Some Topological Concepts Via Graph Theory

Taha H. Jasim ${ }^{1}$, Aiad I. Awad ${ }^{2}$

${ }^{1}$ Department of Mathematics, College of Computer Science and Mathematics, Tikrit University, Tikrit , Iraq
${ }^{2}$ Department of Mathematics, College of Computer Science and Mathematics, Mosul University, Mosul , Iraq https://doi.org/10.25130/tjps.v25i4.280

ARTICLEINFO.

Article history:

-Received: 29 / 1 / 2020
-Accepted: 7 /5/2020
-Available online: / / 2020
Keywords: topological graph, graph closure, graph interior, graph exterior, graph boundary, graph limit point.

Corresponding Author:

Name: Aiad I. Awad
E-mail: aiad19ibr@gmail.com

Tel:

Abstract

Due it is difficult to find applications in topological spaces, which are branches of pure mathematics, the importance of this paper is to find applications in graph theory. Via some concepts of topological space we generalizes to a graph like (graph interior, graph closure graph exterior, graph boundary, graph limit point). The relations among them were studied. At least many theorems were proofed as a characterization and some examples introduced to explain the subject.

1. Introduction and preliminaries

Topology is one of branches of mathematics, which is interested in studying the construct, components and peculiarities of all different spaces, so that these characteristics[1]. If Y is a non-empty set, a collection τ from partial sets from Y is called a topology at Y, if the following provision carry $Y, \emptyset \in \tau$, the finite "intersection" from any two sets at τ belong into τ, and the "union" from any numeral from sets at τ belong to τ [2]. Both element in the topology is said to be open set, her complement is a closed set [3]. The closure of a subset U briefly, $\operatorname{Cl}(U)$ is the smallest closed set that include U [4]. The interior of a partial set U briefly, $\operatorname{Int}(U)$ is the largest open set that is include in U [4]. The exterior of U is the interior from $C(U)$ [1].The boundary from U is $C l(U) \cap C l(C(U))$ the set of points that belong to interior don't the exterior of A, and limit point [1].
A graph G is defined as a non-empty set M of elements called "vertices" and we symbolize it sometimes by $M(G)$ with the N family of unordered pairs of vertices set and each element of E is called "edge" and we symbolize it sometimes by $N(G)$ [5]. Sometimes we express the graph G of his vertices set and his family edges N of the ordered pairs $(M(G), N(G))$ [5]. The numeral of vertices in a graph G is the order from G , and the numeral of edges is the volume from G [6]. Also, the statement may contain
an edge that reaches to a vertex itself called a "loop"[2]. Two or more edges that link the same pair of different vertices are refer to "parallel edges"[7]. Let $G=(M(G), N(G))$ be a graph; we name U a "subgraph" of G if $M(U) \subseteq M(G)$ and $N(U) \subseteq$ $N(G)$, in whose state we write $U \subseteq G$ [7]. The number of edges on the vertex m is defined by a degree and denoted by the symbol $\operatorname{deg}(m)$ [6]. A simple graph that does not contain "loops and double edge" [5].
In this research, we found a new definition of a relation to extract a topology of any graph and study some peculiarities. Conduct the research, and some terms peculiarities on (closure, interior, exterior, boundary and limit point) for "topological graph" will be studied.

2. Construct A Topology Via Graph

Definition 2.1 : Suppose that $G=(M(G), N(G))$ be a graph, $m \in M(G)$ then we define the post stage $m R$ is the set of all vertices which is not neighborhood of $m . \mathrm{S}_{\mathrm{G}}$ is the collection of $(m R)$ is called subbasis of graph. $B_{G}=\bigcap_{i=1}^{n} S_{G_{i}}$ is called bases of graph. Then the union of B_{G} is form a topology on G and $\left(M(G), \tau_{G}\right)$ is called topological graph.
Remark 2.2 : Every topological construct τ_{G} onto a graph G is topological
graph.

