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ABSTRACT 

Due it is difficult to find applications in topological spaces, which are 

branches of pure mathematics, the importance of this paper is to find 

applications in graph theory. Via some concepts of topological space we 

generalizes to a graph like (graph interior, graph closure graph exterior, 

graph boundary, graph limit point). The relations among them were 

studied. At least many theorems were proofed as a characterization and 

some examples introduced to explain the subject.   

 

 

1. Introduction and preliminaries   
Topology is one of branches of mathematics, which is 

interested in studying the construct, components and 

peculiarities of all different spaces, so that these 

characteristics[1]. If 𝑌 is a non-empty set, a collection 

𝜏 from partial sets from 𝑌 is called a topology at 𝑌,if 

the following provision carry 𝑌, ∅ ∈ 𝜏, the finite 

"intersection" from any two sets at 𝜏 belong into 𝜏, 

and the "union" from any numeral from sets at 𝜏 

belong to 𝜏 [2]. Both element in the  topology is said 

to be open set, her complement is a closed set [3]. 

The closure of a subset 𝑈 briefly, 𝐶𝑙(𝑈) is the 

smallest closed set that include 𝑈 [4]. The interior of 

a partial set 𝑈 briefly, 𝐼𝑛𝑡(𝑈) is the largest open set 

that is include in 𝑈 [4]. The exterior of 𝑈 is the 

interior from 𝐶(𝑈) [1].The boundary from 𝑈 is 

𝐶𝑙(𝑈) ∩ 𝐶𝑙(𝐶(𝑈)) the set of points that belong to 

interior don’t the exterior of 𝐴, and limit point [1]. 

A graph G is defined as a non-empty set 𝑀 of 

elements called "vertices" and we symbolize it 

sometimes by 𝑀(𝐺) with the 𝑁 family of unordered 

pairs of vertices set and each element of 𝐸 is called 

"edge" and we symbolize it sometimes by 𝑁(𝐺) [5]. 

Sometimes we express the graph 𝐺 of his vertices set 

and his family edges 𝑁 of the ordered pairs 

(𝑀(𝐺), 𝑁(𝐺)) [5]. The numeral of vertices in a graph 

G is the order from G, and the numeral of edges is the 

volume from G [6]. Also, the statement may contain 

an edge that reaches to a vertex itself called a 

"loop"[2]. Two or more edges that link the same pair 

of different vertices are refer to "parallel edges"[7]. 

Let 𝐺 = (𝑀(𝐺), 𝑁(𝐺)) be a graph; we name 𝑈 a 

"subgraph" of G if 𝑀(𝑈) ⊆ 𝑀(𝐺) and 𝑁(𝑈) ⊆
𝑁(𝐺), in whose state we write 𝑈 ⊆ 𝐺 [7]. The 

number of edges on the vertex m is defined by a 

degree and denoted by the symbol deg⁡(𝑚) [6]. A 

simple graph that does not contain "loops and double 

edge" [5]. 
In this research, we found a new definition of a 

relation to extract a topology of any graph and study 

some peculiarities. Conduct the research, and some 

terms peculiarities on (closure, interior, exterior, 

boundary and limit point) for "topological graph" will 

be studied. 
2. Construct A Topology Via Graph 
Definition 2.1 : Suppose that 𝐺 = (𝑀(𝐺), 𝑁(𝐺)) be 

a graph, 𝑚 ∈ 𝑀(𝐺) then we define the post stage 𝑚𝑅 

is the set of all vertices which is not neighborhood of 

𝑚. SG is the collection of (𝑚𝑅) is called subbasis of 

graph. 𝐵𝐺= ⋂ 𝑆𝐺𝑖
𝑛
𝑖=1 is called bases of graph. Then the 

union of 𝐵𝐺  is form a topology on G and (𝑀(𝐺), 𝜏𝐺) 
is called topological graph. 

