | MURR | ORR  | MURR | GM    |       | MURR | MURR | MURR | MURR | GM    |       | MURR | MURR | MURR | MURR |
| esults a  | AM    |         | •     | 1    | I    | ORR  | AM    |       | MURR | MURR | ORR  | MURR | AM    |       | MURR | MURR | MURR | MURR | AM    |       | MURR | MURR | MURR | MURR |
| ılation ı | OMH   |         | IFE   |      | 1    | MURR | HMO   |       | MURR | MURR | MURR | MURR | HMO   |       | MURR | MURR | MURR | MURR | HMO   |       | MURR | MURR | MURR | MURR |
| Che simu  | TSH   | 10111   | MUKK  | MURR | MURR | MURR | HSL   |       | MURR | MURR | MURR | MURR | HSL   |       | MURR | MURR | MURR | MURR | HSL   |       | MURR | MURR | MURR | MURR |
| le 4-3: ] | ΓW    | 10.11   | MUKK  | MURR | ORR  | MURR | ΓW    |       | MURR | MURR | MURR | MURR | ΠW    |       | MURR | MURR | MURR | MURR | ΓW    |       | MURR | MURR | MURR | MURR |
| Tab       | HKB   |         | MUKK  | MURR | ORR  | MURR | HKB   |       | MURR | MURR | MURR | MURR | HKB   |       | MURR | MURR | MURR | MURR | HKB   |       | MURR | MURR | MURR | MURR |
|           | HK    |         | MUKK  | MURR | MURR | MURR | HK    |       | MURR | MURR | MURR | MURR | HK    |       | MURR | MURR | MURR | MURR | HK    |       | MURR | MURR | MURR | MURR |
|           | ₽-    | 20.0    | C/ .0 | 0.85 | 06.0 | 0.95 |       |       | 0.75 | 0.85 | 0.90 | 0.95 |       |       | 0.75 | 0.85 | 06.0 | 0.95 |       |       | 0.75 | 0.85 | 0.90 | 0.95 |
|           | ь     | •       | -     |      |      |      | Ś     |       |      |      |      |      | 2     |       |      |      |      |      | ຊ     |       |      |      |      |      |
|           | Ħ     | 5       | 2     |      |      |      |       |       |      |      |      |      |       |       |      |      |      |      |       |       |      |      |      |      |

| 1 | ĩ |  |
|---|---|--|
|   | ġ |  |
|   | ä |  |
|   | ă |  |
|   | 2 |  |
|   | H |  |
|   | ž |  |
|   | ă |  |
|   | 5 |  |
|   | 넕 |  |
|   | õ |  |
|   | å |  |
| • | ð |  |
|   | Ξ |  |
| • | ğ |  |
|   | ≝ |  |
|   | ã |  |
| 1 | Ē |  |
|   | ŝ |  |
| , | ÷ |  |
|   | ş |  |
| • | 2 |  |
|   | ã |  |
| 1 | 2 |  |
| • | 2 |  |
|   | 눰 |  |
| ; | 3 |  |
|   | Ē |  |
|   | 2 |  |
|   | ä |  |
|   | s |  |
| ļ | Ħ |  |
|   | S |  |
|   | Ľ |  |
|   | Ē |  |
| • | 2 |  |
| 2 | ē |  |
| Ĩ | Ξ |  |
|   | Ξ |  |
|   | 5 |  |
|   | ă |  |
| ĺ | - |  |
| • |   |  |
|   | 1 |  |
|   | å |  |
| 2 | ā |  |
| í | 2 |  |
|   |   |  |

=100 Tahla 4.4 The

135

|            | MUS    |       | 1    | ;    | ;    | ORR  | MU5    |       | MURR | MURR | MURR | MURR | MU5    |       | MURR | MURR | MURR | MURR | MUS    |       | MURR | MURR | MURR | MURR |
|------------|--------|-------|------|------|------|------|--------|-------|------|------|------|------|--------|-------|------|------|------|------|--------|-------|------|------|------|------|
|            | MU4    |       | 1    | ;    | ;    |      | MU4    |       | TPE  | ORR  | ORR  | MURR | MU4    |       | TPE  | MURR | MURR | MURR | MU4    |       | MURR | MURR | MURR | MURR |
|            | MU3    |       |      | ;    | •    | TPE  | MU3    |       | ORR  | ORR  | ORR  | MURR | MU3    |       | MURR | MURR | MURR | MURR | MU3    |       | MURR | MURR | MURR | MURR |
| 8          | MU2    |       | MURR | ORR  | MURR | MURR | MU2    |       | MURR | MURR | MURR | MURR | MU2    |       | MURR | MURR | MURR | MURR | MU2    |       | MURR | MURR | MURR | MURR |
| nen n-1    | MU1    |       | TPE  | ORR  | MURR | MURR | MU1    |       | MURR | MURR | MURR | MURR | MU1    |       | MURR | MURR | MURR | MURR | MU1    |       | MURR | MURR | MURR | MURR |
| meter w    | KS md  |       | MURR | ORR  | MURR | MURR | KS md  |       | MURR | MURR | MURR | MURR | KS md  |       | MURR | MURR | MURR | MURR | KS md  |       | MURR | MURR | MURR | MURR |
| ige parai  | KS max |       | MURR | ORR  | MURR | MURR | KS max |       | MURR | MURR | MURR | MURR | KS max |       | MURR | MURR | MURR | MURR | KS max |       | MURR | MURR | MURR | MURR |
| lated rio  | KS     | arith | MURR | ORR  | MURR | MURR | KS     | arrth | MURR | MURR | MURR | MURR | KS     | arith | MURR | MURR | MURR | MURR | KS     | arith | MURR | MURR | MURR | MURR |
| iest estin | KS     |       | MURR | ORR  | MURR | MURR | KS     |       | MURR | MURR | MURR | MURR | KS     |       | MURR | MURR | MURR | MURR | KS     |       | MURR | MURR | MURR | MURR |
| to the t   | MED    |       |      |      |      | MURR | MED    |       | ORR  | ORR  | MURR | MURR | MED    |       | MURR | MURR | MURR | MURR | MED    |       | MURR | MURR | MURR | MURR |
| ccorang    | GM     |       |      | TPE  | TPE  | MURR | GM     |       | TPE  | ORR  | MURR | MURR | GM     |       | ORR  | MURR | MURR | MURR | GM     |       | MURR | MURR | MURR | MURR |
| results a  | ΜM     |       |      | ;    | :    | ORR  | MA     |       | 1    | IPE  | ORR  | MURR | AM     |       | ;    | MURR | MURR | MURR | AM     |       | MURR | MURR | MURR | MURR |
| ulation    | OMH    |       |      | 1    | 1    | MURR | OMH    |       | TPE  | ORR  | MURR | MURR | OMH    |       | ORR  | MURR | MURR | MURR | OMH    |       | MURR | MURR | MURR | MURR |
| T ne sim   | HSL    |       | MURR | ORR  | MURR | MURR | TSH    |       | MURR | MURR | MURR | MURR | HSL    |       | MURR | MURR | MURR | MURR | HSL    |       | MURR | MURR | MURR | MURR |
| anie 4-4   | ΠW     |       | MURR | ORR  | MURR | MURR | ΠW     |       | ORR  | MURR | MURR | MURR | ΓW     |       | MURR | MURR | MURR | MURR | ΠW     |       | MURR | MURR | MURR | MURR |
| -          | HKB    |       | ORR  | ORR  | MURR | MURR | HKB    |       | ORR  | MURR | MURR | MURR | HKB    |       | MURR | MURR | MURR | MURR | HKB    |       | MURR | MURR | MURR | MURR |
|            | HK     |       | MURR | ORR  | MURR | MURR | ΗК     |       | MURR | MURR | MURR | MURR | HK     |       | MURR | MURR | MURR | MURR | HK     |       | MURR | MURR | MURR | MURR |
|            | 9-     |       | 0.75 | 0.85 | 0.90 | 0.95 |        |       | 0.75 | 0.85 | 0.90 | 0.95 |        |       | 0.75 | 0.85 | 0.90 | 0.95 |        |       | 0.75 | 0.85 | 0.90 | 0.95 |
|            | ь      |       |      |      |      |      | 2      |       |      |      |      |      |        |       | 10   |      |      |      |        |       | 20   |      |      |      |
|            | Ħ      |       |      |      |      |      |        |       |      |      |      | \$   | 3      |       |      |      |      |      |        |       |      |      |      |      |