Proof : Let τ_{G} be a topological construct for a graph G. Now, we prove that τ_{G} is a topological graph.
(i) Since $Y=\mathrm{U}_{j \in J} B_{j}$ where $B_{j} \in B_{G}$, then $B_{j}=$ $\cap_{j=1}^{n} S_{j}$, where $S_{j} \in S_{G}$ and $S_{j}=v_{j} R, v \in Y$. Then $Y=U_{j \in I}\left(\cap_{j=1}^{n} v_{j} R\right)$, and so $Y \in \tau_{G}$. Also, as is obvious that $\emptyset \in \tau_{G}$ by complement from Y.
(ii) Let $A_{j} \in \tau_{G}, \quad A_{j}=\cup_{j \in J} B_{j}$, where $B_{j} \in B_{G}$, $B_{j}=\cap_{j=1}^{n} S_{j}$, where $S_{j} \in S_{G}$ and $S_{j}=v_{j} R, v \in A_{j}$, then $A_{j}=U_{j \in J}\left(\cap_{j=1}^{n} v_{j} R\right)$, where $v_{j} R=\left\{\operatorname{deg}_{G}\left(b_{r}\right)_{\mathrm{br}}\right.$, $r \in I\}$
and $\quad A_{j}=\cup_{j \in J}\left(\cap_{j=1}^{n} \operatorname{deg}_{G}\left(b_{r}\right)\right)$, then $\mathrm{U}_{j \in I}\left(\cap_{j=1}^{n} \operatorname{deg}_{G}\left(b_{r}\right)\right) \in \tau_{G}$, where b_{r} are all the not neighborhood from v_{j} and $\cup_{j \in J} A_{j} \in \tau_{G}$.
(iii) Let $A_{j}, C_{j} \in \tau_{G}, A_{i}=\cup_{j \in J} B_{j}$, where $B_{j} \in B_{G}$, $B_{i}=\cap_{j=1}^{n} S_{j}$, where $S_{j} \in S_{G}, S_{j}=v_{j} R, v \in A_{j}$ then $A_{j}=U_{j \in J}\left(\cap_{j=1}^{n} v_{j} R\right)$. Then, $C_{j}=U_{j \in J}\left(\cap_{j=1}^{n} v_{j} R\right)$, there are two cases :
Case I: If there are no elements in intersection, i.e, $A_{j} \cap C_{j}=\emptyset$, since $\varnothing \in \tau_{G}$, then
$A_{j} \cap C_{j} \in \tau_{G}$.
Case II: If there exist elements in intersection $A_{j} \cap C_{j}$, then we denote it
$\left\{y_{n}: n \in N\right\}$. So $\left\{y_{n}\right\} \in v_{j} R, A_{j}=\cup_{j \in J}\left(\cap_{j=1}^{n} v_{j} R\right)$, and $C_{j}=\cup_{j \in J}\left(\cap_{j=1}^{n} v_{j} R\right)$.
So $\left\{y_{n}: n \in N\right\}$ one of these classes. Therefore, $\left\{y_{n}: n \in N\right\}$.
Let us give some examples to explain the above theorem.
Example 2.3 : Suppose that $G=(M(G), N(G))$ be a "simple graph" (see Figure 1). We build topological space as follows:
$m_{1} R=\left\{m_{3}\right\}$,
$m_{2} R=\left\{m_{4}, m_{5}\right\}$,
$m_{3} R=\left\{m_{1}, m_{5}\right\}$,
$m_{4} R=\left\{m_{2}\right\}$,
$m_{5} R=\left\{m_{2}, m_{3}\right\}$. Then a subbase of a topology is
$S_{G}=\left\{\left\{m_{3}\right\},\left\{m_{4}, m_{5}\right\},\left\{m_{1}, m_{5}\right\},\left\{m_{2}\right\},\left\{m_{2}, m_{3}\right\}\right\}$.
The base is
$B_{G}=$
$\left\{M(G), \emptyset,\left\{m_{3}\right\},\left\{m_{5}\right\},\left\{m_{2}\right\},\left\{m_{1}, m_{5}\right\},\left\{m_{2}, m_{3}\right\},\left\{m_{4}, m_{5}\right\}\right\}$.
Therefore, the topological graph on G will be $\tau_{G}=$ $\left\{M(G), \emptyset,\left\{m_{3}\right\},\left\{m_{5}\right\},\left\{m_{2}\right\},\left\{m_{1}, m_{5}\right\},\left\{m_{2}, m_{3}\right\}\right.$, $\left\{m_{4}, m_{5}\right\},\left\{v_{3}, m_{5}\right\},\left\{m_{2}, m_{3}\right\},\left\{m_{1}, m_{3}, m_{5}\right\},\left\{m_{2}, m_{5}\right\}$, $\left\{m_{3}, m_{4}, m_{5}\right\},\left\{m_{2}, m_{3}, m_{5}\right\},\left\{m_{1}, m_{2}, m_{5}\right\},\left\{m_{2}, m_{4}, v_{5}\right\}$, $\left.\left\{m_{2}, m_{3}, m_{4}, m_{5}\right\},\left\{m_{1}, m_{4}, m_{5}\right\},\left\{m_{1}, m_{2}, m_{3}, m_{5}\right\}\right\}$

Fig. 1
Example 2.4: Suppose that $G=(M(G), N(G))$ be a (non-simple graph)which has double edges and loops (see Figure 2).
$m_{1} R=\left\{m_{3}\right\}$,
$m_{2} R=\left\{m_{4}, m_{5}\right\}$,
$m_{3} R=\left\{m_{1}, m_{5}\right\}$,
$m_{4} R=\left\{m_{2}\right\}$,
$m_{5} R=\left\{m_{2}, m_{3}\right\}$. Then a subbase of a topology is
$S_{G}=\left\{\left\{m_{3}\right\},\left\{m_{4}, m_{5}\right\},\left\{m_{1}, m_{5}\right\},\left\{m_{2}\right\},\left\{m_{2}, m_{3}\right\}\right\}$.
The base is
$B_{G}=$
$\left\{M(G), \emptyset,\left\{m_{3}\right\},\left\{m_{5}\right\},\left\{m_{2}\right\},\left\{m_{1}, m_{5}\right\},\left\{m_{2}, m_{3}\right\},\left\{m_{4}, m_{5}\right\}\right\}$
. Therefore, the topological graph on G will be
[τ_{G}
$=\left\{M(G), \emptyset,\left\{m_{3}\right\},\left\{m_{5}\right\},\left\{m_{2}\right\},\left\{m_{1}, m_{5}\right\},\left\{m_{2}, m_{3}\right\},\left\{m_{4}, m_{5}\right\}\right.$, $\left\{m_{3}, m_{5}\right\},\left\{m_{2}, m_{3}\right\}$,
$\left\{m_{1}, m_{3}, m_{5}\right\},\left\{m_{2}, m_{5}\right\},\left\{m_{3}, m_{4}, m_{5}\right\},\left\{m_{2}, m_{3}, m_{5}\right\}$,
$\left\{m_{1}, m_{2}, m_{5}\right\},\left\{m_{2}, m_{4}, m_{5}\right\}$,
$\left.\left\{m_{2}, m_{3}, m_{4}, m_{5}\right\},\left\{m_{1}, m_{4}, m_{5}\right\},\left\{m_{1}, m_{2}, m_{3}, m_{5}\right\}\right\}$.