Remark 2.2 : Every topological construct 𝜏𝐺 onto a 

graph G is topological 

graph. 
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Proof : Let 𝜏𝐺 be a topological construct for a graph 

G. Now, we prove that 𝜏𝐺 is a topological graph. 

(i) Since 𝑌 =∪𝑗∈𝐽 𝐵𝑗 where 𝐵𝑗 ∈ 𝐵𝐺 , then 𝐵𝑗 =

∩𝑗=1
𝑛 𝑆𝑗, where 𝑆𝑗 ∈ 𝑆𝐺 and 𝑆𝑗 = 𝑣𝑗𝑅, 𝑣 ∈ 𝑌. Then 

𝑌=∪𝑗∈𝐼 (∩𝑗=1
𝑛 𝑣𝑗𝑅), and so 𝑌 ∈ 𝜏𝐺. Also, as is 

obvious that ∅ ∈ 𝜏𝐺  by complement from 𝑌. 

(ii) Let 𝐴𝑗 ∈ 𝜏𝐺 , 𝐴𝑗 =∪𝑗∈𝐽 𝐵𝑗, where 𝐵𝑗 ∈ 𝐵𝐺 , 

𝐵𝑗 =∩𝑗=1
𝑛 𝑆𝑗, where 𝑆𝑗 ∈ 𝑆𝐺  and 𝑆𝑗 = 𝑣𝑗𝑅, 𝑣 ∈ 𝐴𝑗, 

then 𝐴𝑗 =∪𝑗∈𝐽 (∩𝑗=1
𝑛 𝑣𝑗𝑅), where 𝑣𝑗𝑅 = {𝑑𝑒𝑔𝐺(𝑏𝑟)br, 

𝑟 ∈ 𝐼} 

and 𝐴𝑗 =∪𝑗∈𝐽 (∩𝑗=1
𝑛 𝑑𝑒𝑔𝐺(𝑏𝑟)), then 

∪𝑗∈𝐼 (∩𝑗=1
𝑛 𝑑𝑒𝑔𝐺(𝑏𝑟)) ∈ 𝜏𝐺, where 𝑏𝑟 are all the  not 

neighborhood from 𝑣𝑗 and ∪𝑗∈𝐽 𝐴𝑗 ∈ 𝜏𝐺 . 

(iii) Let 𝐴𝑗, 𝐶𝑗 ∈ 𝜏𝐺 , 𝐴𝑖 =∪𝑗∈𝐽 𝐵𝑗 , where 𝐵𝑗 ∈ 𝐵𝐺 , 

𝐵𝑖 =∩𝑗=1
𝑛 𝑆𝑗, where 𝑆𝑗 ∈ 𝑆𝐺 , 𝑆𝑗 = 𝑣𝑗𝑅, 𝑣 ∈ 𝐴𝑗 then 

𝐴𝑗 =∪𝑗∈𝐽 (∩𝑗=1
𝑛 𝑣𝑗𝑅). Then, 𝐶𝑗 =∪𝑗∈𝐽 (∩𝑗=1

𝑛 𝑣𝑗𝑅), 

there are two cases : 

Case I: If there are no elements in intersection, i.e, 

𝐴𝑗 ∩ 𝐶𝑗 = ∅, since ∅ ∈ 𝜏𝐺, then  

𝐴𝑗 ∩ 𝐶𝑗 ∈ 𝜏𝐺. 

Case II: If there exist elements in intersection 𝐴𝑗 ∩ 𝐶𝑗, 

then we denote it  

{𝑦𝑛: 𝑛 ∈ 𝑁}.  So {𝑦𝑛} ∈ 𝑣𝑗𝑅, 𝐴𝑗 =∪𝑗∈𝐽 (∩𝑗=1
𝑛 𝑣𝑗𝑅), 

and 𝐶𝑗 =∪𝑗∈𝐽 (∩𝑗=1
𝑛 𝑣𝑗𝑅).  

