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1. Introduction and preliminaries

Topology is one of branches of mathematics, which is
interested in studying the construct, components and
peculiarities of all different spaces, so that these
characteristics[1]. If Y is a non-empty set, a collection
T from partial sets from Y is called a topology at Y,if
the following provision carry Y,® € 7, the finite
"intersection” from any two sets at T belong into T,
and the "union" from any numeral from sets at 7
belong to t [2]. Both element in the topology is said
to be open set, her complement is a closed set [3].
The closure of a subset U briefly, CL(U) is the
smallest closed set that include U [4]. The interior of
a partial set U briefly, Int(U) is the largest open set
that is include in U [4]. The exterior of U is the
interior from C(U) [1].The boundary from U is
ClL(U) n CI(C(U)) the set of points that belong to
interior don’t the exterior of A4, and limit point [1].

A graph G is defined as a non-empty set M of
elements called "vertices" and we symbolize it
sometimes by M(G) with the N family of unordered
pairs of vertices set and each element of E is called
"edge" and we symbolize it sometimes by N(G) [5].
Sometimes we express the graph G of his vertices set
and his family edges N of the ordered pairs
(M(G), N(G)) [5]. The numeral of vertices in a graph
G is the order from G, and the numeral of edges is the
volume from G [6]. Also, the statement may contain
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an edge that reaches to a vertex itself called a
"loop"[2]. Two or more edges that link the same pair
of different vertices are refer to "parallel edges"[7].
Let G = (M(G),N(G)) be a graph; we name U a
"subgraph™ of G if M(U) € M(G) and N(U) <
N(G), in whose state we write U< G [7]. The
number of edges on the vertex m is defined by a
degree and denoted by the symbol deg(m) [6]. A
simple graph that does not contain "loops and double
edge" [5].

In this research, we found a new definition of a
relation to extract a topology of any graph and study
some peculiarities. Conduct the research, and some
terms peculiarities on (closure, interior, exterior,
boundary and limit point) for "topological graph™ will
be studied.

2. Construct A Topology Via Graph

Definition 2.1 : Suppose that G = (M(G), N(G)) be
a graph, m € M(G) then we define the post stage mR
is the set of all vertices which is not neighborhood of
m. Sg is the collection of (mR) is called subbasis of
graph. Bg= N, Sg,is called bases of graph. Then the
union of B, is form a topology on G and (M(G), t;)
is called topological graph.

Remark 2.2 : Every topological construct ; onto a
graph G is topological

graph.
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Proof : Let 7, be a topological construct for a graph
G. Now, we prove that 7 is a topological graph.

(i) Since Y =Uj¢; B; where B; € B;, then B; =
n}-;l Sj, where S; € S; and S; = v;R, v €Y. Then
Y=Uj¢; (Nj2; vjR), and so Y €15. Also, as is
obvious that @ € 7; by complement from Y.

(||) Let A} € TG A} =UjE] B], Where B] € BG!
B} =n}l=1 S], where S] € SG and S] = UjR, v E A],
then A; =Uj¢; (NjL; v;R), where v;R = {deg; (b, )b,
rel}

and Aj =VUj¢; (Nj; degg(br)), then
Ujer (Nj2; degg(by)) € T, where b, are all the not
neighborhood from v; and Uj¢; 4; € 4.

(|||) Let A},C] € TG Ai =Uj€] B], Where B] € BG!
Bi =n}l=1 S], where S] € SG' S] = UjR, v E A] then
A] =Vjes (ﬂ]r-lzl U}R) Then, C] =Uj6] (n}lzl UjR),
there are two cases :

Case I: If there are no elements in intersection, i.e,
A;nC; = @,since @ € g, then

A] n C} € Tg-

Case Il: If there exist elements in intersection A; N C;,
then we denote it

{y:n €N} So {y,} € R, Aj =Uje; (Nj=; v;R),
and C] =UjE] (ﬂ}l:l V]R)

So {y,:n € N} one of these classes. Therefore,
{y,:n € N}.

Let us give some examples to explain the above
theorem.