TJPS

## Tikrit Journal of Pure Science Vol. 25 (5) 2020

### Tikrit Journal of Pure Science Vol. 25 (5) 2020

|            | MU5    |       | 1    | ;    | :    | ł    | MUS    |       | MURR | MURR | MURR | MURR | MUS    |       | MURR | MURR | MURR | MURR | MUS    |       | MURR | MURR | MURR | MURR |
|------------|--------|-------|------|------|------|------|--------|-------|------|------|------|------|--------|-------|------|------|------|------|--------|-------|------|------|------|------|
|            | MU4    |       | 1    | ;    | ;    | 1    | MU4    |       | TPE  | ORR  | ORR  | MURR | MU4    |       | MURR | ORR  | MURR | MURR | MU4    |       | MURR | MURR | MURR | MURR |
|            | MU3    |       | 1    | ORR  | ;    | 1    | MU3    |       | ORR  | ORR  | MURR | MURR | MU3    |       | MURR | ORR  | MURR | MURR | MU3    |       | MURR | MURR | MURR | MURR |
| 50         | MU2    |       | MURR | ORR  | MURR | MURR | MU2    |       | MURR | MURR | MURR | MURR | MU2    |       | MURR | MURR | MURR | MURR | MU2    |       | MURR | MURR | MURR | MURR |
| hen n=l    | MUI    |       | MURR | ORR  | MURR | MURR | MUI    |       | MURR | MURR | MURR | MURR | MUI    |       | MURR | MURR | MURR | MURR | MUI    |       | MURR | MURR | MURR | MURR |
| meter w    | KS md  |       | MURR | ORR  | MURR | MURR | KS md  |       | MURR | MURR | MURR | MURR | KS md  |       | MURR | MURR | MURR | MURR | KS md  |       | MURR | MURR | MURR | MURR |
| lge para   | KS max |       | MURR | ORR  | MURR | MURR | KS max |       | MURR | MURR | MURR | MURR | KS max |       | MURR | MURR | MURR | MURR | KS max |       | MURR | MURR | MURR | MURR |
| nated ric  | KS     | arith | MURR | ORR  | MURR | MURR | KS     | arith | MURR | MURR | MURR | MURR | KS     | arith | MURR | MURR | MURR | MURR | KS     | arith | MURR | MURR | MURR | MURR |
| best estir | KS     |       | MURR | ORR  | MURR | MURR | KS     |       | MURR | MURR | MURR | MURR | KS     |       | MURR | MURR | MURR | MURR | KS     |       | MURR | MURR | MURR | MURR |
| g to the l | MED    |       | ;    | ;    | MURR | 1    | MED    |       | ORR  | MURR | MURR | MURR | MED    |       | TPE  | MURR | MURR | MURR | MED    |       | MURR | MURR | MURR | MURR |
| Iccordin   | GM     |       | ;    | ;    | ORR  | 1    | GM     |       | ORR  | MURR | MURR | MURR | GM     |       | MURR | MURR | MURR | MURR | GM     |       | MURR | MURR | MURR | MURR |
| results a  | AM     |       | :    | ;    | :    | 1    | AM     |       | TPE  | TPE  | ORR  | MURR | AM     |       | :    | MURR | MURR | MURR | AM     |       | MURR | MURR | MURR | MURR |
| nulation   | HMO    |       | :    | 1    | TPE  | ł    | HMO    |       | ORR  | MURR | MURR | MURR | HMO    |       | MURR | MURR | MURR | MURR | HMO    |       | MURR | MURR | MURR | MURR |
| The sin    | HSL    |       | MURR | MURR | MURR | MURR | HSL    |       | MURR | MURR | MURR | MURR | HSL    |       | MURR | MURR | MURR | MURR | HSL    |       | MURR | MURR | MURR | MURR |
| able 4-5   | ΓM     |       | MURR | MURR | MURR | MURR | ΓM     |       | MURR | MURR | MURR | MURR | ΓM     |       | MURR | MURR | MURR | MURR | ΓM     |       | MURR | MURR | MURR | MURR |
| Η          | HKB    |       | MURR | MURR | MURR | MURR | HKB    |       | MURR | MURR | MURR | MURR | HKB    |       | MURR | MURR | MURR | MURR | HKB    |       | MURR | MURR | MURR | MURR |
|            | HK     |       | MURR | MURR | MURR | MURR | Ħ      |       | MURR | MURR | MURR | MURR | HK     |       | MURR | MURR | MURR | MURR | HK     |       | MURR | MURR | MURR | MURR |
|            | θ-     |       | 0.75 | 0.85 | 0.00 | 0.95 |        |       | 0.75 | 0.85 | 0.00 | 0.95 |        |       | 0.75 | 0.85 | 0.00 | 0.95 |        |       | 0.75 | 0.85 | 0.00 | 0.95 |
|            | ь      |       |      |      |      |      | Ś      |       |      |      |      |      | 2      |       |      |      |      |      | 20     |       |      |      |      |      |
|            | Ħ      |       |      |      |      |      |        |       |      |      |      | 150  | í.     |       |      |      |      |      |        |       |      |      |      |      |

# 5. A numerical example *Real Life Application*

In order to give more explanation for the study, we consider the data set in economics on total national research and development expenditures as a percent of gross national product originally due to Gruber [18] and later by Akdeniz and Erol [19], among others. This reflects the relationship between the

dependent Y variable the percentage expended by the United States and the other four independent X1, X2, X3, and X4 variables. The vector X1 reflects the amount that France spent, X2 that West Germany spent, X3 that Japan spent, and X4 that the former Soviet Union spent on.

The goal is to compare the traces of the estimated MSE matrices of (ORR), (MURR) and (TPE). The trace of the MSE matrix of the (ORR) is given by

mse(
$$\hat{\boldsymbol{\beta}}_{R}$$
)=tr(MSE( $\hat{\boldsymbol{\beta}}_{R}, \boldsymbol{\beta}$ ))= $\sum_{i=1}^{p} \frac{\lambda_{i} \sigma^{2} + k^{2} \boldsymbol{\beta}_{i}^{2}}{(\lambda_{i} + k)^{2}}$ , ...(5.1)

the trace of the MSE matrix of the (MURR) is given by

mse(
$$\beta_j(k)$$
)=tr(MSE( $\beta_j(k), \beta$ ))=  

$$\sum_{i=1}^{p} \frac{\lambda_i \sigma^2 + k^2 (\lambda_i + k) \beta_i^2}{(\lambda_i + k)^3}, \dots (5.2)$$

the trace of the MSE matrix of the (TPE) is given by mse( $\hat{\beta}(k,d)$ )=tr(MSE( $\hat{\beta}(k,d),\beta$ ))=

$$\sum_{i=1}^{p} \frac{\lambda_{i} \sigma^{2} (\lambda_{i} + d)^{2} + ((k+1-d)\lambda_{i} + k)^{2} \beta_{i}^{2}}{(\lambda_{i} + 1)^{2} (\lambda_{i} + k)^{2}}, \dots (5.3)$$

we are substituting  $\beta$  and  $\sigma^2$  by their OLS estimates

 $\hat{\beta}$  and  $\hat{\sigma}^2$  respectively. For the standardized data since there are ten observations and four parameters, we obtain $\hat{\sigma}^2 = 0.003932$ . The four eigenvalues of X' X are 2.95743, 0.91272, 0.10984, and 0.02021. The factors will define a 4-dimensional space and the X'X matrix will be as follows:

$$X'X = \begin{bmatrix} 1.000 \ 0.888 \ .925 \ 0.309 \\ 0.888 \ 1.000 \ 0.962 \ 0.157 \\ 0.925 \ 0.962 \ 1.000 \ 0.328 \\ 0.309 \ 0.157 \ 0.328 \ 1.000 \end{bmatrix}$$

We can observe that the variables in X'X matrix suffer for high correlations among them and this is the one advantage of standardizing the X matrix where it can be seen which variables are highly correlated. Another method for diagnosing multicollinearity in linear regression, is the Condition Index (C.I.) which is defined as follows:

$$C.I. = \sqrt{\frac{\lambda_{max}}{\lambda_{min}}}$$

where  $\lambda_{max}$  and  $\lambda_{min}$  are the largest and the smallest eigenvalues of X' X, if C.I.  $\leq 10$ , then there is no multicollinearity among the explanatory variables, if 10 < C.I. < 30, then the multicollinearity is moderate, but if C.I.  $\geq 30$ , then it means that there is a severe multicollinearity that must be corrected. So in this example  $, 10 < C.I. = \sqrt{\frac{2.95743}{0.02021}} = 12.1 < 30$ , which indicates that there is a moderate multicollinearity and may be corrected.

Table (5-1): The scaler mean squares error for different estimators and different estimated ridge

|      |          |        |        | param  | eter   |        |        |        |        |
|------|----------|--------|--------|--------|--------|--------|--------|--------|--------|
|      | HK       | HKB    | LW     | HSL    | HMO    | AM     | GM     | MED    | KS     |
| OLS  | 0.2361   | 0.2361 | 0.2361 | 0.2361 | 0.2361 | 0.2361 | 0.2361 | 0.2361 | 0.2361 |
| ORR  | 0.1166   | 0.1140 | 0.1213 | 0.1321 | 0.1591 | 0.2963 | 0.1356 | 0.1137 | 0.1310 |
| MURR | 0.0880   | 0.0876 | 0.0910 | 0.1006 | 0.1503 | 0.2950 | 0.1227 | 0.0879 | 0.0996 |
| TPE  | 0.1565   | 0.1618 | 0.1518 | 0.1464 | 0.2270 | 0.3338 | 0.2045 | 0.1631 | 0.1467 |
|      | KS arith | KS max | KS md  | MU1    | MU2    | MU3    | MU4    | MU5    |        |
| OLS  | 0.2361   | 0.2361 | 0.2361 | 0.2361 | 0.2361 | 0.2361 | 0.2361 | 0.2361 |        |
| ORR  | 0.1180   | 0.1771 | 0.1352 | 0.1603 | 0.1468 | 0.3018 | 0.3230 | 0.1556 |        |
| MURR | 0.0990   | 0.1703 | 0.1037 | 0.1516 | 0.1162 | 0.3006 | 0.3221 | 0.1462 |        |
| TPE  | 0.1814   | 0.2420 | 0.1454 | 0.2280 | 0.1427 | 0.3385 | 0.3572 | 0.2239 |        |

From Table (5-1), we can observe that, the minimum mse for the ORR estimator will be got if k is estimated by HKB. Also the minimum mse for the MURR estimator will be given by estimating k by HKB while the minimum mse for the TPE estimator will be given by estimating k by MU2. The performance of the estimated k that given in this study is showing that under moderate degree of multicollinearity, the most of them give minimum mse if they used in the MURR estimator except (AM, MU3 and MU4) where the OLS estimator is better than of them. Therefore, not all proposed ridge parameter can be used to get minimum mse when the degree of multicollinearity is moderate.

Finally, we can say that, this study gives us a broad view on the behaviour of the estimators and when they can be used to give a good performance compared to the other suggested estimators.