So {𝑦𝑛: 𝑛 ∈ 𝑁} one of these classes. Therefore, 

{𝑦𝑛: 𝑛 ∈ 𝑁}. 
Let us give some examples to explain the above 

theorem. 
Example 2.3 : Suppose that 𝐺 = (𝑀(𝐺), 𝑁(𝐺)) be a 

"simple graph" (see Figure 1). We build topological 

space as follows:   
𝑚1𝑅 = {𝑚3}, 
𝑚2𝑅 = {𝑚4,𝑚5}, 
𝑚3𝑅 = {𝑚1, 𝑚5}, 
𝑚4𝑅 = {𝑚2}, 
𝑚5𝑅 = {𝑚2,𝑚3}. Then a subbase of a topology is  
𝑆𝐺 = {{𝑚3}, {𝑚4, 𝑚5}, {𝑚1, 𝑚5}, {𝑚2}, {𝑚2, 𝑚3}}. 
The base is  
𝐵𝐺 =
{𝑀(𝐺), ∅, {𝑚3}, {𝑚5}, {𝑚2}, {𝑚1, 𝑚5}, {𝑚2, 𝑚3}, {𝑚4, 𝑚5}}. 

Therefore, the topological graph on G will be 𝜏𝐺 =
{𝑀(𝐺), ∅, {𝑚3}, {𝑚5}, {𝑚2}, {𝑚1, 𝑚5}, {𝑚2, 𝑚3},⁡ 
{𝑚4, 𝑚5}, {𝑣3, 𝑚5}, {𝑚2, 𝑚3}, {𝑚1, 𝑚3, 𝑚5}, {𝑚2, 𝑚5}, 
{𝑚3, 𝑚4, 𝑚5}, {𝑚2, 𝑚3, 𝑚5}, {𝑚1, 𝑚2, 𝑚5}, {𝑚2, 𝑚4, 𝑣5},  
{𝑚2, 𝑚3, 𝑚4, 𝑚5}, {𝑚1, 𝑚4, 𝑚5}, {𝑚1, 𝑚2, 𝑚3, 𝑚5}}  

 
Fig. 1 

 

Example 2.4: Suppose that 𝐺 = (𝑀(𝐺), 𝑁(𝐺)) be a 

(non-simple graph)which has double edges and loops 

(see Figure 2). 

𝑚1𝑅 = {𝑚3}, 
𝑚2𝑅 = {𝑚4,𝑚5}, 

𝑚3𝑅 = {𝑚1, 𝑚5}, 
𝑚4𝑅 = {𝑚2}, 
𝑚5𝑅 = {𝑚2,𝑚3}. Then a subbase of a topology is  
𝑆𝐺 = {{𝑚3}, {𝑚4, 𝑚5}, {𝑚1, 𝑚5}, {𝑚2}, {𝑚2, 𝑚3}}. 
The base is  

𝐵𝐺 =
{𝑀(𝐺), ∅, {𝑚3}, {𝑚5}, {𝑚2}, {𝑚1, 𝑚5}, {𝑚2, 𝑚3}, {𝑚4, 𝑚5}}
. Therefore, the topological graph on G will be 

[𝜏𝐺
= {𝑀(𝐺), ∅, {𝑚3}, {𝑚5}, {𝑚2}, {𝑚1,𝑚5}, {𝑚2, 𝑚3}, {𝑚4, 𝑚5}, 
{𝑚3, 𝑚5}, {𝑚2, 𝑚3},  
{𝑚1, 𝑚3, 𝑚5}, {𝑚2, 𝑚5}, {𝑚3, 𝑚4, 𝑚5}, {𝑚2, 𝑚3, 𝑚5}, 
{𝑚1, 𝑚2, 𝑚5}, {𝑚2, 𝑚4, 𝑚5},  
{𝑚2, 𝑚3, 𝑚4, 𝑚5}, {𝑚1, 𝑚4, 𝑚5}, {𝑚1, 𝑚2, 𝑚3, 𝑚5}}. 
 

 
Fig. 2 

 

Remark 2.5 : The complete graph is an indiscrete 

topology. 

Definition 2.6 : Suppose that 𝐺 = (𝑀(𝐺), 𝑁(𝐺)) be a 

graph, 𝑈 be a subgraph from G. Then the graph 

closure of 𝑀(𝑈) has the shape 
𝐶𝑙𝐺(𝑀(𝑈)) = 𝑀(𝑈) ∪ {𝑚 ∈ 𝑀(𝐺):𝑚𝑅 ∩𝑀(𝑈) ≠ ∅}. 