Fig. 2
Remark 2.5 : The complete graph is an indiscrete topology.
Definition 2.6 : Suppose that $G=(M(G), N(G))$ be a graph, U be a subgraph from G. Then the graph closure of $M(U)$ has the shape
$C l_{G}(M(U))=M(U) \cup\{m \in M(G): m R \cap M(U) \neq \varnothing\}$.
Theorem 2.7 : Suppose that $G=(M(G), N(G))$ be a graph that contains a topological graph $\left(M(G), \tau_{G}\right)$. If U, W are subgraphs from G ; then:
(i) $M(U) \subseteq C l_{G}(M(U))$.
(ii) If $U \subseteq W$, then $C l_{G}(M(U)) \subseteq C l_{G}(M(W))$.
(iii) $C l_{G}\left(C l_{G}(M(U))\right) \neq C l_{G}(M(U))$.
(iv) $\quad C l_{G}(M(U) \cup M(W))=C l_{G}(M(U) \cup$ $C l_{G}(M(W))$.
(v) $\quad C l_{G}(M(U) \cap M(W)) \subseteq C l_{G}(M(U) \cap$ $C l_{G}(M(W))$.
Proof: (i) Suppose that $m \in M(U)$, by definition 2.6. $C l_{G}(M(U))=M(U) \cup\{m \in M(G): m R \cap M(U) \neq$
$\emptyset\}$. Then $M(U) \subseteq C l_{G}(M(U))$.
(ii) From (i), $M(U) \subseteq C l_{G}(M(U))$ and $M(W) \subseteq$ $C l_{G}(M(W))$. Since $U \subseteq W$, then $M(U) \subseteq M(W)$. Therefore, $C l_{G}(M(U)) \subseteq C l_{G}(M(W))$.
(iii) Suppose that $m \in M(U)$, by definition 2.6.
$C l_{G}(M(U))=M(U) \cup\{m \in M(G): m R \cap M(U) \neq$
$\emptyset\}$.Then $M(U) \in C l_{G}(M(U))$, since $C l_{G}(M(U)) \subseteq$ $C l_{G}\left(C l_{G}(M(U))\right), \quad$ then $C l_{G}\left(C l_{G}(M(U))\right) \nsubseteq$ $C l_{G}(M(U)) . \quad$ Therefore, $\quad C l_{G}\left(C l_{G}(M(U))\right) \neq$ $C l_{G}(M(U))$.
(iv) From Theorem 2.7, it is obvious that
$\left.M(U) \cup M(W) \subseteq C l_{G}(M(U)) \cup M(W)\right)$. If $\quad m \in$ $\left.C l_{G}(M(U)) \cup M(W)\right)$, then by definition 2.6, $m \in M(U) \cup M(W)$ or $m R \cap(M(U) \cup M(W)) \neq \emptyset$. Then
$m \in M(U)$ or $m \in M(W)$ or $v R \cap M(U) \neq \emptyset$ or $m R \cap M(W) \neq \emptyset$. Thus
$(m \in M(U)$ or $m R \cap M(U) \neq \emptyset)$ or $(m \in M(W)$ or $m R \cap M(W) \neq \emptyset)$. Then $\quad m \in C l_{G}(M(U)) \quad$ or $m \in C l_{G}(M(W))$. Therefore, $\quad m \in C l_{G}(M(U) \cup$ $C l_{G}(M(W))$. Hence, $\quad C l_{G}(M(U) \cup M(W)) \subseteq$ $C l_{G}\left(M(U) \cup C l_{G}(M(W))\right.$.
(v) $\quad M(U) \subseteq C l_{G}(M(U)), M(W) \subseteq C l_{G}(M(W))$. Since $\quad M(U) \cap M(W) \subseteq M(U), M(U) \cap M(W) \subseteq$ $M(W)$. Then $C l_{G}(M(U) \cap M(W)) \subseteq C l_{G}(M(U))$,
$C l_{G}(M(U) \cap M(W)) \subseteq C l_{G}(M(W))$. Therefore,
$C l_{G}(M(U) \cap M(W)) \subseteq C l_{G}\left(M(U) \cap C l_{G}(M(W))\right.$.
Example 2.8 : Via Example 2.3. Suppose that U, W are subgraphs of G with
vertices
$M(U)=\left\{m_{1}, m_{3}\right\}, M(W)=\left\{m_{1}, m_{3}, m_{5}\right\}, M(U) \cup$
$M(W)=\left\{m_{1}, m_{3}, m_{5}\right\} . \quad$ Then
$m_{2} R=\left\{m_{4}, m_{5}\right\}, m_{4} R=\left\{m_{2}\right\}, m_{5} R=\left\{m_{2}, m_{3}\right\}$, . So
$m_{2} R \cap M(U)=\emptyset, m_{4} R \cap M(U)=\emptyset, m_{5} R \cap$
$M(U) \neq \emptyset$. Then
$C l_{G}(M(U))=M(U) \cup\left\{m_{5}\right\}=\left\{m_{1}, m_{3}, m_{5}\right\}$,
$C l_{G}(M(W))=M(W) \cup\left\{m_{2}\right\}=\left\{m_{1}, m_{2}, m_{3}, m_{5}\right\}$,
$C l_{G}\left(C l_{G}(M(U))\right)=\left\{m_{1}, m_{2}, m_{3}, m_{5}\right\}, \quad C l_{G}(M(U) \cup$
$M(W))=\left\{m_{1}, m_{2}, m_{3}, m_{5}\right\}$.
Since
$C l_{G}\left(C l_{G}(M(U))\right) \neq C l_{G}(M(U))$. Then
$C l_{G}(M(U) \cup V(W))=C l_{G}\left(M(U) \cup C l_{G}(M(W))\right.$.
Definition 2.9: Suppose that $G=(M(G), N(G))$ be a graph, U be a subgraph from G. Then the graph interior of $M(U)$ has the shape $I n t_{G}(M(U))=\{m \in M(G): m R \subseteq M(U)\}$.
Theorem 2.10: Suppose that $G=(M(G), N(G))$ be a graph that contains a topological graph $\left(M(G), \tau_{G}\right)$. If U, W are subgraphs from G ; then:
(i) If $U \subseteq G$, then $\operatorname{Int}_{G}(M(U)) \subseteq M(G)$.
(ii) If $U \subseteq W$, then $\operatorname{Int}_{G}(M(U)) \subseteq \operatorname{Int}_{G}(M(W))$.
(iii) $\operatorname{Int}_{G}\left(\operatorname{Int}_{G}(M(U))\right) \neq \operatorname{Int}_{G}(M(U))$.
(iv) $\operatorname{Int}_{G}(M(U) \cap M(W))=\operatorname{Int}_{G}(M(U)) \cap$
$\operatorname{Int}_{G}(M(W))$.
(v) $\quad \operatorname{Int}_{G}(M(U)) \cup \operatorname{Int}_{G}(M(W)) \subseteq \operatorname{Int}_{G}(M(U) \cup$ $M(W))$.
Proof : (i) Since $M(U) \subseteq M(G)$, then by definition 2.9,
$\operatorname{Int}_{G}(M(U))=\{m \in M(G): v R \subseteq M(U)\}$.This
means that $\operatorname{Int}_{G}(M(U)) \subseteq M(G)$. (ii) Since $M(U) \subseteq M(W)$, then by definition 2.9 , Int $_{G}(M(U))=\{m \in M(G): m R \subseteq M(U)\} \subseteq\{m \in$ $M(G): m R \subseteq M(U) \subseteq M(W)\} \subseteq \operatorname{Int}_{G}(M(W))$.
Therefore, $\operatorname{Int}_{G}(M(U)) \subseteq \operatorname{Int}_{G}(M(W))$.
(iii) Suppose that $m \in M(U)$, by definition 2.9. $\operatorname{Int}_{G}(M(U))=\{m \in M(G): m R \subseteq M(U)\}$. Then $M(U) \notin \operatorname{Int} t_{G}(M(U)), \quad$ since $\quad \operatorname{Int}_{G}(M(U)) \nsubseteq$ $\operatorname{Int}_{G}\left(\operatorname{Int}_{G}(M(U))\right), \quad$ then $\quad \operatorname{Int}_{G}\left(\operatorname{Int}_{G}(M(U))\right) \nsubseteq$ $\operatorname{Int}_{G}(M(U))$. Therefore, $\quad \operatorname{Int}_{G}\left(\operatorname{Int}_{G}(M(U))\right) \neq$ $\operatorname{Int}_{G}(M(U))$. (iv) From (i), it is obvious that $\operatorname{Int}_{G}(M(H) \cap M(W)) \subseteq M(U) \cap M(W)$. Then by definition 2.9, if $m \in \operatorname{Int}_{G}(M(U) \cap M(W))$, then $m \in M(G)$, such that $m R \subseteq M(U) \cap M(W)$. Then $v R \subseteq M(U)$ and $m R \subseteq M(W)$. Therefore,
$m \in \operatorname{Int}_{G}(M(U))$ and $m \in \operatorname{Int}_{G}(M(W))$. Then $m \in \operatorname{Int}_{G}(M(U) \cap M(W))$.