## Tikrit Journal of Pure Science Vol. 25 (5) 2020

# TJPS

### Appendix

Table1: estimated MSEs when n=50  $\sigma$  =1

| φ        |        |        | 0.75   |        |        |        | 0.85   |        |        | 0.     | .90    |        |        | 0.     | 95     |        |
|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|          | OLS    | ORR    | MURR   | TPE    |
| HK       | 0.3849 | 0.3756 | 0.3741 | 0.3801 | 0.3480 | 0.3437 | 0.3395 | 0.3458 | 0.3712 | 0.3655 | 0.3654 | 0.3683 | 0.6797 | 0.5886 | 0.5244 | 0.6320 |
| HKB      | 0.3849 | 0.3619 | 0.3619 | 0.3724 | 0.3480 | 0.3360 | 0.3307 | 0.3414 | 0.3712 | 0.3568 | 0.3609 | 0.3632 | 0.6797 | 0.5198 | 0.4482 | 0.5919 |
| LW       | 0.3849 | 0.3723 | 0.3707 | 0.3784 | 0.3480 | 0.3431 | 0.3385 | 0.3455 | 0.3712 | 0.3645 | 0.3645 | 0.3677 | 0.6797 | 0.5568 | 0.4848 | 0.6141 |
| HSL      | 0.3849 | 0.3763 | 0.3749 | 0.3805 | 0.3480 | 0.3438 | 0.3396 | 0.3458 | 0.3712 | 0.3657 | 0.3655 | 0.3684 | 0.6797 | 0.5720 | 0.5027 | 0.6227 |
| HMO      | 0.3849 | 0.3792 | 0.4251 | 0.3706 | 0.3480 | 0.3658 | 0.4110 | 0.3497 | 0.3712 | 0.3968 | 0.4476 | 0.3747 | 0.6797 | 0.4299 | 0.4139 | 0.5230 |
| AM       | 0.3849 | 0.4730 | 0.5682 | 0.4061 | 0.3480 | 0.3723 | 0.4228 | 0.3524 | 0.3712 | 0.4827 | 0.5749 | 0.4107 | 0.6797 | 0.4227 | 0.4294 | 0.5096 |
| GM       | 0.3849 | 0.3548 | 0.3720 | 0.3646 | 0.3480 | 0.3365 | 0.3504 | 0.3388 | 0.3712 | 0.3667 | 0.3962 | 0.3633 | 0.6797 | 0.4626 | 0.4134 | 0.5528 |
| MED      | 0.3849 | 0.3561 | 0.3601 | 0.3684 | 0.3480 | 0.3380 | 0.3545 | 0.3392 | 0.3712 | 0.3724 | 0.4067 | 0.3653 | 0.6797 | 0.4873 | 0.4248 | 0.5707 |
| KS       | 0.3849 | 0.3776 | 0.3763 | 0.3811 | 0.3480 | 0.3441 | 0.3403 | 0.3460 | 0.3712 | 0.3665 | 0.3662 | 0.3688 | 0.6797 | 0.6035 | 0.5455 | 0.6402 |
| KS arith | 0.3849 | 0.3803 | 0.3794 | 0.3826 | 0.3480 | 0.3461 | 0.3439 | 0.3470 | 0.3712 | 0.3689 | 0.3687 | 0.3700 | 0.6797 | 0.6454 | 0.6138 | 0.6623 |
| KS max   | 0.3849 | 0.3776 | 0.3763 | 0.3811 | 0.3480 | 0.3441 | 0.3403 | 0.3460 | 0.3712 | 0.3665 | 0.3662 | 0.3688 | 0.6797 | 0.5861 | 0.5209 | 0.6306 |
| KS md    | 0.3849 | 0.3807 | 0.3798 | 0.3827 | 0.3480 | 0.3465 | 0.3447 | 0.3472 | 0.3712 | 0.3695 | 0.3693 | 0.3703 | 0.6797 | 0.6630 | 0.6465 | 0.6713 |
| MU1      | 0.3849 | 0.3691 | 0.3675 | 0.3766 | 0.3480 | 0.3441 | 0.3402 | 0.3460 | 0.3712 | 0.3666 | 0.3663 | 0.3688 | 0.6797 | 0.6087 | 0.5532 | 0.6429 |
| MU2      | 0.3849 | 0.3688 | 0.3673 | 0.3764 | 0.3480 | 0.3381 | 0.3321 | 0.3427 | 0.3712 | 0.3596 | 0.3615 | 0.3650 | 0.6797 | 0.6000 | 0.5404 | 0.6383 |
| MU3      | 0.3849 | 0.3866 | 0.4380 | 0.3731 | 0.3480 | 0.4460 | 0.5444 | 0.3844 | 0.3712 | 0.3990 | 0.4512 | 0.3756 | 0.6797 | 0.5160 | 0.6140 | 0.5256 |
| MU4      | 0.3849 | 0.5885 | 0.7098 | 0.4523 | 0.3480 | 0.5404 | 0.6775 | 0.4254 | 0.3712 | 0.5626 | 0.6772 | 0.4445 | 0.6797 | 0.5373 | 0.6449 | 0.5337 |
| MU5      | 0.3849 | 0.3985 | 0.4579 | 0.3774 | 0.3480 | 0.3562 | 0.3931 | 0.3458 | 0.3712 | 0.3859 | 0.4298 | 0.3704 | 0.6797 | 0.4227 | 0.4297 | 0.5095 |

#### Table2: estimated MSEs when n=50 $\sigma$ =5

| φ        | 0.75   |        |        |        | 0.8    | 5      |        |        | 0.90   |        |        |        | 0.95   |        |        |        |
|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|          | OLS    | ORR    | MURR   | TPE    |
| HK       | 0.9738 | 0.9203 | 0.8576 | 0.9461 | 1.0148 | 0.9700 | 0.9465 | 0.9918 | 1.3535 | 1.1834 | 1.0656 | 1.2641 | 1.3518 | 0.9261 | 0.7519 | 1.1177 |
| HKB      | 0.9738 | 0.8649 | 0.7769 | 0.9143 | 1.0148 | 0.8925 | 0.8547 | 0.9473 | 1.3535 | 1.0183 | 0.9005 | 1.1633 | 1.3518 | 0.7066 | 0.6132 | 0.9591 |
| LW       | 0.9738 | 0.8571 | 0.7694 | 0.9094 | 1.0148 | 0.8481 | 0.8192 | 0.9154 | 1.3535 | 0.9016 | 0.8653 | 1.0632 | 1.3518 | 0.6250 | 0.6033 | 0.8654 |
| HSL      | 0.9738 | 0.9303 | 0.8767 | 0.9515 | 1.0148 | 0.9018 | 0.8639 | 0.9531 | 1.3535 | 1.0957 | 0.9634 | 1.2131 | 1.3518 | 0.6351 | 0.6010 | 0.8821 |
| HMO      | 0.9738 | 0.8081 | 0.7742 | 0.8651 | 1.0148 | 0.8342 | 0.8122 | 0.9016 | 1.3535 | 0.9086 | 0.8638 | 1.0719 | 1.3518 | 0.6278 | 0.6023 | 0.8706 |
| AM       | 0.9738 | 0.8094 | 0.7865 | 0.8614 | 1.0148 | 0.8347 | 0.8206 | 0.8865 | 1.3535 | 0.9960 | 0.9973 | 1.0435 | 1.3518 | 0.6178 | 0.6101 | 0.8467 |
| GM       | 0.9738 | 0.8284 | 0.7529 | 0.8893 | 1.0148 | 0.8328 | 0.8118 | 0.8997 | 1.3535 | 0.8903 | 0.8909 | 1.0263 | 1.3518 | 0.6422 | 0.6006 | 0.8919 |
| MED      | 0.9738 | 0.8256 | 0.7526 | 0.8871 | 1.0148 | 0.8327 | 0.8117 | 0.8996 | 1.3535 | 0.9059 | 0.8643 | 1.0687 | 1.3518 | 0.6356 | 0.6009 | 0.8828 |
| KS       | 0.9738 | 0.9496 | 0.9169 | 0.9615 | 1.0148 | 0.9917 | 0.9782 | 1.0031 | 1.3535 | 1.2389 | 1.1466 | 1.2943 | 1.3518 | 0.9824 | 0.8068 | 1.1520 |
| KS arith | 0.9738 | 0.9590 | 0.9383 | 0.9664 | 1.0148 | 1.0034 | 0.9964 | 1.0091 | 1.3535 | 1.2746 | 1.2055 | 1.3132 | 1.3518 | 1.0572 | 0.8914 | 1.1956 |
| KS max   | 0.9738 | 0.9390 | 0.8942 | 0.9560 | 1.0148 | 0.9758 | 0.9547 | 0.9948 | 1.3535 | 1.1324 | 1.0023 | 1.2350 | 1.3518 | 0.7369 | 0.6246 | 0.9849 |
| KS md    | 0.9738 | 0.9645 | 0.9510 | 0.9691 | 1.0148 | 1.0112 | 1.0088 | 1.0130 | 1.3535 | 1.3267 | 1.3004 | 1.3400 | 1.3518 | 1.3114 | 1.2767 | 1.3315 |
| MU1      | 0.9738 | 0.9200 | 0.8571 | 0.9460 | 1.0148 | 0.9839 | 0.9665 | 0.9990 | 1.3535 | 1.2140 | 1.1087 | 1.2809 | 1.3518 | 1.0980 | 0.9431 | 1.2186 |
| MU2      | 0.9738 | 0.9514 | 0.9208 | 0.9624 | 1.0148 | 0.8796 | 0.8429 | 0.9389 | 1.3535 | 0.9236 | 0.8636 | 1.0879 | 1.3518 | 0.6536 | 0.6012 | 0.9060 |
| MU3      | 0.9738 | 0.8101 | 0.7627 | 0.8708 | 1.0148 | 0.8363 | 0.8224 | 0.8863 | 1.3535 | 1.1560 | 1.0302 | 1.2486 | 1.3518 | 0.6944 | 0.7302 | 0.8380 |
| MU4      | 0.9738 | 0.8278 | 0.8298 | 0.8576 | 1.0148 | 0.8735 | 0.8591 | 0.8941 | 1.3535 | 0.8957 | 0.9012 | 1.0222 | 1.3518 | 0.6623 | 0.6902 | 0.8279 |
| MU5      | 0.9738 | 0.8225 | 0.7527 | 0.8844 | 1.0148 | 0.8294 | 0.8127 | 0.8914 | 1.3535 | 0.9077 | 0.8640 | 1.0709 | 1.3518 | 0.6249 | 0.6033 | 0.8654 |