Theorem 2.7 : Suppose that 𝐺 = (𝑀(𝐺), 𝑁(𝐺)) be a 

graph that contains a topological graph (𝑀(𝐺), 𝜏𝐺). If 
𝑈,𝑊 are subgraphs from G; then: 

(i) 𝑀(𝑈) ⊆ 𝐶𝑙𝐺(𝑀(𝑈)). 
(ii) If 𝑈 ⊆ 𝑊, then 𝐶𝑙𝐺(𝑀(𝑈)) ⊆ 𝐶𝑙𝐺(𝑀(𝑊)). 
(iii) 𝐶𝑙𝐺(𝐶𝑙𝐺(𝑀(𝑈))) ≠ 𝐶𝑙𝐺(𝑀(𝑈)). 
(iv) 𝐶𝑙𝐺(𝑀(𝑈) ∪ 𝑀(𝑊)) = 𝐶𝑙𝐺(𝑀(𝑈) ∪
𝐶𝑙𝐺(𝑀(𝑊)). 
(v) 𝐶𝑙𝐺(𝑀(𝑈) ∩ 𝑀(𝑊)) ⊆ 𝐶𝑙𝐺(𝑀(𝑈) ∩
𝐶𝑙𝐺(𝑀(𝑊)).  
Proof: (i) Suppose that 𝑚 ∈ 𝑀(𝑈), by definition 2.6. 

𝐶𝑙𝐺(𝑀(𝑈)) = 𝑀(𝑈) ∪ {𝑚 ∈ 𝑀(𝐺):𝑚𝑅 ∩𝑀(𝑈) ≠
∅}. Then 𝑀(𝑈) ⊆ 𝐶𝑙𝐺(𝑀(𝑈)).  
(ii) From (i), 𝑀(𝑈) ⊆ 𝐶𝑙𝐺(𝑀(𝑈)) and 𝑀(𝑊) ⊆
𝐶𝑙𝐺(𝑀(𝑊)). Since 𝑈 ⊆ 𝑊, then 𝑀(𝑈) ⊆ 𝑀(𝑊). 
Therefore, 𝐶𝑙𝐺(𝑀(𝑈)) ⊆ 𝐶𝑙𝐺(𝑀(𝑊)). 
(iii) Suppose that 𝑚 ∈ 𝑀(𝑈), by definition 2.6. 

𝐶𝑙𝐺(𝑀(𝑈)) = 𝑀(𝑈) ∪ {𝑚 ∈ 𝑀(𝐺):𝑚𝑅 ∩𝑀(𝑈) ≠
∅}.Then 𝑀(𝑈) ∈ 𝐶𝑙𝐺(𝑀(𝑈)), since 𝐶𝑙𝐺(𝑀(𝑈)) ⊆
𝐶𝑙𝐺(𝐶𝑙𝐺(𝑀(𝑈))), then 𝐶𝑙𝐺(𝐶𝑙𝐺(𝑀(𝑈))) ⊈
𝐶𝑙𝐺(𝑀(𝑈)). Therefore, 𝐶𝑙𝐺(𝐶𝑙𝐺(𝑀(𝑈))) ≠
𝐶𝑙𝐺(𝑀(𝑈)). 
(iv) From Theorem 2.7, it is obvious that 

𝑀(𝑈) ∪ 𝑀(𝑊) ⊆ 𝐶𝑙𝐺(𝑀(𝑈)) ∪ 𝑀(𝑊)). If 𝑚 ∈
𝐶𝑙𝐺(𝑀(𝑈)) ∪ 𝑀(𝑊)), then by definition 2.6, 

𝑚 ∈ 𝑀(𝑈) ∪ 𝑀(𝑊) or 𝑚𝑅 ∩ (𝑀(𝑈) ∪ 𝑀(𝑊)) ≠ ∅. 

