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Theoretical calculations are reported to predict the geometrical

structures and IR vibrational frequencies of entrance channel of C,H,+Cl
interaction in the ground state. The calculations are performed via Ab
initio calculations at perturbation theory (MP2) with Dunning
correction-consistent basis set (aug-cc-pVDZ). The results show that
attaching acetylene molecule with radical chlorine via van der Walls
bonds has two equilibrium structures. These structures have IR active of
harmonic vibrational frequencies. In one of these structures; Cl atom

E-mail: bonded to a particular H atom which has a single IR active of C-H
media.sulaiman@univsul.edu.iq asymmetric stretching vibration at 3428 cm™. The other structure, in
Tel: which CI atom attached to both of H atoms (T- shape), predicted

harmonic vibration at 3424 cm™ for asymmetric C-H stretch. The rear
geometrical structure is lower minimum energy than the former one by
11.78 KJ/mol. Finally, the barrier for the interconversion from one

Introduction

Shape of the reaction potential energy surface is well
known to have a significant influence on reaction
dynamics [1]. It can steer the reaction from reactants
to products via the transition state [1, 2]. Long range
interactions in ion- molecule systems have been
studied widely [1]. In contrast, few studies have
focused on the van der Waals minima of neutral
reactions on reacting potential energy surfaces [3-9].
For instance, research of CI+HD reaction indicates
that these minima can have a major impact on the
reaction process: entrance channel minima have a role
in orientating reactants prior to the transition state [6-
9], while exit channel minima can affect the quantum
state populations of the products [2]. Therefore,
atoms with different types of molecules show that the
potential energy surfaces are becoming accessible to
realistic quantum mechanics simulation. A significant
study of the entrance and exit channel have been
studied theoretically for ClI +CH, reaction using ab
initio calculations, which showed the importance of
channels on the reaction dynamics [10]. Since
halogen atoms have a great role in chemistry
environment, many research had been done to predict
the minimum equilibrium structure for the halogen
atoms — molecule, especially of Cl attached to HCI
[11-19], These studies predicted that the minimum
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minimum to the other is also computed in this study.

equilibrium structure for the ClI — HCI system is T-
shaped instead of the linear shape that was concluded
via previous studies [11-19]. However, these studies
did not include vibrational of C,H, attached to CI.
Since C,H, is important complex in the organic and
industrial chemistry, many spectroscopic
experimental studies concentrate on it [20-27].
Therefore, it is worth to study spectroscopy of C,H,
attached with halogen atoms particularly Cl atom.
Recently, investigations have been reported for
interaction Cl atom with C,H, [28]. The results
explored reaction coordinates of the transition states
of CI+C,H, [28], however the work did not predict IR
vibrational frequencies and equilibrium structures.
The goal of this paper is to probe the structure of the
entrance channel of C,H,+Cl and utilise for first the
time its C-H stretching vibration in the IR region via
ab initio harmonic frequencies.

Method

GAUSSIAN 03 software (2003) was used for the ab
initio calculations. This software depends on
theoretical calculations, which is one of the most
advanced simulation of theory in recent year [29].
The methodology was second order perturbation
theory (MP2) together with basis set of aug-cc-pvVDZ
(Dunning  correlation-consistent  basis  set) to
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incorporate electron correlation [30]. This level of
theory and basis set was used only for predicting the
potential energy minima and corresponding
vibrational frequencies in the entrance channels for
Cl + C,H, reactions. However, barrier energy
between both minims has been calculated using OPT
(optimisation) = QST (Gaussian the Synchronous
Transit-guide Quasi-Newton method) with 6-311G**
basis set instead of aug-cc-pVDZ. Here, the 6-
311G** bhasis set is used to calculate highest energy
for the structure (transition states) since this basis set
adds diffuse functions to heavy atoms and a diffuse
'S' orbital to Hydrogens.

Results and discussion

Before presenting the results for the entrance channel
complex, the results for calculations on the isolated
acetylene molecule are presented. These calculations
serve to give some indications of the quality of the
methodology employed. Ab initio calculation of C,H,
predicted C=C, C-H bond lengths, and C-C-H angle
as 1.23 A, 1.07 A and 179.9° respectively. These
values are a quite agreement with experimental
results which were recorded 1.203 A, 1.06 A and
180° of C=C, C-H bond lengths and C-C-H angle,
respectively [31]. Given the high symmetry of
acetylene there is only one observable band in the IR
spectrum in a CH stretching region (Figure 1). The IR
active mode corresponds to C-H stretching mode.
Theoretical calculations in this work are predicted
3432 cm™ vibration frequency for asymmetric mode
(Figure 1). The experimental value of asymmetric C-
H stretching is 3374 cm™ [31]. Ab initio calculations
predicted C-H IR stretching higher by 58 cm™ than
the observed value. There are two main reasons to
explain the differences between theoretical prediction
and the experimental results, one reason is related to
that the theoretical calculations predicts a harmononic
vibration oscillator only while the practical case
includes anharmonic oscillator. Other cause is that
our calculations have been done by using MP2
method, which is not covers all electron correlation,
although it includes majority of electron correlation.
The intensity of C-H stretching vibration relates to
the larger size of the transition dipole moment of C-H
IR stretching of C,H, (strong band absorption).
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Fig. 1: Structure and vibration frequency of C,H,