Conversely
$\operatorname{Int}_{G}(M(U)) \cap \operatorname{Int}_{G}(M(W)) \subseteq \operatorname{Int}_{G}(M(U) \cap$
$M(W))$. Let $m \in \operatorname{Int}_{G}(M(U)) \cap \operatorname{Int}_{G}(M(W))$. Then $m \in \operatorname{Int}_{G}(M(U)) \quad$ and $\quad m \in \operatorname{Int}_{G}(M(W))$, by definition 2.9 , for all $m \in M(G)$ such that $m R \subseteq$ $M(U)$ and for all $m \in M(G)$ such that $m R \subseteq M(W)$. Then for all $m \in M(G)$ such that $m R \subseteq M(U) \cap$ $M(W)$. Therefore, $m \in \operatorname{Int}_{G}(M(U) \cap M(W))$. The proof is complete.
(v) Suppose that $M(U), M(W) \subseteq M(G)$, since $M(U) \subseteq M(U) \cup M(W), M(W) \subseteq M(U) \cup$
$M(W)$. Then $\quad \operatorname{Int}_{G}(M(U)) \subseteq \operatorname{Int}_{G}(M(U) \cup$ $M(W)), \operatorname{Int}_{G}(M(W)) \subseteq \operatorname{Int}_{G}(M(U) \cup M(W))$.
Therefore, $\quad \operatorname{Int}_{G}(M(U)) \cup \operatorname{Int}_{G}(M(W)) \subseteq$ $\operatorname{Int}_{G}(M(U) \cup M(W))$.
Example 2.11 : Via Example 2.3. Suppose that U, W are subgraphs from G with vertices $(U)=$ $\left\{m_{1}, m_{3}\right\}, M(W)=\left\{m_{1}, m_{3}, m_{5}\right\}, M(U) \cap M(W)=$ $\left\{m_{1}, m_{3}\right\}, \operatorname{Int}_{G}(M(U))=\left\{m_{1}\right\}, \operatorname{Int}_{G}(M(W))=$ $\left\{m_{1}, m_{3}\right\}, \operatorname{Int}_{G}\left(\operatorname{Int}_{G}(M(W))\right)=\emptyset, \operatorname{Int}_{G}(M(U) \cap$
$M(W)=\left\{m_{1}\right\}$. Since $\quad \operatorname{Int}_{G}\left(\operatorname{Int}_{G}(M(U))\right) \neq$ $\operatorname{Int}_{G}(M(U))$. Then $\quad \operatorname{Int}_{G}(M(U) \cap M(W))=$ $\operatorname{Int}_{G}(M(U)) \cap \operatorname{Int}_{G}(M(W))$.
Definition 2.12 : Suppose that $G=(M(G), N(G))$ be a graph, U be a subgraph from G. Then the graph exterior from $M(U)$ has the shape $\operatorname{Ext}_{G}(M(U))=$ $\{m \in M(G): m R \cap M(U)=\varnothing\}$.
Theorem 2.13 : Suppose that $G=(M(G), N(G))$ be a graph that contains a topological graph $\left(M(G), \tau_{G}\right)$. If H, W are subgraphs from G ; then:
(i) $E x t_{G}(M(U))=\operatorname{Int}_{G}(C(M(U)))$.
(ii) $E_{G}(M(U)) \cap M(U)=\varnothing$.
(iii) $E x t_{G}(M(U))=C\left(C l_{G}(M(U))\right)$.
(iv) If $U \subseteq W$, then $E x t_{G}(M(W)) \subseteq E_{G} t_{G}(M(U))$.
$(\mathrm{v}) \operatorname{Ext}_{G}(M(U) \cup M(W)) \subseteq \operatorname{Ext}_{G}(M(U)) \cap$ $\operatorname{Ext}_{G}(M(W))$.
Proof: (i) Suppose that $m \in \operatorname{Ext}_{G}(M(U))$, then $m R \subset C(M(U))$, if and only if
$m \in \operatorname{Int}_{G}(C(M(U)))$. Therefore, $\quad \operatorname{Ext}_{G}(M(U))=$ $\operatorname{Int}_{G}(C(M(U)))$.
(ii) Suppose that $m \in \operatorname{Ext}_{G}(M(U))$, then
$\left.\operatorname{Ext}_{G}(M(U)) \cap M(U) \subset C(M(U)) \cap M(U)\right)$,
$E x t_{G}(M(U)) \cap M(U) \subset \emptyset$. Therefore,
$\operatorname{Ext}_{G}(M(U)) \cap M(U)=\emptyset$.
(iii) Suppose that $m \in \operatorname{Ext}_{G}(M(U))$, from
(i) $\operatorname{Ext}_{G}(M(U))=\operatorname{Int}_{G}(C(M(U)))$.
$C\left(\operatorname{Ext}_{G}(M(U))\right)=C\left(\operatorname{Int}_{G}(C(M(U)))\right)$.
$C\left(E x t_{G}(M(U))\right)=C l_{G}(M(U))$, by taking complement both sides,
$\operatorname{Ext}_{G}(M(U))=C\left(C l_{G}(M(U))\right)$.
(iv) $C(M(U)) \subset M(W)), C(M(W)) \subset C(M(U))$, by taking interior both sides, $\operatorname{Int}_{G}(C(M(W))) \subset$ $\operatorname{Int}_{G}(C(M(U)))$,from (i). Then $\operatorname{Ext}_{G}(M(U))=$
$\operatorname{Int}_{G}(C(M(U)))$. Therefore, $\operatorname{Ext}_{G}(M(W)) \subseteq$ $\operatorname{Ext}_{G}(M(U))$.
(v) Suppose that $m \in E x t_{G}(U \cup W)$, from (i)
$\operatorname{Ext}_{G}(U \cup W)=\operatorname{Int}_{G}(C(M(U) \cup M(W)))$
$=\operatorname{Int}_{G}(C(M(U)) \cap C(M(W)))$
$=\operatorname{Int}_{G}(C(M(U))) \cap \operatorname{Int}_{G}(C(M(W)))$
$=\operatorname{Ext}_{G}(M(U)) \cap \operatorname{Ext}_{G}(M(W))$.