Example 2.3 : Suppose that G = (M(G),N(G)) be a
"simple graph” (see Figure 1). We build topological
space as follows:

miR = {ms},

myR = {my, ms},

mzR = {my, ms},

myR = {m,},

msR = {m,, m3}. Then a subbase of a topology is

S¢ = {{ms}, {my, ms}, {my, ms}, {my}, {my, ms}}.
The base is

Bg =

{M(G), 8, {ms}, {ms}, {m.}, {my, ms}, {my, m3}, {my, ms}}.
Therefore, the topological graph on G will be 7; =
{M(G), D, {m3}, {ms}, {m,}, {my, ms}, {m;, ms},

{m4-' mS}' {173, mS}' {mZ' m3}' {mll ms, mS}' {mz; mS}:
{m3' My, mS}v {mZ' ms, mS}' {m1; my, mS}: {mZI My, 175};
{my, m3, my, ms}, {my, my, ms}, {my, my, m3, ms}}
M

r

1Ty

mg 2
Fig. 1

Example 2.4: Suppose that G = (M(G), N(G)) be a
(non-simple graph)which has double edges and loops
(see Figure 2).

miR = {ms},

m,R = {my, ms},

TJPS

mzR = {my, ms},
myR = {m,},
msR = {m,, m3}. Then a subbase of a topology is
S¢ = {{ms}, {my, ms}, {my, ms}, {my}, {m, ms}}.
The base is
B; =
{M(G), @, {m3}, {ms}, {m,}, {my, ms}, {m,, m3}, {my, ms}}
. Therefore, the topological graph on G will be
[t6
= {M(G), @, {ms}, {ms}, {m,}, {my, ms}, {m,, ms}, {my, ms},
{m3r mS}! {mZ! mS},
{my, m3, mg}, {my, ms}, {msz, my, ms}, {m,, ms, ms},
{my, my, ms}, {my, my, ms},
{mZ' ms, My, mS}! {mlﬂ my, mS}! {m1; m;,ms, mS}}

my

Fig. 2

Remark 2.5 : The complete graph is an indiscrete
topology.

Definition 2.6 : Suppose that G = (M(G),N(G)) be a
graph, U be a subgraph from G. Then the graph
closure of M (U) has the shape

Cle(MU)) = MU) U {m € M(G):mR n M) # @}.
Theorem 2.7 : Suppose that G = (M(G),N(G)) be a
graph that contains a topological graph (M(G), 7). If
U, W are subgraphs from G; then:

(i) M(U) € Clg(M(U)).

(i) If U € W, then Cl; (M (U)) € Clo(M(W)).

(iii) Cls (Cle(M(U))) # Cla(M(U)).

(iv) Cle(M(U) U M(W)) = Cl,(M(U) U
Cla(M(W)).
(v) Cle(M(U) N M(W)) € Cly(M(U) N
Cle(MW)).

Proof: (i) Suppose that m € M (U), by definition 2.6.
Cl;(MU) =MWU)u{me M(G):mRnM(U) #
@}. Then M(U) < Cl;(M(U)).

@iy From (i), MU) < Cl,(M(U)) and M(W) <
Cl;(M(W)). Since U< W, then M(U) € M(W).
Therefore, Cl;(M(U)) < Cl,(M(W)).

(iii) Suppose that m € M(U), by definition 2.6.
Cl;(MU) =MW)u{me M(G):mRnM(U) #
@}.Then M(U) € Clz(M(U)), since Cl;(M(U)) <

Cl;(Clo(MU))), then Clo(Cl;(M(U)) &
Cl;(M(U)). Therefore, Cls(Cl;(M(U))) #
Clo(M(U)).

(iv) From Theorem 2.7, it is obvious that
MWU)UMW)c Cl;(MU)uMW)). If me
Cle(M(U))UMW)), then by definition 2.6,
me MU)UMW) or mRn (MU) UMW)) £ @.
Then