Table3: estimated MSEs when n=50  $\sigma$ =10

| φ        |        |        | 0.75   |        |        |        | 0.85   |        |        | 0.     | 90     |        |        | 0.     | 95     |        |
|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|          | OLS    | ORR    | MURR   | TPE    |
| HK       | 1.1559 | 1.0719 | 1.0158 | 1.1117 | 1.2612 | 1.1348 | 1.0660 | 1.1910 | 1.4981 | 1.3011 | 1.0854 | 1.3947 | 1.4086 | 0.9914 | 0.8873 | 1.1659 |
| HKB      | 1.1559 | 0.9888 | 0.9292 | 1.0605 | 1.2612 | 1.0642 | 1.0155 | 1.1377 | 1.4981 | 1.1461 | 0.9141 | 1.3032 | 1.4086 | 0.8898 | 0.8436 | 1.0776 |
| LW       | 1.1559 | 0.9537 | 0.9131 | 1.0322 | 1.2612 | 1.0329 | 0.9689 | 1.1042 | 1.4981 | 0.9700 | 0.8414 | 1.1727 | 1.4086 | 0.8677 | 0.8567 | 1.0093 |
| HSL      | 1.1559 | 1.0822 | 1.0303 | 1.1174 | 1.2612 | 1.1212 | 1.0550 | 1.1821 | 1.4981 | 1.2906 | 1.0699 | 1.3888 | 1.4086 | 0.8568 | 0.8438 | 1.0205 |
| HMO      | 1.1559 | 0.9402 | 0.9158 | 1.0151 | 1.2612 | 1.0410 | 0.9847 | 1.1132 | 1.4981 | 0.9789 | 0.8431 | 1.1809 | 1.4086 | 0.8590 | 0.8412 | 1.0318 |
| AM       | 1.1559 | 0.9387 | 0.9240 | 1.0063 | 1.2612 | 1.0140 | 0.9580 | 1.0869 | 1.4981 | 0.9254 | 0.8305 | 1.1216 | 1.4086 | 0.8686 | 0.8576 | 1.0092 |
| GM       | 1.1559 | 0.9478 | 0.9128 | 1.0260 | 1.2612 | 1.0353 | 0.9737 | 1.1069 | 1.4981 | 1.0327 | 0.8563 | 1.2252 | 1.4086 | 0.8579 | 0.8417 | 1.0283 |
| MED      | 1.1559 | 0.9495 | 0.9127 | 1.0279 | 1.2612 | 1.0378 | 0.9785 | 1.1096 | 1.4981 | 1.1496 | 0.9166 | 1.3054 | 1.4086 | 0.8944 | 0.8447 | 1.0826 |
| KS       | 1.1559 | 1.1188 | 1.0880 | 1.1370 | 1.2612 | 1.1908 | 1.1297 | 1.2242 | 1.4981 | 1.3641 | 1.1916 | 1.4290 | 1.4086 | 1.0698 | 0.9453 | 1.2198 |
| KS arith | 1.1559 | 1.1332 | 1.1133 | 1.1444 | 1.2612 | 1.2239 | 1.1839 | 1.2421 | 1.4981 | 1.4067 | 1.2765 | 1.4514 | 1.4086 | 1.1753 | 1.0532 | 1.2840 |
| KS max   | 1.1559 | 1.1015 | 1.0596 | 1.1279 | 1.2612 | 1.1628 | 1.0938 | 1.2082 | 1.4981 | 1.2334 | 0.9958 | 1.3562 | 1.4086 | 0.9402 | 0.8604 | 1.1257 |
| KS md    | 1.1559 | 1.1415 | 1.1284 | 1.1486 | 1.2612 | 1.2447 | 1.2247 | 1.2529 | 1.4981 | 1.4673 | 1.4172 | 1.4826 | 1.4086 | 1.3782 | 1.3533 | 1.3933 |
| MU1      | 1.1559 | 1.0968 | 1.0522 | 1.1253 | 1.2612 | 1.2208 | 1.1783 | 1.2405 | 1.4981 | 1.2980 | 1.0808 | 1.3930 | 1.4086 | 1.2645 | 1.1702 | 1.3338 |
| MU2      | 1.1559 | 0.9956 | 0.9342 | 1.0653 | 1.2612 | 1.0374 | 0.9778 | 1.1092 | 1.4981 | 1.0153 | 0.8513 | 1.2116 | 1.4086 | 0.8644 | 0.8537 | 1.0099 |
| MU3      | 1.1559 | 0.9482 | 0.9127 | 1.0265 | 1.2612 | 1.0836 | 1.0297 | 1.1546 | 1.4981 | 0.9178 | 0.8262 | 1.1071 | 1.4086 | 0.8651 | 0.8544 | 1.0097 |
| MU4      | 1.1559 | 0.9409 | 0.9303 | 1.0030 | 1.2612 | 1.0405 | 0.9838 | 1.1127 | 1.4981 | 0.9156 | 0.8201 | 1.0866 | 1.4086 | 0.8611 | 0.8505 | 1.0114 |
| MU5      | 1.1559 | 0.9579 | 0.9140 | 1.0362 | 1.2612 | 1.0979 | 1.0388 | 1.1657 | 1.4981 | 0.9694 | 0.8413 | 1.1721 | 1.4086 | 0.9200 | 0.8524 | 1.1079 |

#### Table 4: estimated MSEs when n=50 $\sigma$ =20

| φ        |        |        | 0.75   |        |        |        | 0.85   |        |        | 0.     | 90     |        |        | 0.     | 95     |        |
|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|          | OLS    | ORR    | MURR   | TPE    |
| HK       | 1.2166 | 1.1419 | 1.0906 | 1.1775 | 1.3050 | 1.1664 | 1.0972 | 1.2291 | 1.4136 | 1.2456 | 1.1721 | 1.3203 | 1.5691 | 1.2542 | 1.1181 | 1.3996 |
| HKB      | 1.2166 | 1.0459 | 0.9907 | 1.1181 | 1.3050 | 1.1028 | 1.0467 | 1.1862 | 1.4136 | 1.1703 | 1.1157 | 1.2667 | 1.5691 | 1.0288 | 0.9323 | 1.2493 |
| LW       | 1.2166 | 1.0089 | 0.9709 | 1.0874 | 1.3050 | 1.0547 | 1.0177 | 1.1439 | 1.4136 | 1.1140 | 1.0636 | 1.2160 | 1.5691 | 0.9034 | 0.8651 | 1.1008 |
| HSL      | 1.2166 | 1.1476 | 1.0988 | 1.1806 | 1.3050 | 1.2061 | 1.1423 | 1.2526 | 1.4136 | 1.1934 | 1.1315 | 1.2845 | 1.5691 | 1.0003 | 0.9160 | 1.2258 |
| HMO      | 1.2166 | 0.9965 | 0.9671 | 1.0729 | 1.3050 | 1.0542 | 1.0174 | 1.1434 | 1.4136 | 1.1234 | 1.0752 | 1.2248 | 1.5691 | 0.9291 | 0.8806 | 1.1538 |
| AM       | 1.2166 | 0.9997 | 0.9991 | 1.0469 | 1.3050 | 1.0169 | 0.9888 | 1.1027 | 1.4136 | 1.1074 | 1.0549 | 1.2099 | 1.5691 | 0.9055 | 0.8636 | 1.0924 |
| GM       | 1.2166 | 0.9932 | 0.9798 | 1.0493 | 1.3050 | 1.0535 | 1.0168 | 1.1426 | 1.4136 | 1.1378 | 1.0902 | 1.2384 | 1.5691 | 0.9232 | 0.8779 | 1.1458 |
| MED      | 1.2166 | 0.9928 | 0.9788 | 1.0496 | 1.3050 | 1.0865 | 1.0370 | 1.1733 | 1.4136 | 1.1699 | 1.1154 | 1.2664 | 1.5691 | 0.9774 | 0.9038 | 1.2055 |
| KS       | 1.2166 | 1.1795 | 1.1487 | 1.1976 | 1.3050 | 1.2393 | 1.1887 | 1.2709 | 1.4136 | 1.3165 | 1.2496 | 1.3624 | 1.5691 | 1.3221 | 1.1951 | 1.4387 |
| KS arith | 1.2166 | 1.1950 | 1.1758 | 1.2057 | 1.3050 | 1.2754 | 1.2484 | 1.2900 | 1.4136 | 1.3674 | 1.3260 | 1.3899 | 1.5691 | 1.3763 | 1.2641 | 1.4687 |
| KS max   | 1.2166 | 1.1573 | 1.1131 | 1.1859 | 1.3050 | 1.2155 | 1.1545 | 1.2578 | 1.4136 | 1.2777 | 1.2035 | 1.3400 | 1.5691 | 1.0943 | 0.9758 | 1.2977 |
| KS md    | 1.2166 | 1.2053 | 1.1949 | 1.2109 | 1.3050 | 1.2950 | 1.2851 | 1.3000 | 1.4136 | 1.4026 | 1.3911 | 1.4081 | 1.5691 | 1.5391 | 1.5152 | 1.5540 |
| MU1      | 1.2166 | 1.1802 | 1.1499 | 1.1980 | 1.3050 | 1.2753 | 1.2483 | 1.2899 | 1.4136 | 1.3821 | 1.3519 | 1.3976 | 1.5691 | 1.3844 | 1.2750 | 1.4731 |
| MU2      | 1.2166 | 1.0399 | 0.9867 | 1.1137 | 1.3050 | 1.0728 | 1.0291 | 1.1615 | 1.4136 | 1.1283 | 1.0807 | 1.2295 | 1.5691 | 0.9039 | 0.8664 | 1.1066 |
| MU3      | 1.2166 | 1.1760 | 1.1427 | 1.1958 | 1.3050 | 1.1139 | 1.0538 | 1.1944 | 1.4136 | 1.1224 | 1.0740 | 1.2239 | 1.5691 | 0.9035 | 0.8646 | 1.0988 |
| MU4      | 1.2166 | 0.9932 | 0.9666 | 1.0677 | 1.3050 | 1.0534 | 1.0168 | 1.1426 | 1.4136 | 1.1223 | 1.0739 | 1.2238 | 1.5691 | 0.9068 | 0.8635 | 1.0906 |
| MU5      | 1.2166 | 1.0493 | 0.9930 | 1.1206 | 1.3050 | 1.1622 | 1.0931 | 1.2266 | 1.4136 | 1.2494 | 1.1755 | 1.3226 | 1.5691 | 0.9440 | 0.8876 | 1.1717 |