Example 2.14 : Via Example 2.3, if U be a subgraph from G.
$M(U)=\left\{m_{1}, m_{2}\right\}, m_{1} R \cap M(U) \neq \emptyset, m_{2} R \cap$
$M(U)=\emptyset, m_{3} R \cap M(U) \neq \emptyset, m_{4} R \cap$
$M(U)=\emptyset, m_{5} R \cap M(U) \neq \emptyset$. Then $\operatorname{Ext}_{G}(M(U))=$
$\left\{m_{2}, m_{4}\right\}, C(M(U))=\left\{m_{2}, m_{4}, m_{5}\right\}$,
$\operatorname{Int}_{G}(C(M(U)))=\left\{m_{2}, m_{4}\right\}$. Therefore,
$\operatorname{Ext}_{G}(M(U))=\operatorname{Int}_{G}(C(M(U)))$.
Definition 2.15 : Suppose that $G=(M(G), N(G))$ be a graph and U be a subgraph from G. Then the graph boundary from $M(U)$ has the shape $\dot{B}_{G}(M(U))=\left\{m \in M(G): C l_{G}(M(U))-\right.$
$\left.I n t_{G}(M(U))\right\}$.
Theorem 2.16 : Suppose that $G=(M(G), E(G))$ be a graph that contains a topological graph $\left(M(G), \tau_{G}\right)$. If U be a subgraph from G; then:
(i) $\dot{B}_{G}(M(U))=C l_{G}(M(U)) \cap C l_{G}(C(M(U)))$.
(ii) $\dot{B}_{G}(M(U)) \subseteq B_{G}(C(M(U)))$.
(iii) $\dot{B}_{G}(M(G))=\emptyset$.
(iv) $\dot{B}_{G}(M(U))=C l_{G}(M(U))-\operatorname{Int}_{G}(M(U))$.
(v) $C l_{G}\left(M(U)=M(U) \cup \dot{B}_{G}(M(U))\right.$.