meMU) or meM(W) or vRNMU)+@ or
mRNM(W) # @. Thus
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(meMU) ormRNM(U) + @)or(me M(W) or
mRNMW) #@). Then meCl;(MU)) or
m € Clo(M(W)). Therefore, meCl;(M(U)U
Cle(M(W)). Hence, Cl;(M(LYuMW)) c
Clo(MU) U Cly(M(W)).
(v) M) € Cle(MU)), M(W) < Clg(M(W)).
Since MU)NMW) < MU), MU)NMW) S
M@W). Then Cl;(M(U) n M(W)) < Cl(M (1)),
Cle(M(U) n M(W)) € Cl;(M(W)). Therefore,
Clo(M(U) N M(W)) € Cl;(M(U) n Cle(M(W)).
Example 2.8 : Via Example 2.3. Suppose that U, W
are subgraphs of G with
vertices
M(U) = {mllmS}! M(W) = {mlmefmS}fM(U) U
MW) = {m,, ms;, ms}. Then
myR = {my, ms}, myR = {m;},msR = {my, mz},. So
m,RNMU) =0,mRNMU) =0,mRnN
M(U) # @. Then
Cle(MU)) = M(U) U {ms} = {my, m3, ms},
Cle(M(W)) = M(W) U {m,} = {my, my, m3, ms},
Clg(Cle(M(U))) = {my, my, mg, ms}, Cle(M(U) U
MW)) = {m;, my, ms, ms}. Since
Cl;(Cly(M(U))) # Clo(M(U)). Then
Cle(M(UYuVW)) =Clo(M(U) U Cl;(M(W)).
Definition 2.9 : Suppose that ¢ = (M(G), N(G)) be
a graph, U be a subgraph from G. Then the graph
interior of M) has the shape
Intog(M(U)) = {m € M(G): mR € M(U)}.
Theorem 2.10 : Suppose that G = (M(G), N(G)) be
a graph that contains a topological graph (M(G), t¢).
If U, W are subgraphs from G; then:
(i) IfU € G, then Int,(M(U)) € M(G).
(i) f U € W, then Int,(M(U)) € Intg(M(W)).
(iii) Int; (Inta(M(U))) # Intg(M(U)).
(iV)inte(M(U) n M(W)) = Int;(M(U)) N
Inte (M(W)).
(v) Intog(MU)) U lInt,(M(W)) € Intg(M(U) U
MW)).
Proof : (i) Since M(U) € M(G), then by definition
2.9,
Int;(M(U)) = {m € M(G): vR € M(U)}.This
means that Int;(M(U)) € M(G). (if) Since
MU)c M(W), then by  definition 2.9
Jdnto(M(U) ={m e M(G):mR c MU)} S {me
M(G):mR € M(U) € M(W)} S Ints(M(W)).
Therefore, Int;(M(U)) € Int;(M(W)).
(iii) Suppose that m € M(U), by definition 2.9.
Into(M(U)) = {m € M(G):mR S M(U)}.  Then
M) ¢ Int;(M(U)), since Int;(M(U)) &
Intg(Int;(M(U))), then Intz(Int;(M(U))) &
Intg(M(U)).  Therefore, Int;(Intg(M(U))) #
Intg;(M(U)). (iv) From (i), it is obvious that
Into(M(H) n M(W)) € M(U) n M(W). Then by
definition 2.9, if m € Int;(M(U) n M(W)), then
m € M(G), such that mR € M(U) n M(W). Then
vR € M(U) and mR < M(W). Therefore,
me Intg(M(U)) and m € Intg(M(W)).
m € Into(M(U) n M(W)).

Conversely

Then

TJPS

Int;(M(U)) N Intg(M(W)) € Intg(M(U) N
MW)). Let m € Int;(M(U)) n Intg(M(W)). Then
me€Int;(M(U)) and mE€Int;(M(W)), by
definition 2.9, for all m € M(G) such that mR <
M(U) and for all m € M(G) such that mR < M(W).
Then for all m € M(G) such that mR € M(U) n
M(W). Therefore, m € Int;(M(U) n M(W)). The
proof is complete.

(v) Suppose that MU),M(W) c M(G),
MU) € M(U)uMW),M(W) €< M(U) U
MW). Then Into(M(U)) € Int;(M(U) U
MW)), Into(M(W)) € Int;(M(U) U M(W)).
Therefore, Into(M(U)) U Int;(M(W)) €
Into(M(U) U M(W)).

Example 2.11 : Via Example 2.3. Suppose that U, W
are subgraphs from G with vertices (U) =
{my, m3}, M(W) = {my, m3, ms}, M(U) n M(W) =
{my, ms}, Inte(M(U)) = {my}, Inte(M(W)) =

{m,, ms}, Intg(Intg(M(W))) = @, Int;(M(U) N
MW)= {my}. Since Ints(Intz;(M(U))) #
Inte(M(U)). Then Int,(M(U) n M(W)) =
Int;(M(U)) N Intg(M(W)).