Ab initio calculations on CI+C,H, predict entrance
channel complex with two possible equilibrium
structures where the chlorine atom is bonds to a
specific hydrogen atom in one structure (Figure 2.a)
and in the other structure the Cl atom connects to
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both C atoms of the C,H, (Figure 2. b). The second
of these minima is calculated to have the deeper
minimum. The calculations predicted well depths in
the entrance channel region of 1.22 kJ mol™ and 13 kJ
mol™ for the structures in Figure 2.a and Figure 2.b,
respectively, as summarized in Figure 3. In addition,
transition state which is the highest potential energy
[32] between both structures is predicted using 6-
311G** basis.
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<

Fig. 2: Calculated equilibrium structures for the
entrance channel complex (a) with the Cl bound to a
particular H atom (CI-C;H,), (b) Cl bound to both C

atoms of C,H,.
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Fig. 3: Schematic of potential energy surface of the Cl +
C,H, reaction. The minimum energies are calculated via
pVDZ basis sets while the transition state is predicted
by using 6-311G** basis set. Energies are relative to
CI+C,H,. Note that this diagram is not scaled.

Vibrational frequencies have been calculated for both
structures in entrance channel for Cl + C,H, (Figures
4 and 5) in CH stretching region in a range from 2400
to 3600 cm™. For the first structure (Figure 2 (a)), the
highest vibrational frequency is related to asymmetric
C-H stretching and is predicted in the entrance
channel at 3428 cm™ (Figure 4). It is lower than the
C-H stretching vibration of C,H, alone (3432 cm™)
(Figure 1) by about 4 cm™. It could be said that the
line 3428 cm™ is not easy to distinguish during an
experimental work because the difference is only 4
cm™ between CH asymmetric of pure acetylene and
that of CI+C,H,. However, it could be used
techniques of testing the change in IR intensity before
and after adding CI atoms to C,H,. In addition, it is
possible to distinguish these IR spectra of the
entrance channel in C-H as those in most recent
experiments [33].
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C-H stretching with 4 cm™ difference from the IR
(Figure 4) of C-H stretching of the first structure
(Figure 2 (a)). Mass spectroscopy could be used to
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Fig. 4: Predicted of IR spectrum of C,H,-Cl entrance
channel complex with the Cl bound toa particular H
atom (CI-C2H2).

The second structure CI-C,H, (Figure 2 (b)) has a C-
H stretching 3424 cm™ which is less than C-H
stretching of C,H, alone (Figure 1) by 8 cm™. This
could be easier than the first structure (Figure 2 (b))
to distinguish as the differences in C-H stretching
vibrations more than those for the first structure. In
addition, its intensity is acceptable in comparison to
the intensity of C-H stretching in C,H, (Figure 1).
Overall, the CI-C,H, structure (Figure 2 (b)) will be
distinguished easier than the first structure CI-C,H,
(Figure 2 (a)) because it has the 3424 cm™ (Figure 5)

angles for all structures concluded in this work are

explored in table (1).
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Fig. 5: Predicted of IR spectrum of C,H,-Cl entrance
channel complex with the Cl bound to both C atoms of
Csz.

" 3500

Table 1: Bond length, bond angle and cartesian coordinatesof all structures that predicted in this work.

Structure Bont(jp{%ngth Bond angle Cartesian Coordinates
Qoo amu_ ol | C-H=1.075 Sequence Atomic X y z
number
e o H-C-H=179.9° 1 6 0.000162000 0.615617000  0.000000000
2 6 0.000162000 -0.615632000  0.000000000
C=C=1.232 3 1 -0.001123000 -1.690765000 0.000000000
4 1 -0.000819000  1.690854000  0.000000000
O o e aeG 6 H-C=1.076 Cl-H-C=179.80 Sequence Atomic X y z
g7 Number
C-C-H=179.97 1 6 0.007798003  1.842348683  0.000000000
B 2 6 0.017590003  3.073946683  0.000000000
Cl-H=2.791 C-C-H=179.97 | 3 1 0025637003  4.148696683  0.000000000
C=C= 1232 4 1 0.000000003  0.766252683  0.000000000
5 17 -0.010468003 -2.024277683  0.000000000
H-C-C=178.9
17350 H-C=1.076 Sequence Atomic X y Z
@ oG —Hs Number
CI-C-H =104
C=C =1.237 1 1 1.496027000 1.694680000 0.000162000
23 1982 2 6 1.475373000 0.618543000 0.000112000
3 6 1.475392000 -0.618527000 0.000038000
C-Cl =2.763 4 1 1.496187000 -1.694652000 0.000367000
% ' 5 17 -1.217459000  -0.000007000 -0.000084000
Cl-H- C=125.64 | Sequence Atomic X y z
Q§ Cl-H=2.97 Number
2 1 1 -0.162653315 0.187191361 0.158981308
H-C =1.076 2 6 -0.098250484  -0.0.091699499 1.228054181
=y 3 6 -0.018734557  -0.023530453 2.451328664
g, “Gug | c=C = 1231 4 1 0042129378  -0.115352355 3521192016
- ) 5 17 -1.526709390  1.466323575 5.485949330
Conclusion IR spectroscopy (Figure 5), while the Cl — C,H;
In the current work, structures, vibrational (linear shape) could be difficult to detect. Vibration

frequencies of Cl + C,H, as a new work, transition
state and the relative energies of the equilibrium
structures are predicted. The CI+C,H, structure (T-
Shape) of the entrance channel is easy to observe in
References
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frequencies of C,H, attached with CI are higher
intensity than the intensity of C-H stretching in C,H,
structure.
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