Table5: estimated MSEs when n=100  $\sigma$ =1

| φ        |        |        | 0.75   |        |        |        | 0.85   |        |        | 0.     | 90     |        |        | 0.     | 95     |        |
|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|          | OLS    | ORR    | MURR   | TPE    |
| HK       | 0.2884 | 0.2883 | 0.2882 | 0.2884 | 0.3230 | 0.3213 | 0.3213 | 0.3221 | 0.3497 | 0.3479 | 0.3459 | 0.3488 | 0.4632 | 0.4409 | 0.4221 | 0.4518 |
| HKB      | 0.2884 | 0.2883 | 0.2885 | 0.2883 | 0.3230 | 0.3173 | 0.3185 | 0.3200 | 0.3497 | 0.3443 | 0.3404 | 0.3467 | 0.4632 | 0.4128 | 0.3829 | 0.4363 |
| LW       | 0.2884 | 0.2883 | 0.2882 | 0.2884 | 0.3230 | 0.3207 | 0.3208 | 0.3218 | 0.3497 | 0.3476 | 0.3454 | 0.3486 | 0.4632 | 0.4395 | 0.4199 | 0.4511 |
| HSL      | 0.2884 | 0.2883 | 0.2882 | 0.2884 | 0.3230 | 0.3213 | 0.3214 | 0.3221 | 0.3497 | 0.3479 | 0.3459 | 0.3488 | 0.4632 | 0.4414 | 0.4230 | 0.4520 |
| HMO      | 0.2884 | 0.3312 | 0.3793 | 0.3066 | 0.3230 | 0.3363 | 0.3744 | 0.3243 | 0.3497 | 0.3761 | 0.4202 | 0.3580 | 0.4632 | 0.3647 | 0.3638 | 0.4008 |
| AM       | 0.2884 | 0.3170 | 0.3530 | 0.3004 | 0.3230 | 0.5167 | 0.6385 | 0.4005 | 0.3497 | 0.3666 | 0.4020 | 0.3540 | 0.4632 | 0.3749 | 0.4083 | 0.3967 |
| GM       | 0.2884 | 0.2948 | 0.3064 | 0.2909 | 0.3230 | 0.3274 | 0.3579 | 0.3209 | 0.3497 | 0.3463 | 0.3564 | 0.3460 | 0.4632 | 0.3719 | 0.3572 | 0.4088 |
| MED      | 0.2884 | 0.3035 | 0.3259 | 0.2945 | 0.3230 | 0.3580 | 0.4114 | 0.3331 | 0.3497 | 0.3779 | 0.4236 | 0.3587 | 0.4632 | 0.3814 | 0.3583 | 0.4163 |
| KS       | 0.2884 | 0.2883 | 0.2882 | 0.2884 | 0.3230 | 0.3215 | 0.3216 | 0.3222 | 0.3497 | 0.3482 | 0.3465 | 0.3489 | 0.4632 | 0.4440 | 0.4273 | 0.4534 |
| KS arith | 0.2884 | 0.2883 | 0.2883 | 0.2884 | 0.3230 | 0.3220 | 0.3220 | 0.3225 | 0.3497 | 0.3491 | 0.3483 | 0.3494 | 0.4632 | 0.4568 | 0.4505 | 0.4600 |
| KS max   | 0.2884 | 0.2883 | 0.2882 | 0.2884 | 0.3230 | 0.3215 | 0.3216 | 0.3222 | 0.3497 | 0.3482 | 0.3465 | 0.3489 | 0.4632 | 0.4440 | 0.4273 | 0.4534 |
| KS md    | 0.2884 | 0.2883 | 0.2882 | 0.2884 | 0.3230 | 0.3221 | 0.3221 | 0.3225 | 0.3497 | 0.3492 | 0.3487 | 0.3495 | 0.4632 | 0.4600 | 0.4568 | 0.4616 |
| MU1      | 0.2884 | 0.2883 | 0.2886 | 0.2883 | 0.3230 | 0.3178 | 0.3187 | 0.3203 | 0.3497 | 0.3477 | 0.3456 | 0.3487 | 0.4632 | 0.4444 | 0.4281 | 0.4536 |
| MU2      | 0.2884 | 0.2883 | 0.2882 | 0.2883 | 0.3230 | 0.3188 | 0.3193 | 0.3208 | 0.3497 | 0.3452 | 0.3414 | 0.3473 | 0.4632 | 0.4270 | 0.4009 | 0.4443 |
| MU3      | 0.2884 | 0.4734 | 0.6027 | 0.3685 | 0.3230 | 0.3559 | 0.4080 | 0.3323 | 0.3497 | 0.5032 | 0.6280 | 0.4142 | 0.4632 | 0.4910 | 0.6198 | 0.4428 |
| MU4      | 0.2884 | 0.6718 | 0.8263 | 0.4507 | 0.3230 | 0.6648 | 0.7993 | 0.4617 | 0.3497 | 0.5795 | 0.7288 | 0.4473 | 0.4632 | 0.5490 | 0.7057 | 0.4680 |
| MU5      | 0.2884 | 0.4223 | 0.5289 | 0.3465 | 0.3230 | 0.4291 | 0.5205 | 0.3633 | 0.3497 | 0.3764 | 0.4208 | 0.3581 | 0.4632 | 0.3716 | 0.4004 | 0.3961 |

Table6: estimated MSEs when n=100  $\,\sigma\!=\!5$ 

| φ        |        |        | 0.75   |        |        |        | 0.85   |        |        | 0.     | 90     |        | 0.95   |        |        |        |  |
|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--|
|          | OLS    | ORR    | MURR   | TPE    |  |
| HK       | 0.8592 | 0.8317 | 0.8280 | 0.8428 | 0.8607 | 0.8046 | 0.7642 | 0.8314 | 0.9929 | 0.8740 | 0.8070 | 0.9295 | 1.0191 | 0.8400 | 0.8063 | 0.9158 |  |
| HKB      | 0.8592 | 0.8346 | 0.8467 | 0.8408 | 0.8607 | 0.7360 | 0.7002 | 0.7891 | 0.9929 | 0.7899 | 0.7323 | 0.8761 | 1.0191 | 0.8015 | 0.7815 | 0.8836 |  |
| LW       | 0.8592 | 0.8367 | 0.8519 | 0.8412 | 0.8607 | 0.7262 | 0.6984 | 0.7816 | 0.9929 | 0.7512 | 0.7205 | 0.8440 | 1.0191 | 0.7877 | 0.7788 | 0.8589 |  |
| HSL      | 0.8592 | 0.8313 | 0.8292 | 0.8422 | 0.8607 | 0.7501 | 0.7073 | 0.7990 | 0.9929 | 0.7772 | 0.7262 | 0.8665 | 1.0191 | 0.7880 | 0.7767 | 0.8650 |  |
| HMO      | 0.8592 | 0.8664 | 0.9013 | 0.8514 | 0.8607 | 0.7115 | 0.7286 | 0.7596 | 0.9929 | 0.7390 | 0.7256 | 0.8291 | 1.0191 | 0.7873 | 0.7778 | 0.8605 |  |
| AM       | 0.8592 | 0.9185 | 0.9573 | 0.8734 | 0.8607 | 0.8336 | 0.9129 | 0.7974 | 0.9929 | 0.7640 | 0.7932 | 0.8163 | 1.0191 | 0.7873 | 0.7772 | 0.8622 |  |
| GM       | 0.8592 | 0.8610 | 0.8938 | 0.8493 | 0.8607 | 0.7172 | 0.7473 | 0.7581 | 0.9929 | 0.7410 | 0.7237 | 0.8321 | 1.0191 | 0.7905 | 0.7770 | 0.8700 |  |
| MED      | 0.8592 | 0.8392 | 0.8575 | 0.8418 | 0.8607 | 0.7293 | 0.7738 | 0.7595 | 0.9929 | 0.7443 | 0.7219 | 0.8364 | 1.0191 | 0.7881 | 0.7794 | 0.8582 |  |
| KS       | 0.8592 | 0.8519 | 0.8453 | 0.8555 | 0.8607 | 0.8298 | 0.8031 | 0.8449 | 0.9929 | 0.9225 | 0.8722 | 0.9564 | 1.0191 | 0.9103 | 0.8718 | 0.9608 |  |
| KS arith | 0.8592 | 0.8566 | 0.8539 | 0.8579 | 0.8607 | 0.8463 | 0.8324 | 0.8534 | 0.9929 | 0.9608 | 0.9342 | 0.9766 | 1.0191 | 0.9733 | 0.9505 | 0.9956 |  |
| KS max   | 0.8592 | 0.8514 | 0.8445 | 0.8552 | 0.8607 | 0.8138 | 0.7775 | 0.8364 | 0.9929 | 0.8868 | 0.8228 | 0.9368 | 1.0191 | 0.8821 | 0.8427 | 0.9439 |  |
| KS md    | 0.8592 | 0.8580 | 0.8567 | 0.8586 | 0.8607 | 0.8555 | 0.8503 | 0.8581 | 0.9929 | 0.9853 | 0.9784 | 0.9891 | 1.0191 | 1.0134 | 1.0101 | 1.0163 |  |
| MU2      | 0.8592 | 0.8426 | 0.8320 | 0.8503 | 0.8607 | 0.8036 | 0.7627 | 0.8308 | 0.9929 | 0.7977 | 0.7369 | 0.8816 | 1.0191 | 0.7889 | 0.7767 | 0.8672 |  |
| MU3      | 0.8592 | 0.8317 | 0.8370 | 0.8408 | 0.8607 | 0.7105 | 0.7131 | 0.7639 | 0.9929 | 0.7425 | 0.7574 | 0.8141 | 1.0191 | 0.8444 | 0.8322 | 0.8707 |  |
| MU4      | 0.8592 | 0.8464 | 0.8710 | 0.8440 | 0.8607 | 0.7673 | 0.8349 | 0.7711 | 0.9929 | 0.7718 | 0.8042 | 0.8183 | 1.0191 | 0.8010 | 0.7924 | 0.8562 |  |
| MU5      | 0.8592 | 0.8398 | 0.8292 | 0.8487 | 0.8607 | 0.7111 | 0.7099 | 0.7655 | 0.9929 | 0.7487 | 0.7208 | 0.8414 | 1.0191 | 0.8313 | 0.7999 | 0.9093 |  |