Definition 2.12 : Suppose that G = (M(G), N(G))
be a graph, U be a subgraph from G. Then the graph
exterior from M(U) has the shape Ext;(M(U)) =
{me M(G):mRnM(U) = ¢}

Theorem 2.13 : Suppose that G = (M(G), N(G)) be
a graph that contains a topological graph (M(G), t¢).
If H, W are subgraphs from G; then:

() Exts(M(U)) = Intg(C(M(U))).

(ii) Ext;(M(U) n M(U) = @.

(iii) Extg(M(U)) = C(Clg(M(U))).

(iv) If U € W, then Ext,(M(W)) S Ext;(M(U)).
(V)Exte(MU) U M(W)) € Exts(M(U)) N
Exto(M(W)).

Proof: (i) Suppose that m € Ext;(M(U)), then
mR c C(M(U)), ifand only if

m € Int;(C(M(U))). Therefore,
Intg(C(M(U))).

(ii) Suppose that m € Ext;(M(U)), then
Exts(M(U)) N M(U) € C(M(U)) N M(U)),
Exto(M(U)) N M(U) c @. Therefore,
Exte(M(U))NnMU) = @.

(iii) Suppose that m € Ext; (M (U)), from

() Extg(M(U)) = Ints(C(M(U))).
C(Extg(M(U))) = C(Int(C(M(V)))).
C(Exte(M(U))) = Cle(M(U)), by taking
complement both sides,

Exts(M(U)) = C(Cls(M(U))).

(iv) C(M(U)) € M(W)), C(M(W)) < C(M (D)), by
taking interior both sides, Int; (C(M(W))) c

Int; (C(M((U))),from (i). Then Ext;(M(U)) =
Int;(C(M(U))). Therefore, Ext,(M(W)) <
Ext;(M(U)).

(v) Suppose that m € Ext; (U U W), from (i)
Exto(UUW) = Int;(C(M(U) U M(W)))
=Ints(C(M(U)) N C(M(W)))

= Intg(C(M(U))) N Ints(C(M(W)))

= Ext;(M(U)) n Extg(M(W)).

since

Exte(M(U)) =
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Example 2.14 : Via Example 2.3, if U be a subgraph
from G.

MU) = {my, my},myRNM(U) # @,myR N

MWU) =@,m;RNMU) + @, myR N

M(U) = @,msR N M(U) # @. Then Ext;(M(U)) =
{m,, my}, C(M(U)) = {my, my, ms},

Int; (C(M(U))) = {m,, m,}. Therefore,
Exts(M(U)) = Int(C(M(U))).

Definition 2.15 : Suppose that G = (M(G), N(G)) be
a graph and U be a subgraph from G. Then the graph
boundary  from  M(U) has the  shape
Bg(M(U)) = {m € M(G): Cleg(M(V)) —
Ints(M(U))} .

Theorem 2.16 : Suppose that G = (M(G), E(G)) be a
graph that contains a topological graph (M (G), 7). If
U be a subgraph from G; then:

(i) Beg(M(U)) = Clg(M(U)) N Clg(C(M(U))).

(i) Bg(M(U)) € Bs(C(M(U))).

(i) Bg(M(G)) = @.

(iv) Bo(M(U)) = Clg(M(U)) — Int(M(U)).

(V) Clg(MU) = MU) U Bo(M(U)).

Proof: (i) Suppose that m € M(U), M(U) €
Clo(M(U)), thenm € Cl;(M(U)) and

m € Cl;(C(M(U))), thenm € Cl,(M(U)) n
Clg(CMU))).

B;(M(U)) = Clg(M(U)) N Clg(C(M(U))).

(ii) Suppose that m € M(U), by definition 2.15.
Bs(M(U)) = Clg(M(U)) — Ints(M(U))}, from (i)
B;(M(U)) =

Cl;(M(U)) N Cl(C(M(U))). Since

Clg(C(MU))) = Clg(CMW)) N
Cls(C(C(M(U)))). Therefore, Bo(M(U)) ©

B (C(M(U))).

(iii) From (), B;(M(G)) = Cl;(M(G)) n
Cle(C(M(G))) =M(G)NCl;D

= M(G) n @ = @. Therefore, B; (M (U)) = @.

(iv) Suppose that m € M(U), from (i) B;(M(U)) =
Cle(MU)) N Clg(C(M(U)))

= Cle(M(U)) = C(Cle(CM(U)))) = Cle(M(U)) —
Int; (M (U)).