Proof: (i) Suppose that $m \in M(U), M(U) \in$
$C l_{G}(M(U))$, then $m \in C l_{G}(M(U))$ and
$m \in C l_{G}(C(M(U)))$, then $m \in C l_{G}(M(U)) \cap$
$C l_{G}(C(M(U)))$.
$\dot{B}_{G}(M(U))=C l_{G}(M(U)) \cap C l_{G}(C(M(U)))$.
(ii) Suppose that $m \in M(U)$, by definition 2.15 .
$\left.\dot{B}_{G}(M(U))=C l_{G}(M(U))-I n t_{G}(M(U))\right\}$, from (i)
$B_{G}(M(U))=$
$C l_{G}(M(U)) \cap C l_{G}(C(M(U)))$. Since
$C l_{G}(C(M(U)))=C l_{G}(C(M(U)) \cap$
$C l_{G}(C(C(M(U))))$. Therefore, $\dot{B}_{G}(M(U)) \subseteq$
$\dot{B}_{G}(C(M(U)))$.
(iii) From (i), $\quad B_{G}(M(G))=C l_{G}(M(G)) \cap$ $C l_{G}(C(M(G)))=M(G) \cap C l_{G} \varnothing$
$=M(G) \cap \emptyset=\emptyset$. Therefore, $\dot{B}_{G}(M(U))=\emptyset$.
(iv) Suppose that $m \in M(U)$, from (i) $\dot{B}_{G}(M(U))=$ $C l_{G}(M(U)) \cap C l_{G}(C(M(U)))$
$=C l_{G}(M(U))-C\left(C l_{G}(C(M(U)))\right)=C l_{G}(M(U))-$ $\operatorname{Int}_{G}(M(U))$.
(v) Suppose that $v \in M(U), B_{G}(M(U)) \cup$ $\operatorname{Int}_{G}(M(U))=\left(C l_{G}(M(U))-\right.$
$\left.\operatorname{Int}_{G}(M(U))\right) \cup \operatorname{Int}_{G}(M(U))$. Therefore, $C l_{G}\left(M(U)=M(U) \cup \dot{B}_{G}(M(U))\right.$.
Theorem 2.17 : Suppose that $G=(M(G), E(G))$ be a graph that contains a topological graph $\left(M(G), \tau_{G}\right)$. If U, W are subgraphs from G .
Then $\quad \dot{B}_{G}(M(U) \cup M(W)) \subseteq \dot{B}_{G}(M(U)) \cup$ $\dot{B}_{G}(M(W))$.
Proof: Suppose that $m \in \dot{B}_{G}(M(U) \cup M(W))$, then by definition 2.16 ,
$m R \cap(M(U) \cup M(W)) \neq \emptyset$ and $m R \cap C(M(U) \cup$ $M(W))$
$\rightarrow(m R \cap M(U)) \cup(m R \cap M(W)) \neq \emptyset$ and $m R \cap$
$(C(M(U)) \cap C(M(W))) \neq \emptyset \rightarrow(m R \cap M(U)) \cup$
$(m R \cap M(W)) \neq \varnothing$ and $(m R \cap C(M(U))) \cup$
$(m R \cap C(M(W))) \neq \emptyset$
$\rightarrow[m R \cap M(U) \neq \emptyset$ or $m R \cap M(W) \neq \emptyset]$ and $[m R \cap$ $C(M(U))$
$\neq \emptyset$ and $m R \cap C(M(W)) \neq \emptyset]$
$\rightarrow[m R \cap M(U) \neq \emptyset$ and $m R \cap M(W) \neq$
$\emptyset]$ or $[m R \cap C(M(U)) \neq \emptyset$ and $m R \cap C(M(W)) \neq$ $\emptyset]$, such that
$m \in \dot{B}_{G}(M(U))$ or $m \in \dot{B}_{G}(M(W)), m \in$
$\dot{B}_{G}(M(U)) \cup \dot{B}_{G}(M(W))$. Therefore, $\dot{B}_{G}(M(U) \cup$ $M(W)) \subseteq \dot{B}_{G}(M(U)) \cup \dot{B}_{G}(M(W))$.
Example 2.18 : Via Example 2.3, Suppose that U be a subgraph from G with vertices $M(U)=\left\{m_{1}, m_{3}\right\}$, $C(M(U))=\left\{m_{2}, m_{4}, m_{5}\right\}, C l_{G}(M(U))=$
$\left\{m_{1}, m_{3}, m_{5}\right\}$,
$\left.\operatorname{Int}_{G}(M(U))\right)=\left\{m_{1}\right\}, C l_{G}(C(M(U)))=$
$\left\{m_{2}, m_{3}, m_{4}, m_{5}\right\}, \dot{B}_{G}(M(U))=$
$\left\{m_{3}, m_{5}\right\}, C l_{G}(M(U)) \cap C l_{G}(C(M(U)))=\left\{m_{3}, m_{5}\right\}$. Therefore,
$\dot{B}_{G}(M(U))=C l_{G}(M(U)) \cap C l_{G}(C(M(U)))$.
Theorem 2.19: Suppose that $G=(M(G), N(G))$ be a graph that contains a topological graph $\left(M(G), \tau_{G}\right)$. If U be a subgraph from G; then
(i) $\dot{B}_{G}(M(U)) \cap \operatorname{Int}_{G}(M(U))=\varnothing$.
(ii) $\dot{B}_{G}(M(U)) \cap E x t_{G}(M(U))=\emptyset$.
(iii) $\operatorname{Int}_{G}(M(U)) \cap \operatorname{Ext}_{G}(M(U))=\emptyset$.
(iv) $\operatorname{Int}_{G}(M(U)) \cup \operatorname{Ext}_{G}(M(U)) \cup \dot{B}_{G}(M(U))=G$.