Then  

𝑚 ∈ 𝑀(𝑈) or 𝑚 ∈ 𝑀(𝑊) or 𝑣𝑅 ∩ 𝑀(𝑈) ≠ ∅ or 

𝑚𝑅 ∩𝑀(𝑊) ≠ ∅. Thus 
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(𝑚 ∈ 𝑀(𝑈)  or 𝑚𝑅 ∩ 𝑀(𝑈) ≠ ∅) or (𝑚 ∈ 𝑀(𝑊)  or 

𝑚𝑅 ∩𝑀(𝑊) ≠ ∅). Then 𝑚 ∈ 𝐶𝑙𝐺(𝑀(𝑈)) or 

𝑚 ∈ 𝐶𝑙𝐺(𝑀(𝑊)). Therefore, 𝑚 ∈ 𝐶𝑙𝐺(𝑀(𝑈) ∪
𝐶𝑙𝐺(𝑀(𝑊)). Hence, 𝐶𝑙𝐺(𝑀(𝑈) ∪ 𝑀(𝑊)) ⊆
𝐶𝑙𝐺(𝑀(𝑈) ∪ 𝐶𝑙𝐺(𝑀(𝑊)). 
(v) 𝑀(𝑈) ⊆ 𝐶𝑙𝐺(𝑀(𝑈)),𝑀(𝑊) ⊆ 𝐶𝑙𝐺(𝑀(𝑊)). 
Since 𝑀(𝑈) ∩ 𝑀(𝑊) ⊆ 𝑀(𝑈), 𝑀(𝑈) ∩ 𝑀(𝑊) ⊆
𝑀(𝑊). Then 𝐶𝑙𝐺(𝑀(𝑈) ∩ 𝑀(𝑊)) ⊆ 𝐶𝑙𝐺(𝑀(𝑈)), 
𝐶𝑙𝐺(𝑀(𝑈) ∩ 𝑀(𝑊)) ⊆ 𝐶𝑙𝐺(𝑀(𝑊)). Therefore, 

𝐶𝑙𝐺(𝑀(𝑈) ∩ 𝑀(𝑊)) ⊆ 𝐶𝑙𝐺(𝑀(𝑈) ∩ 𝐶𝑙𝐺(𝑀(𝑊)). 
Example 2.8 : Via Example 2.3. Suppose that 𝑈,𝑊 

are subgraphs of G with 

vertices 

𝑀(𝑈) = {𝑚1, 𝑚3}, 𝑀(𝑊) = {𝑚1, 𝑚3, 𝑚5},𝑀(𝑈) ∪
𝑀(𝑊) = {𝑚1, 𝑚3, 𝑚5}. Then 

𝑚2𝑅 = {𝑚4,𝑚5},𝑚4𝑅 = {𝑚2},𝑚5𝑅 = {𝑚2, 𝑚3},. So 

𝑚2𝑅 ∩𝑀(𝑈) = ∅,𝑚4𝑅 ∩𝑀(𝑈) = ∅,𝑚5𝑅 ∩
𝑀(𝑈) ≠ ∅. Then  

𝐶𝑙𝐺(𝑀(𝑈)) = 𝑀(𝑈) ∪ {𝑚5} = {𝑚1, 𝑚3, 𝑚5}, 
𝐶𝑙𝐺(𝑀(𝑊)) = 𝑀(𝑊) ∪ {𝑚2} = {𝑚1, 𝑚2,𝑚3, 𝑚5},  
𝐶𝑙𝐺(𝐶𝑙𝐺(𝑀(𝑈))) = {𝑚1, 𝑚2, 𝑚3, 𝑚5}, 𝐶𝑙𝐺(𝑀(𝑈) ∪
𝑀(𝑊)) = {𝑚1, 𝑚2, 𝑚3, 𝑚5}. Since 