(v) Suppose that veMWU),B;,(M(U)) U
Intg(M(U)) = (Cle(M(U)) -
Int;(M(U))) U Intg(M(U)).
Clo(M(U) = M(U) U B;(M(U)).
Theorem 2.17 : Suppose that G = (M(G), E(G)) be a
graph that contains a topological graph (M (G), 7). If
U, W are subgraphs from G.

Then Bs(M(U) U M(W)) € B;(M(U)) U
B (M(W)). .

Proof: Suppose that m € B; (M (U) U M(W)), then
by definition 2.16,

mRNMU)UMW)) #@Pand mRNnC(MU) U
MW))

- (MRNMU))U(@mRNMW)) # @and mR N
cMUINCMW))#0® - (mMRNMU)) U
(MRNMWW)) #=@and (mRNCMU))) VU
(MRNCMWW))) + @

> [MRNMU) #@ormRNMW) #= @] and [mR N
cM))

Therefore,
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F@and mRNCMW)) =@

> [MmMRNMU) #@and mRNnMW) #

@]or [mRNCMU)) # @ and mRn C(M(W)) #
@ ], such that

m € B;(M(U)) or m € B;(M(W)),m €

Bg(M(U)) U Bg(M(W)). Therefore, B;(M(U) U
MW)) € B(M(U)) U Bs(M(W)).

Example 2.18 : Via Example 2.3, Suppose that U be
a subgraph from Gwith vertices M(U) = {m,, ms},
C(M(U)) = {my, my, ms}, Cle(M(U)) =

{my, ms, ms},

Intg(M(U))) = {my}, Cls(C(MU))) =

{my, m3, my, ms}, Bo(M(U)) =

{ms, ms}, Cle(M(U)) n Clg(C(M(V))) = {m3, ms}.
Therefore,

Bs(M(U)) = Clg(M(U)) n Cls (C(MU))).
Theorem 2.19 : Suppose that G = (M(G), N(G)) be
a graph that contains a topological graph (M(G), ;).
If U be a subgraph from G; then

(i) Bg(M(U)) N Intg(M(V)) = @.

(il) Bg(M(U)) N Exto(M(U)) = 9.

(iii) Int; (M(U)) N Extg(M(U)) = 0.

(iv) Intg(M(U)) U Extg(M(U)) U B;(M(U)) = G.
Proof: (i) Suppose that me M(G),M(U) <
M (G), by definition 2.15,

Bs(M(U)) N Intg(M(U)) = (Cle(M(U)) —
Int;(M(U))) N Intz(M(U)), by distributing
intersection,

- (Cle(M(U)) N Intg(M(U))) — (Inte(MU)) N
Intg(M(U)))

= Int;(M(U)) — Intg(M(U)) = @.

(i) Suppose that M(U) € M(G),B;(M(U)) N
Ext;(M(U)), by theorem 2.13

= Bg(C(M(U))) N Intc(C(MU)))

= B;(G — M(U)) N Int;(C(G — M(U))) = @.

(iii) Suppose that M(U) € M(G),Int;(M(U)) N
Exts(M(U))

= Int;(M(U)) n Intz;(C(M(U))) = Int;(M(U)) N
(C(Cle(M(U)))

=Int;(M(U)) n (G — Clz(V(U))), by distributing
intersection,

= (Intg(M(U)) N G) — (Intg(M(U)) N Clg(M(U)))

= Into(M(U)) — Int;(M(U)) = .

(iv) Suppose that M(U) <€ M(G),Int;(M(U)) U
Exts(M(U)) U Bg(M(U))

= Cle(M(U)) U Intg(C(M(U))) = Cle(M(U)) U
C(Cl;(M(U))) =G.

Theorem 2.20 : Suppose that G = (M(G), N(G)) be
a graph that contains a topological graph (M(G), ;).
If Cl;(M(U)) N Clg(M(W)) = @, then

Intog(M(U) U Into(M(W)) = Intg(M(U) U
MW)).

Proof: It's clear by theorem 2.10, Int;(M(U)) U
Inte(M(W)) € Int;(M(U) U M(W)). To prove that
Int;(M(U) U M(W)) € Int;(M(U)) U
Intg(M(W)).