Proof: (i) Suppose that $m \in M(G), M(U) \subseteq$ $M(G)$, by definition 2.15,
$\dot{B}_{G}(M(U)) \cap \operatorname{Int}_{G}(M(U))=\left(C l_{G}(M(U))-\right.$
$\left.\operatorname{Int}_{G}(M(U))\right) \cap \operatorname{Int}_{G}(M(U)), \quad$ by distributing intersection,
$\rightarrow\left(C l_{G}(M(U)) \cap \operatorname{Int}_{G}(M(U))\right)-\left(\operatorname{Int}_{G}(M(U)) \cap\right.$ $\left.\operatorname{Int}_{G}(M(U))\right)$
$=\operatorname{Int}_{G}(M(U))-\operatorname{Int}_{G}(M(U))=\emptyset$.
(ii) Suppose that $M(U) \subseteq M(G), \dot{B}_{G}(M(U)) \cap$ $\operatorname{Ext}_{G}(M(U))$, by theorem 2.13
$\rightarrow \dot{B}_{G}(C(M(U))) \cap \operatorname{Int}_{G}(C(M(U)))$
$=\dot{B}_{G}(G-M(U)) \cap \operatorname{Int}_{G}(C(G-M(U)))=\emptyset$.
(iii) Suppose that $M(U) \subseteq M(G), \operatorname{Int}_{G}(M(U)) \cap$ $\operatorname{Ext}_{G}(M(U))$
$=\operatorname{Int}_{G}(M(U)) \cap \operatorname{Int}_{G}(C(M(U)))=\operatorname{Int}_{G}(M(U)) \cap$ $\left(C\left(C l_{G}(M(U))\right)\right.$
$=\operatorname{Int}_{G}(M(U)) \cap\left(G-C l_{G}(V(U))\right)$, by distributing intersection,
$\rightarrow\left(\operatorname{Int}_{G}(M(U)) \cap G\right)-\left(\operatorname{Int}_{G}(M(U)) \cap C l_{G}(M(U))\right)$
$=\operatorname{Int}_{G}(M(U))-\operatorname{Int}_{G}(M(U))=\emptyset$.
(iv) Suppose that $M(U) \subseteq M(G), \operatorname{Int}_{G}(M(U)) \cup$
$\operatorname{Ext}_{G}(M(U)) \cup \dot{B}_{G}(M(U))$
$=C l_{G}(M(U)) \cup \operatorname{Int}_{G}(C(M(U)))=C l_{G}(M(U)) \cup$
$C\left(C l_{G}(M(U))\right)=G$.
Theorem 2.20 : Suppose that $G=(M(G), N(G))$ be a graph that contains a topological graph $\left(M(G), \tau_{G}\right)$. If $C l_{G}(M(U)) \cap C l_{G}(M(W))=\emptyset$, then
$\operatorname{Int}_{G}(M(U)) \cup \operatorname{Int}_{G}(M(W))=\operatorname{Int}_{G}(M(U) \cup$ $M(W)$).
Proof: It's clear by theorem 2.10, $\operatorname{Int}_{G}(M(U)) \cup$ $\operatorname{Int}_{G}(M(W)) \subseteq \operatorname{Int}_{G}(M(U) \cup M(W))$. To prove that $\operatorname{Int}_{G}(M(U) \cup M(W)) \subseteq \operatorname{Int}_{G}(M(U)) \cup$ $\operatorname{Int}_{G}(M(W))$.
Assume that $m \notin \operatorname{Int}_{G}(M(U)) \cup \operatorname{Int}_{G}(M(W))$ and suppose that $m \in \operatorname{Int}_{G}(M(U) \cup M(W))$, there exist a post stage A, so that $m \in A \subseteq M(U) \cup M(W)$, since
$A \subseteq M(U)$ or $A \subseteq M(W)$ or $(A \not \subset M(U) \& A \not \subset$ $M(W))$.
(i) If $A \subseteq M(U)$, then $m \in \operatorname{Int}_{G}(M(U))$, Therefore $m \in \operatorname{Int}_{G}(M(W)) \cup \operatorname{Int}_{G}(M(U))$.
(ii) If $A \subseteq M(W)$, then $m \in \operatorname{Int}_{G}(M(W))$, Therefore $m \in \operatorname{Int}_{G}(M(W)) \cup \operatorname{Int}_{G}(M(U))$.
(iii) If $A \not \subset M(U) \& A \not \subset M(W)$, then $A \cap M(U) \neq$ $\emptyset, A \cap M(W) \neq \emptyset$. For every $W \in M(G), m \in W$, we get $\quad m \in C l_{G}(M(U)), m \in C l_{G}(M(W))$. This is contraction, because $C l_{G}(M(U)) \cap C l_{G}(M(W))=\emptyset$. Therefore, (i) and (ii) true. Then $\operatorname{Int}_{G}(M(U) \cup$ $M(W)) \subseteq \operatorname{Int}_{G}(M(U)) \cup \operatorname{Int}_{G}(M(W))$.
Example 2.21 : Via example 2.3, suppose that U be a subgraph from G.

$$
M(U)=\left\{m_{1}\right\}, M(W)=\left\{m_{2}\right\}, M(U) \cup M(W)=
$$

$\left\{m_{1}, m_{2}\right\}, C l_{G}(M(U))=\left\{m_{1}, m_{3}\right\}, C l_{G}(M(W))=$
$\left\{m_{2}, m_{4}, m_{5}\right\}, \quad$ then $C l_{G}(M(U)) \cap C l_{G}(M(W))=\emptyset$, $\operatorname{Int}_{G}(M(U))=\emptyset, \operatorname{Int}_{G}(M(W))=$
$\left\{m_{4}\right\}, \operatorname{Int}{ }_{G}(M(H) \cup M(W))=\left\{m_{4}\right\} . \quad$ Therefore,
$\operatorname{Int} t_{G}(M(U)) \cup \operatorname{Int}_{G}(M(W))=\operatorname{Int}_{G}(M(U) \cup$ $M(W))$.
Definition 2.22 : Suppose that $G=(M(G), N(G))$ be a graph and U be a subgraph from G. It is said that the vertex $m \in M(U)$ is limit point to $M(U)$ if each set $m R$ contain m. Also contain a point other than m shape:
$\dot{d}_{G}=\{m \in M(G): m R \cap M(U)-\{m\} \neq \emptyset\}$.
Theorem 2.23: Suppose that $G=(M(G), N(G))$ be a graph that contains a topological graph $\left(M(G), \tau_{G}\right)$. If U, W are subgraphs from G ; then
(i) If $U \subseteq W$, then $\dot{d}_{G}(M(U)) \subseteq \dot{d}_{G}(M(W))$.
(ii) $\dot{d}_{G}(M(U) \cup M(W))=\dot{d}_{G}(M(U)) \cup \dot{d}_{G}(M(W))$.
(iii) $\dot{d}_{G}(M(U) \cap M(W)) \subseteq \dot{d}_{G}(M(U)) \cap \dot{d}_{G}(M(W))$.