## Tikrit Journal of Pure Science Vol. 25 (5) 2020

# TJPS

#### Table7: estimated MSEs when n=100 $\,\sigma$ =10 $\,$

| φ        |        |        | 0.75   |        |        |        | 0.85   |        |        | 0.     | 90     |        | 0.95   |        |        |        |  |
|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--|
|          | OLS    | ORR    | MURR   | TPE    |  |
| HK       | 0.7725 | 0.7156 | 0.6918 | 0.7416 | 1.1059 | 1.0206 | 0.9795 | 1.0584 | 1.1204 | 1.0415 | 1.0106 | 1.0760 | 1.0430 | 0.9450 | 0.9329 | 0.9820 |  |
| HKB      | 0.7725 | 0.7005 | 0.6787 | 0.7318 | 1.1059 | 0.9978 | 0.9638 | 1.0424 | 1.1204 | 1.0074 | 0.9913 | 1.0492 | 1.0430 | 0.9375 | 0.9345 | 0.9703 |  |
| LW       | 0.7725 | 0.7029 | 0.6804 | 0.7335 | 1.1059 | 0.9759 | 0.9560 | 1.0203 | 1.1204 | 0.9964 | 0.9831 | 1.0319 | 1.0430 | 0.9569 | 0.9568 | 0.9727 |  |
| HSL      | 0.7725 | 0.7250 | 0.7023 | 0.7472 | 1.1059 | 1.0509 | 1.0119 | 1.0767 | 1.1204 | 1.0503 | 1.0179 | 1.0817 | 1.0430 | 0.9425 | 0.9419 | 0.9681 |  |
| HMO      | 0.7725 | 0.6893 | 0.6993 | 0.7137 | 1.1059 | 0.9766 | 0.9560 | 1.0215 | 1.1204 | 0.9981 | 0.9860 | 1.0370 | 1.0430 | 0.9413 | 0.9405 | 0.9680 |  |
| AM       | 0.7725 | 0.9012 | 0.9373 | 0.7912 | 1.1059 | 0.9813 | 0.9646 | 1.0114 | 1.1204 | 0.9998 | 0.9985 | 1.0283 | 1.0430 | 0.9612 | 0.9611 | 0.9745 |  |
| GM       | 0.7725 | 0.6851 | 0.6855 | 0.7152 | 1.1059 | 0.9801 | 0.9568 | 1.0263 | 1.1204 | 0.9964 | 0.9826 | 1.0308 | 1.0430 | 0.9436 | 0.9431 | 0.9683 |  |
| MED      | 0.7725 | 0.7045 | 0.6816 | 0.7346 | 1.1059 | 0.9976 | 0.9637 | 1.0423 | 1.1204 | 0.9973 | 0.9851 | 1.0353 | 1.0430 | 0.9393 | 0.9381 | 0.9682 |  |
| KS       | 0.7725 | 0.7538 | 0.7418 | 0.7629 | 1.1059 | 1.0811 | 1.0577 | 1.0932 | 1.1204 | 1.0858 | 1.0593 | 1.1024 | 1.0430 | 0.9858 | 0.9585 | 1.0119 |  |
| KS arith | 0.7725 | 0.7657 | 0.7609 | 0.7691 | 1.1059 | 1.0970 | 1.0874 | 1.1014 | 1.1204 | 1.1070 | 1.0941 | 1.1136 | 1.0430 | 1.0203 | 1.0029 | 1.0313 |  |
| KS max   | 0.7725 | 0.7526 | 0.7401 | 0.7623 | 1.1059 | 1.0768 | 1.0503 | 1.0909 | 1.1204 | 1.0768 | 1.0468 | 1.0974 | 1.0430 | 0.9773 | 0.9507 | 1.0066 |  |
| KS md    | 0.7725 | 0.7690 | 0.7665 | 0.7707 | 1.1059 | 1.1028 | 1.0993 | 1.1043 | 1.1204 | 1.1170 | 1.1135 | 1.1187 | 1.0430 | 1.0404 | 1.0381 | 1.0417 |  |
| MU1      | 0.7725 | 0.7531 | 0.7409 | 0.7626 | 1.1059 | 1.0942 | 1.0819 | 1.1000 | 1.1204 | 1.1108 | 1.1013 | 1.1156 | 1.0430 | 1.0370 | 1.0316 | 1.0400 |  |
| MU2      | 0.7725 | 0.7622 | 0.7551 | 0.7673 | 1.1059 | 0.9813 | 0.9571 | 1.0276 | 1.1204 | 0.9966 | 0.9838 | 1.0331 | 1.0430 | 0.9543 | 0.9542 | 0.9717 |  |
| MU3      | 0.7725 | 0.6932 | 0.6750 | 0.7264 | 1.1059 | 0.9910 | 0.9606 | 1.0369 | 1.1204 | 1.0603 | 1.0275 | 1.0878 | 1.0430 | 0.9384 | 0.9368 | 0.9686 |  |
| MU4      | 0.7725 | 0.7276 | 0.7621 | 0.7226 | 1.1059 | 0.9749 | 0.9560 | 1.0179 | 1.1204 | 0.9974 | 0.9852 | 1.0355 | 1.0430 | 0.9387 | 0.9371 | 0.9684 |  |
| MU5      | 0.7725 | 0.6965 | 0.6763 | 0.7290 | 1.1059 | 1.0338 | 0.9920 | 1.0667 | 1.1204 | 1.0366 | 1.0071 | 1.0727 | 1.0430 | 0.9787 | 0.9519 | 1.0075 |  |

#### Table 8: estimated MSEs when n=100 $\sigma$ =20

| φ        | 0.75   |        |        |        |        | 0.85   |        |        |        | 0.     | 90     |        | 0.95   |        |        |        |
|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|          | OLS    | ORR    | MURR   | TPE    |
| HK       | 1.1688 | 1.1194 | 1.0871 | 1.1427 | 1.6168 | 1.5161 | 1.3951 | 1.5655 | 1.2001 | 1.0818 | 1.0274 | 1.1382 | 1.2033 | 1.0200 | 0.9389 | 1.1048 |
| HKB      | 1.1688 | 1.0703 | 1.0333 | 1.1124 | 1.6168 | 1.3166 | 1.0840 | 1.4564 | 1.2001 | 0.9294 | 0.8754 | 1.0434 | 1.2033 | 0.8719 | 0.8186 | 1.0046 |
| LW       | 1.1688 | 1.0434 | 1.0105 | 1.0914 | 1.6168 | 1.0238 | 0.8904 | 1.2577 | 1.2001 | 0.8530 | 0.8291 | 0.9668 | 1.2033 | 0.8151 | 0.8028 | 0.9336 |
| HSL      | 1.1688 | 1.1285 | 1.1000 | 1.1478 | 1.6168 | 1.4413 | 1.2593 | 1.5259 | 1.2001 | 0.8869 | 0.8474 | 1.0091 | 1.2033 | 0.8211 | 0.8005 | 0.9511 |
| HMO      | 1.1688 | 1.0367 | 1.0044 | 1.0853 | 1.6168 | 1.0735 | 0.9053 | 1.2981 | 1.2001 | 0.8622 | 0.8338 | 0.9828 | 1.2033 | 0.8220 | 0.8006 | 0.9526 |
| AM       | 1.1688 | 1.0112 | 0.9859 | 1.0604 | 1.6168 | 0.9309 | 0.8558 | 1.1314 | 1.2001 | 0.8524 | 0.8288 | 0.9577 | 1.2033 | 0.8631 | 0.8488 | 0.9347 |
| GM       | 1.1688 | 1.0332 | 1.0010 | 1.0820 | 1.6168 | 1.0015 | 0.8851 | 1.2375 | 1.2001 | 0.8561 | 0.8307 | 0.9736 | 1.2033 | 0.8153 | 0.8014 | 0.9377 |
| MED      | 1.1688 | 1.0510 | 1.0171 | 1.0979 | 1.6168 | 1.0392 | 0.8945 | 1.2708 | 1.2001 | 0.8524 | 0.8288 | 0.9648 | 1.2033 | 0.8188 | 0.8004 | 0.9469 |
| KS       | 1.1688 | 1.1541 | 1.1414 | 1.1614 | 1.6168 | 1.5400 | 1.4436 | 1.5778 | 1.2001 | 1.1189 | 1.0764 | 1.1582 | 1.2033 | 1.0710 | 1.0001 | 1.1339 |
| KS arith | 1.1688 | 1.1624 | 1.1566 | 1.1656 | 1.6168 | 1.5463 | 1.4568 | 1.5811 | 1.2001 | 1.1495 | 1.1205 | 1.1743 | 1.2033 | 1.1215 | 1.0701 | 1.1612 |
| KS max   | 1.1688 | 1.1501 | 1.1345 | 1.1593 | 1.6168 | 1.3809 | 1.1667 | 1.4929 | 1.2001 | 1.0375 | 0.9749 | 1.1130 | 1.2033 | 0.9679 | 0.8867 | 1.0731 |
| KS md    | 1.1688 | 1.1656 | 1.1626 | 1.1672 | 1.6168 | 1.5993 | 1.5751 | 1.6081 | 1.2001 | 1.1912 | 1.1855 | 1.1956 | 1.2033 | 1.1915 | 1.1825 | 1.1974 |
| MU1      | 1.1688 | 1.1564 | 1.1455 | 1.1625 | 1.6168 | 1.3935 | 1.1848 | 1.4999 | 1.2001 | 1.1339 | 1.0977 | 1.1662 | 1.2033 | 1.1126 | 1.0571 | 1.1566 |
| MU2      | 1.1688 | 1.0609 | 1.0253 | 1.1056 | 1.6168 | 1.0609 | 0.9010 | 1.2883 | 1.2001 | 0.8576 | 0.8315 | 0.9762 | 1.2033 | 0.8159 | 0.8009 | 0.9401 |
| MU3      | 1.1688 | 1.0764 | 1.0387 | 1.1165 | 1.6168 | 0.9341 | 0.8637 | 1.1513 | 1.2001 | 0.8674 | 0.8372 | 0.9523 | 1.2033 | 0.8162 | 0.8051 | 0.9299 |
| MU4      | 1.1688 | 1.0278 | 0.9955 | 1.0766 | 1.6168 | 0.9400 | 0.8548 | 1.1190 | 1.2001 | 0.8772 | 0.8439 | 0.9539 | 1.2033 | 0.8408 | 0.8286 | 0.9277 |
| MU5      | 1.1688 | 1.0753 | 1.0378 | 1.1158 | 1.6168 | 0.9366 | 0.8657 | 1.1571 | 1.2001 | 0.8546 | 0.8300 | 0.9708 | 1.2033 | 0.8230 | 0.8007 | 0.9541 |