Assume that m & Int;(M(U)) U Int;(M(W)) and
suppose that m € Int;(M(U) U M(W)), there exist a
post stage A4, so that me€ A € M(U) u M(W), since
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ASMU)orAcSMW)or(Ae M(U)&A &
MW)).

(i) If A< M(U), then m € Int;(M(U)), Therefore
m € Intog(M(W)) U Int;(M(U)).

(i) If A € M(W), then m € Int;(M(W)), Therefore
m € Intg(M(W)) U Intg(M(U)).

(iii)y If A M(U) &A & M(W), then AnMU) #
3,ANMW) # @. Forevery W € M(G),m € W, we
get meCcCl;(MU)),meCl;(M(W)). This is
contraction, because Cl;(M(U)) N Cl;(M(W)) = @.
Therefore, (i) and (ii) true. Then Int;(M(U) U
M(W)) € Intg(M(U)) U Intg(M(W)).

Example 2.21 : Via example 2.3, suppose that U be a
subgraph from G.

M) = {my}, M(W) = {m,}, M(U) U M(W)
{my,m,}, Clg(M(U)) = {my, m3}, Cle(M(W))
{my, my, ms}, then Cl;(M(U)) N Clo;(M(W)) = @,
Int;(M(U)) =@, Int;(M(W)) =

{m,}, Intc(M(H) U M(W)) = {m,}. Therefore,
Int;(M(U) U Int;(M(W)) = Int;(M(U) U
MW)).

Definition 2.22 : Suppose that G = (M(G), N(G)) be
a graph and U be a subgraph from G. It is said that the
vertex m € M(U) is limit point to M(U) if each set
mR contain m. Also contain a point other than m
shape:

dg; = {m € M(G):mR N M(U) — {m} # ¢}.
Theorem 2.23 : Suppose that G = (M(G), N(G)) be
a graph that contains a topological graph (M(G), t¢).
If U, W are subgraphs from G; then

(i) IfU € W, then d;(M(U)) S dg(M(W)).

(ii) dg(MU) UMW) = dg(M(U)) U dg(M(W)).
(iii) dg(M(U) N M(W)) S ds(M(U)) N dg(MW)).
Proof: (i) Suppose that m € M(U), then m €
mR and mR N M(U) — {m} # 0,

m € mR and mR N M(W) — {m} # 0, since
M@U) € M(W), by definition 2.22, m € M(W).
Therefore, d; (M(U)) S dz(M(W)).
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(i) To prove that d;(MU)UMW))=
dg(M(U)) U dg(M(W)).
MU) < (MU)uMW)), by definition 2.22,
de(M(U)) S dgMU) UMW),  de(MW)) S
de((M(U) U M(W)). Therefore,
dg(M(U)) U dg(V(W)) € dg(MU) u M(W))
Conversely
Suppose that m & dg;(M(U) U M(W)), then m ¢
de(M(U) and v & dg(M(W), by definition 2.21,
mexRand xRNMWU) —{m} =0Qand m €
yR and yR N M(U) — {m} = @, m € xR N
yR and (xR N yR) n (V(U) U M(W)) — {m} = @,
since m ¢ d;(M(U) U V(W)). Therefore, dg(M(U) u
MW)) € dg(MW)) U dg(M(W))
From (1) and (2) we have d;(M(U)uMW)) =
de(M(U)) U dg(M(W)). ‘
(iii) To prove de(M(U) nMW)) € d;(M(U)) N
de(M(W)).
Let med;(M(U)nM(W)), by definition 2.22,
m € mR and mRn (MU) n M(W)) — {m} = 0,
then m € mR and [[mRNMU) — {m}) n
MRNMW) —{m})] # @, by definition 2.22,
MRNMWU)—{m}) #@and (mRNMW) —
{m}) # @, then med;(MU)),mEeE d;(M(W)),
m € dg(M(U) n M(W)). Therefore, dg(M(U) N
MW)) € dg(M(U)) N dg(M(W)).
Example 2.24: Via Example 2.3, suppose that U, W
are subgraphs from G.
M(U) = {mlimS}xM(W? = {m1!m3!m5}1
dg (M(U)) = {my, m,}, de(M(W)) = {my, m,}.
Therefore, d; (M(U)) € dz(M(W)).
Conclusion
In this paper, we were can topological construct of
any graph by using the definition of topological
graph, we studied the graph closure, graph exterior,
graph interior, graph boundary, and graph limit point
with some result.
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