Proof: (i) Suppose that $m \in M(U)$, then $m \in$ $m R$ and $m R \cap M(U)-\{m\} \neq \emptyset$,
$m \in m R$ and $m R \cap M(W)-\{m\} \neq \emptyset, \quad$ since $M(U) \subseteq M(W), \quad$ by definition $2.22, \quad m \in M(W)$. Therefore, $\dot{d}_{G}(M(U)) \subseteq \dot{d}_{G}(M(W))$.

References

[1] Engelking, R.(1976). "General Topology", PWNPolish Scientific Publishers.
[2] Munkres, J.(2000). "Topology", 2nd; PrenticeHall: Upper Saddle River,
NJ, USA.
[3] Kelley J. L. (1975). "General Topology", Nostrand; Springer-Verlag, New York.
[4] Jung, S.-M. (2016). "Interiors and closures of sets and applications". Int. J. Pure Math. 3, 41-45.
(ii) To prove that $\dot{d}_{G}(M(U) \cup M(W))=$ $\dot{d}_{G}(M(U)) \cup \dot{d}_{G}(M(W))$.
$M(U) \subseteq(M(U) \cup M(W)), \quad$ by definition 2.22, $\dot{d}_{G}(M(U)) \subseteq \dot{d}_{G}(M(U) \cup M(W)), \quad \dot{d}_{G}(M(W)) \subseteq$ $\dot{d}_{G}((M(U) \cup M(W))$. Therefore,
$\dot{d}_{G}(M(U)) \cup \dot{d}_{G}(V(W)) \subseteq \dot{d}_{G}(M(U) \cup M(W)) \ldots \ldots$ 1) Conversely
Suppose that $m \notin \dot{d}_{G}(M(U) \cup M(W))$, then $m \notin$ $\dot{d}_{G}\left(M(U)\right.$ and $v \notin \dot{d}_{G}(M(W)$, by definition 2.21, $m \in x R$ and $x R \cap M(U)-\{m\}=\emptyset$ and $m \in$
$y R$ and $y R \cap M(U)-\{m\}=\emptyset, \quad m \in x R \cap$ $y R$ and $(x R \cap y R) \cap(V(U) \cup M(W))-\{m\}=\emptyset$, since $m \notin \dot{d}_{G}(M(U) \cup V(W))$. Therefore, $\dot{d}_{G}(M(U) \cup$ $M(W)) \subseteq \dot{d}_{G}(M(U)) \cup \dot{d}_{G}(M(W))$. \qquad
From (1) and (2) we have $\dot{d}_{G}(M(U) \cup M(W))=$ $\dot{d}_{G}(M(U)) \cup \dot{d}_{G}(M(W))$.
(iii) To prove $\dot{d}_{G}(M(U) \cap M(W)) \subseteq \dot{d}_{G}(M(U)) \cap$ $\dot{d}_{G}(M(W))$.
Let $m \in \dot{d}_{G}(M(U) \cap M(W))$, by definition 2.22, $m \in m R$ and $m R \cap(M(U) \cap M(W))-\{m\} \neq \varnothing$,
then $\quad m \in m R$ and $[(m R \cap M(U)-\{m\}) \cap$ $(m R \cap M(W)-\{m\})] \neq \varnothing, \quad$ by definition 2.22, $(m R \cap M(U)-\{m\}) \neq \varnothing$ and $(m R \cap M(W)-$
$\{m\}) \neq \emptyset, \quad$ then $\quad m \in \dot{d}_{G}(M(U)), m \in \dot{d}_{G}(M(W))$, $m \in \dot{d}_{G}(M(U) \cap M(W))$. Therefore, $\dot{d}_{G}(M(U) \cap$ $M(W)) \subseteq \dot{d}_{G}(M(U)) \cap \dot{d}_{G}(M(W))$.
Example 2.24: Via Example 2.3, suppose that U, W are subgraphs from G.
$M(U)=\left\{m_{1}, m_{3}\right\}, M(W)=\left\{m_{1}, m_{3}, m_{5}\right\}, \quad$ Then $\dot{d}_{G}(M(U))=\left\{m_{1}, m_{4}\right\}, \dot{d}_{G}(M(W))=\left\{m_{1}, m_{4}\right\}$.
Therefore, $\dot{d}_{G}(M(U)) \subseteq \dot{d}_{G}(M(W))$.

Conclusion

In this paper, we were can topological construct of any graph by using the definition of topological graph, we studied the graph closure, graph exterior, graph interior, graph boundary, and graph limit point with some result.
[5] Bondy. J.A and Murty. U.S.R. (2008). "Graph Theory", Springer, Berli.
[6] Chartrand. G, Lesniak. L, Zhang. P. (2016). Textbooks in Mathematics "Graphs and Digraphs", Taylor and Francis Group, LLC.
[7] Diestel. R. (2000). "Graph Theory", SpringerVerlag Heidelberg Press, New York.

بعض المفاهيم التوبولوجية بواسطة نظرية البيان

طه حميا جاسم ، ، اياد ابراهيم عواد² ${ }^{1}$
I قسم الرياضيات ,كلية علوم الحاسوب والرياضيات , جامعة تكربت ، تكريت ، العرق العـي
2 فسم الرياضيات, كلية علوم الحاسوب والرياضيات , جامعة الهوصل ، الهوصل ، العرق

الملخص
نظرا لصعوبة ايجاد تطبيقات على الفضاءات التوبولوجية والتي تعتبر من فروع الرياضيات البحتة تأتي اهمية هذا البحث لايجاد تطبيقات في نظرية البيان. من خال بعض مفاهيم الفضاء التوبولوجي فاننا عممنا على نظرية البيان (دواخل البيان, انغلاق البيان, خوارج البيان, حدود البيان, نقطة غاية البيان) وتمت دراسة العلاقات بينهم ثم اثبات نظريات عديدة على الاقل كتوصيف وبعض الامثلة المقدمة لثرح الموضوع.