Table 10: estimated MSEs when n=150  $\,\sigma\!=\!5$ 

| φ        |        | 0.75   |        |        |        |        | 0.85   |        |        |        | 90     |        | 0.95   |        |        |        |  |
|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--|
|          | OLS    | ORR    | MURR   | TPE    |  |
| HK       | 0.8010 | 0.7789 | 0.7617 | 0.7893 | 0.9006 | 0.8659 | 0.8460 | 0.8827 | 0.9968 | 0.9321 | 0.8937 | 0.9633 | 1.3652 | 1.1826 | 1.0720 | 1.2696 |  |
| HKB      | 0.8010 | 0.7617 | 0.7497 | 0.7782 | 0.9006 | 0.8181 | 0.7920 | 0.8545 | 0.9968 | 0.8299 | 0.7805 | 0.9030 | 1.3652 | 1.0188 | 0.8954 | 1.1727 |  |
| LW       | 0.8010 | 0.7620 | 0.7496 | 0.7784 | 0.9006 | 0.8048 | 0.7826 | 0.8450 | 0.9968 | 0.7824 | 0.7525 | 0.8668 | 1.3652 | 0.8251 | 0.7898 | 1.0153 |  |
| HSL      | 0.8010 | 0.7745 | 0.7564 | 0.7868 | 0.9006 | 0.8334 | 0.8063 | 0.8642 | 0.9968 | 0.8132 | 0.7684 | 0.8914 | 1.3652 | 0.8762 | 0.8056 | 1.0682 |  |
| HMO      | 0.8010 | 0.7718 | 0.8004 | 0.7749 | 0.9006 | 0.7908 | 0.7844 | 0.8284 | 0.9968 | 0.7687 | 0.7500 | 0.8522 | 1.3652 | 0.8781 | 0.8064 | 1.0698 |  |
| AM       | 0.8010 | 0.7949 | 0.8406 | 0.7823 | 0.9006 | 0.8039 | 0.8085 | 0.8267 | 0.9968 | 0.8146 | 0.8229 | 0.8441 | 1.3652 | 0.8630 | 0.8004 | 1.0561 |  |
| GM       | 0.8010 | 0.7596 | 0.7670 | 0.7732 | 0.9006 | 0.7911 | 0.7811 | 0.8309 | 0.9968 | 0.7628 | 0.7557 | 0.8394 | 1.3652 | 0.9288 | 0.8317 | 1.1107 |  |
| MED      | 0.8010 | 0.7586 | 0.7598 | 0.7739 | 0.9006 | 0.7983 | 0.7797 | 0.8396 | 0.9968 | 0.7628 | 0.7557 | 0.8393 | 1.3652 | 0.9014 | 0.8170 | 1.0893 |  |
| KS       | 0.8010 | 0.7949 | 0.7884 | 0.7979 | 0.9006 | 0.8861 | 0.8761 | 0.8932 | 0.9968 | 0.9573 | 0.9310 | 0.9766 | 1.3652 | 1.2368 | 1.1480 | 1.2990 |  |
| KS arith | 0.8010 | 0.7986 | 0.7959 | 0.7998 | 0.9006 | 0.8945 | 0.8901 | 0.8975 | 0.9968 | 0.9761 | 0.9613 | 0.9863 | 1.3652 | 1.2877 | 1.2278 | 1.3257 |  |
| KS max   | 0.8010 | 0.7940 | 0.7866 | 0.7974 | 0.9006 | 0.8801 | 0.8667 | 0.8901 | 0.9968 | 0.9247 | 0.8834 | 0.9593 | 1.3652 | 1.1063 | 0.9798 | 1.2262 |  |
| KS md    | 0.8010 | 0.7998 | 0.7984 | 0.8004 | 0.9006 | 0.8984 | 0.8967 | 0.8995 | 0.9968 | 0.9918 | 0.9880 | 0.9943 | 1.3652 | 1.3574 | 1.3505 | 1.3613 |  |
| MU1      | 0.8010 | 0.7945 | 0.7876 | 0.7977 | 0.9006 | 0.8857 | 0.8756 | 0.8930 | 0.9968 | 0.9513 | 0.9219 | 0.9735 | 1.3652 | 1.2399 | 1.1527 | 1.3006 |  |
| MU2      | 0.8010 | 0.7994 | 0.7975 | 0.8002 | 0.9006 | 0.8486 | 0.8233 | 0.8731 | 0.9968 | 0.8207 | 0.7736 | 0.8967 | 1.3652 | 0.8390 | 0.7928 | 1.0319 |  |
| MU3      | 0.8010 | 0.7661 | 0.7876 | 0.7735 | 0.9006 | 0.8036 | 0.8080 | 0.8266 | 0.9968 | 0.7650 | 0.7624 | 0.8355 | 1.3652 | 0.8642 | 0.8572 | 0.9732 |  |
| MU4      | 0.8010 | 0.8141 | 0.8676 | 0.7895 | 0.9006 | 0.8335 | 0.8443 | 0.8351 | 0.9968 | 0.8218 | 0.8306 | 0.8468 | 1.3652 | 0.8372 | 0.8306 | 0.9651 |  |
| MU5      | 0.8010 | 0.7590 | 0.7540 | 0.7753 | 0.9006 | 0.7935 | 0.7792 | 0.8347 | 0.9968 | 0.7629 | 0.7562 | 0.8389 | 1.3652 | 0.8161 | 0.7889 | 1.0024 |  |

Table 11: estimated MSEs when n=150  $\sigma$ =10

| φ        | 0.75   |        |        |        | 0.8    | 5      |        |        | 0.90   |        |        |        | 0.95   |        |        |        |  |
|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--|
|          | OLS    | ORR    | MURR   | TPE    |  |
| HK       | 0.9528 | 0.9355 | 0.9293 | 0.9423 | 1.0269 | 0.9748 | 0.9367 | 1.0000 | 1.1496 | 1.0754 | 1.0435 | 1.1085 | 1.4702 | 1.3290 | 1.2539 | 1.3974 |  |
| HKB      | 0.9528 | 0.9404 | 0.9312 | 0.9419 | 1.0269 | 0.8984 | 0.8454 | 0.9558 | 1.1496 | 1.0389 | 1.0204 | 1.0817 | 1.4702 | 1.1019 | 0.9934 | 1.2674 |  |
| LW       | 0.9528 | 0.9514 | 0.9397 | 0.9460 | 1.0269 | 0.8503 | 0.8176 | 0.9210 | 1.1496 | 1.0170 | 1.0047 | 1.0569 | 1.4702 | 0.8556 | 0.8193 | 1.0680 |  |
| HSL      | 0.9528 | 0.9363 | 0.9288 | 0.9411 | 1.0269 | 0.9037 | 0.8501 | 0.9592 | 1.1496 | 1.0754 | 1.0435 | 1.1085 | 1.4702 | 0.9347 | 0.8643 | 1.1489 |  |
| HMO      | 0.9528 | 0.9546 | 0.9425 | 0.9473 | 1.0269 | 0.8389 | 0.8172 | 0.9098 | 1.1496 | 1.0243 | 1.0129 | 1.0665 | 1.4702 | 0.9288 | 0.8606 | 1.1439 |  |
| AM       | 0.9528 | 0.9838 | 0.9758 | 0.9604 | 1.0269 | 0.8330 | 0.8211 | 0.9015 | 1.1496 | 1.0058 | 0.9948 | 1.0467 | 1.4702 | 0.8702 | 0.8272 | 1.0867 |  |
| GM       | 0.9528 | 0.9587 | 0.9464 | 0.9490 | 1.0269 | 0.8477 | 0.8171 | 0.9188 | 1.1496 | 1.0211 | 1.0100 | 1.0623 | 1.4702 | 0.9331 | 0.8633 | 1.1476 |  |
| MED      | 0.9528 | 0.9640 | 0.9518 | 0.9514 | 1.0269 | 0.8345 | 0.8194 | 0.9040 | 1.1496 | 1.0280 | 1.0153 | 1.0709 | 1.4702 | 0.8904 | 0.8381 | 1.1085 |  |
| KS       | 0.9528 | 0.9493 | 0.9475 | 0.9510 | 1.0269 | 1.0004 | 0.9783 | 1.0134 | 1.1496 | 1.1202 | 1.0972 | 1.1344 | 1.4702 | 1.3616 | 1.2999 | 1.4146 |  |
| KS arith | 0.9528 | 0.9516 | 0.9510 | 0.9522 | 1.0269 | 1.0145 | 1.0034 | 1.0206 | 1.1496 | 1.1389 | 1.1289 | 1.1442 | 1.4702 | 1.3834 | 1.3321 | 1.4260 |  |
| KS max   | 0.9528 | 0.9491 | 0.9471 | 0.9509 | 1.0269 | 0.9835 | 0.9501 | 1.0046 | 1.1496 | 1.1125 | 1.0858 | 1.1302 | 1.4702 | 1.1799 | 1.0714 | 1.3146 |  |
| MU1      | 0.9528 | 0.9521 | 0.9517 | 0.9525 | 1.0269 | 0.9964 | 0.9714 | 1.0114 | 1.1496 | 1.1393 | 1.1297 | 1.1444 | 1.4702 | 1.3000 | 1.2148 | 1.3819 |  |
| MU2      | 0.9528 | 0.9417 | 0.9322 | 0.9424 | 1.0269 | 0.8804 | 0.8317 | 0.9440 | 1.1496 | 1.0182 | 1.0064 | 1.0584 | 1.4702 | 0.8659 | 0.8248 | 1.0815 |  |
| MU3      | 0.9528 | 0.9362 | 0.9302 | 0.9430 | 1.0269 | 0.8573 | 0.8725 | 0.8936 | 1.1496 | 1.0381 | 1.0201 | 1.0810 | 1.4702 | 0.8770 | 0.8229 | 1.0171 |  |
| MU4      | 0.9528 | 0.9403 | 0.9312 | 0.9419 | 1.0269 | 0.8674 | 0.8846 | 0.8963 | 1.1496 | 1.0186 | 1.0069 | 1.0590 | 1.4702 | 0.8713 | 0.8192 | 1.0157 |  |
| MU5      | 0.9528 | 0.9427 | 0.9383 | 0.9474 | 1.0269 | 0.8338 | 0.8201 | 0.9030 | 1.1496 | 1.0597 | 1.0316 | 1.0980 | 1.4702 | 0.8393 | 0.8095 | 1.0371 |  |

#### Table 12: estimated MSEs when n=150 $\sigma$ =20

| φ        |        |        | 0.75   |        |        |        | 0.85   |        |        | 0.     | 90     |        | 0.95   |        |        |        |  |
|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--|
|          | OLS    | ORR    | MURR   | TPE    |  |
| HK       | 1.0183 | 0.9882 | 0.9702 | 1.0022 | 1.0772 | 1.0385 | 1.0159 | 1.0561 | 1.1236 | 1.0705 | 1.0417 | 1.0952 | 1.1797 | 1.0281 | 0.9799 | 1.0934 |  |
| HKB      | 1.0183 | 0.9644 | 0.9491 | 0.9861 | 1.0772 | 1.0146 | 0.9963 | 1.0394 | 1.1236 | 1.0209 | 0.9994 | 1.0616 | 1.1797 | 0.9933 | 0.9611 | 1.0669 |  |
| LW       | 1.0183 | 0.9592 | 0.9497 | 0.9787 | 1.0772 | 1.0038 | 0.9863 | 1.0280 | 1.1236 | 1.0016 | 0.9812 | 1.0386 | 1.1797 | 0.9636 | 0.9555 | 1.0232 |  |
| HSL      | 1.0183 | 0.9862 | 0.9678 | 1.0010 | 1.0772 | 1.0474 | 1.0264 | 1.0614 | 1.1236 | 1.0747 | 1.0468 | 1.0977 | 1.1797 | 0.9956 | 0.9620 | 1.0688 |  |
| HMO      | 1.0183 | 0.9599 | 0.9514 | 0.9777 | 1.0772 | 1.0046 | 0.9874 | 1.0290 | 1.1236 | 1.0052 | 0.9879 | 1.0450 | 1.1797 | 0.9681 | 0.9540 | 1.0405 |  |
| AM       | 1.0183 | 0.9739 | 0.9677 | 0.9793 | 1.0772 | 1.0000 | 0.9999 | 1.0197 | 1.1236 | 1.0000 | 1.0000 | 1.0309 | 1.1797 | 0.9688 | 0.9593 | 1.0220 |  |
| GM       | 1.0183 | 0.9612 | 0.9533 | 0.9772 | 1.0772 | 1.0006 | 0.9842 | 1.0215 | 1.1236 | 1.0000 | 0.9931 | 1.0311 | 1.1797 | 0.9687 | 0.9541 | 1.0414 |  |
| MED      | 1.0183 | 0.9645 | 0.9573 | 0.9772 | 1.0772 | 1.0070 | 0.9903 | 1.0321 | 1.1236 | 1.0001 | 0.9754 | 1.0330 | 1.1797 | 0.9987 | 0.9634 | 1.0714 |  |
| KS       | 1.0183 | 1.0114 | 1.0055 | 1.0148 | 1.0772 | 1.0679 | 1.0586 | 1.0725 | 1.1236 | 1.1016 | 1.0848 | 1.1123 | 1.1797 | 1.1058 | 1.0579 | 1.1409 |  |
| KS arith | 1.0183 | 1.0157 | 1.0133 | 1.0170 | 1.0772 | 1.0740 | 1.0705 | 1.0756 | 1.1236 | 1.1151 | 1.1079 | 1.1193 | 1.1797 | 1.1520 | 1.1284 | 1.1656 |  |
| KS max   | 1.0183 | 1.0102 | 1.0033 | 1.0142 | 1.0772 | 1.0664 | 1.0558 | 1.0717 | 1.1236 | 1.0932 | 1.0719 | 1.1079 | 1.1797 | 1.0861 | 1.0333 | 1.1297 |  |
| KS md    | 1.0183 | 1.0172 | 1.0161 | 1.0177 | 1.0772 | 1.0760 | 1.0748 | 1.0766 | 1.1236 | 1.1218 | 1.1202 | 1.1227 | 1.1797 | 1.1764 | 1.1733 | 1.1781 |  |
| MU1      | 1.0183 | 1.0144 | 1.0110 | 1.0163 | 1.0772 | 1.0739 | 1.0702 | 1.0755 | 1.1236 | 1.1161 | 1.1097 | 1.1198 | 1.1797 | 1.1577 | 1.1384 | 1.1685 |  |
| MU2      | 1.0183 | 0.9612 | 0.9481 | 0.9829 | 1.0772 | 1.0061 | 0.9893 | 1.0310 | 1.1236 | 1.0024 | 0.9833 | 1.0403 | 1.1797 | 0.9630 | 0.9550 | 1.0239 |  |
| MU3      | 1.0183 | 0.9618 | 0.9482 | 0.9836 | 1.0772 | 1.0686 | 1.0599 | 1.0728 | 1.1236 | 1.1215 | 1.1196 | 1.1226 | 1.1797 | 0.9625 | 0.9538 | 1.0292 |  |
| MU4      | 1.0183 | 0.9623 | 0.9547 | 0.9771 | 1.0772 | 1.0040 | 0.9866 | 1.0283 | 1.1236 | 1.0013 | 0.9801 | 1.0378 | 1.1797 | 0.9628 | 0.9549 | 1.0242 |  |
| MU5      | 1.0183 | 0.9735 | 0.9550 | 0.9930 | 1.0772 | 1.0369 | 1.0143 | 1.0551 | 1.1236 | 1.0280 | 1.0038 | 1.0673 | 1.1797 | 1.0172 | 0.9729 | 1.0857 |  |

#### References

[1] Lukman, A. F., Ayinde, K., Binuomote, S., & Clement, O. A. (2019). Modified ridge-type estimator to combat multicollinearity: Application to chemical data. Journal of Chemometrics, 33(5), e3125.

[2] Hoerl, A. E. & Kennard, R. W. (1970). Ridge regression: Biased estimation for non- orthogonal problems. *Technometrics*, *12*(1), 55-67.

[3] Kibria, B. M., & Banik, S. (2016). Some ridge regression estimators and their performances. Journal of Modern Applied Statistical Methods, 15(1), 12.

[4] Crouse, R., Jin, C., & Hanumara, R. (1995). Unbiased ridge estimation with prior informatics and ridge trace. *Communications in Statistics – Theory and Materials*, 24(9), 2341-2354.

[5] Batah, F. S. M., & Gore, S. D. (2009). Ridge regression estimator: Combining unbiased and ordinary ridge regression methods of estimation. *Surveys in Mathematics and its Applications, 4*, 99-109.

[6] Lukman, A. F., Ayinde, K., Siok Kun, S., & Adewuyi, E. T. (2019). A modified new twoparameter estimator in a linear regression model. Modelling and Simulation in Engineering, 2019.

[7] Tarima, S., Tuyishimire, B., Sparapani, R., Rein, L., & Meurer, J. (2020). Estimation Combining Unbiased and Possibly Biased Estimators. Journal of Statistical Theory and Practice, 14(2), 18.

[8] Özkale, M. R., & Kaciranlar, S. (2007). The restricted and unrestricted two-parameter estimators. Communications in Statistics—Theory and Methods, 36(15), 2707-2725.

[9] Asar, Y., & Genç, A. (2017). Two-parameter ridge estimator in the binary logistic regression. Communications in Statistics - Simulation and Computation, 46(9), 7088-7099.

[10] Hoerl, A. E., Kennard, R. W., & Baldwin, K. F. (1975). Ridge regression: Some simulations. *Communications in Statistics*, 4(2), 105-123.

[11] Lawless, J. F. & Wang, P. (1976). A simulation study of ridge and other regression estimators. *Communications in Statistics – Theory and Methods*, 5(4), 307-323.

[12] Hocking, R. R., Speed, F. M., & Lynn, M. J. (1976). A class of biased estimators in linear regression. *Technometrics*, *18*(4), 55-67.

[13] Nomura, M. (1988). On the almost unbiased ridge regression estimation. *Communication in Statistics – Simulation and Computation*, 17(3), 729-743.

[14] Kibria, B. M. G. (2003). Performance of some new ridge regression estimators. *Communications in Statistics – Simulation and Computation*, 32(2), 419-435.

[15] Khalaf, G. & Shukur, G. (2005). Choosing ridge parameters for regression problems. *Communications in Statistics – Theory and Methods*, 34(5), 1177-1182.
[16] Alkhamisi, M., Khalaf, G., & Shukur, G. (2006). Some modifications for choosing ridge parameters. *Communications in Statistics – Theory and Methods*, 35(11), 2005-2020.

[17] Lukman, A. F., Ayinde, K., & Ajiboye, A. S. (2017). Monte Carlo study of some classificationbased ridge parameter estimators. Journal of Modern Applied Statistical Methods, 16(1), 24.

[18] Gruber, M. (2017). Improving Efficiency by Shrinkage: The James--Stein and Ridge Regression Estimators. Routledge.

[19] Akdeniz, F. & Erol, H. (2003). Mean squared error matrix comparisons of some biased estimators in linear regression. Communications in Statistics – Theory and Methods, 32(12), 2389-2413

دراسة بعض أنواع تقديرات انحدار الحرف في نموذج الانحدار الخطي

مصطفى ناظم لطيف ، مصطفى اسماعيل نايف قسم الرياضيات , كلية التربية للعلوم الصرفة , جامعة الانبار ، الانبار ، العراق

#### الملخص

يعد التقدير المتحيز أحد أكثر الأساليب المستخدمة شيوعًا لتقليل تأثير مشكلة تعدد العلاقات الخطية على تقدير المعلمات في نماذج الانحدار الخطي المتعددة. في هذا البحث، تم إجراء دراسة محاكاة لدراسة الكفاءة النسبية لبعض أنواع المقدرات المتحيزة بالإضافة إلى اثنا عشر معلمة مقدرة مقترحة لمعامل الحرف (k) مذكورة في البحوث. تم اقتراح بعض الانواع الجديدة لتقدير معلمة مقدرة لمعامل الحرف (k). أخيرًا ، تم استخدام مجموعة بيانات حقيقية لتوضيح النتائج استنادًا إلى معيار لمتوسط الخطأ المقدر. وفقًا للنتائج، فإن جميع المقدرات المقترحة له (k) أفضل من المُقدِّر بطريقة المربعات الصغرى (LSE)، ولكن لا يوجد ضمان للمُقدِر "الأمثل"، وسيتوقف الاختيار الأفضل للمُقدِر على الشروط الدراسة.