𝐶𝑙𝐺(𝐶𝑙𝐺(𝑀(𝑈))) ≠ 𝐶𝑙𝐺(𝑀(𝑈)). Then 
𝐶𝑙𝐺(𝑀(𝑈) ∪ 𝑉(𝑊)) = 𝐶𝑙𝐺(𝑀(𝑈) ∪ 𝐶𝑙𝐺(𝑀(𝑊)).  
Definition 2.9 :  Suppose that 𝐺 = (𝑀(𝐺), 𝑁(𝐺)) be 

a graph, 𝑈 be a subgraph from G. Then the graph 

interior of 𝑀(𝑈) has the shape                                    

𝐼𝑛𝑡𝐺(𝑀(𝑈)) = {𝑚 ∈ 𝑀(𝐺):⁡𝑚𝑅 ⊆ 𝑀(𝑈)}. 
Theorem 2.10 : Suppose that 𝐺 = (𝑀(𝐺), 𝑁(𝐺)) be 

a graph that contains a topological graph (𝑀(𝐺), 𝜏𝐺).  
If 𝑈,𝑊 are subgraphs from G; then: 

(i) If 𝑈 ⊆ 𝐺, then  𝐼𝑛𝑡𝐺(𝑀(𝑈)) ⊆ 𝑀(𝐺). 
(ii) If 𝑈 ⊆ 𝑊, then  𝐼𝑛𝑡𝐺(𝑀(𝑈)) ⊆ ⁡ 𝐼𝑛𝑡𝐺(𝑀(𝑊)). 
(iii) 𝐼𝑛𝑡𝐺(⁡𝐼𝑛𝑡𝐺(𝑀(𝑈))) ≠ ⁡ 𝐼𝑛𝑡𝐺(𝑀(𝑈)). 
(iv)𝐼𝑛𝑡𝐺(𝑀(𝑈) ∩ 𝑀(𝑊)) = ⁡ 𝐼𝑛𝑡𝐺(𝑀(𝑈)) ∩
⁡𝐼𝑛𝑡𝐺(𝑀(𝑊)). 
(v) 𝐼𝑛𝑡𝐺(𝑀(𝑈)) ∪ 𝐼𝑛𝑡𝐺(𝑀(𝑊)) ⊆ 𝐼𝑛𝑡𝐺(𝑀(𝑈) ∪
𝑀(𝑊)). 
Proof : (i) Since 𝑀(𝑈) ⊆ 𝑀(𝐺), then by definition 

2.9,  

𝐼𝑛𝑡𝐺(𝑀(𝑈)) = {𝑚 ∈ 𝑀(𝐺):⁡𝑣𝑅 ⊆ 𝑀(𝑈)}.This 

means that 𝐼𝑛𝑡𝐺(𝑀(𝑈)) ⊆ 𝑀(𝐺).   (ii) Since 

𝑀(𝑈) ⊆ 𝑀(𝑊), then by definition 2.9 

,𝐼𝑛𝑡𝐺(𝑀(𝑈)) = {𝑚 ∈ 𝑀(𝐺):⁡𝑚𝑅 ⊆ 𝑀(𝑈)} ⊆ {𝑚 ∈
𝑀(𝐺):𝑚𝑅 ⊆ 𝑀(𝑈) ⊆ 𝑀(𝑊)} ⊆ 𝐼𝑛𝑡𝐺(𝑀(𝑊)). 
Therefore, 𝐼𝑛𝑡𝐺(𝑀(𝑈)) ⊆ 𝐼𝑛𝑡𝐺(𝑀(𝑊)). 
(iii) Suppose that 𝑚 ∈ 𝑀(𝑈), by definition 2.9. 

𝐼𝑛𝑡𝐺(𝑀(𝑈)) = {𝑚 ∈ 𝑀(𝐺):⁡𝑚𝑅 ⊆ 𝑀(𝑈)}. Then 

𝑀(𝑈) ∉ 𝐼𝑛𝑡𝐺(𝑀(𝑈)), since 𝐼𝑛𝑡𝐺(𝑀(𝑈)) ⊈
𝐼𝑛𝑡𝐺(𝐼𝑛𝑡𝐺(𝑀(𝑈))), then 𝐼𝑛𝑡𝐺(𝐼𝑛𝑡𝐺(𝑀(𝑈))) ⊈
𝐼𝑛𝑡𝐺(𝑀(𝑈)). Therefore, 𝐼𝑛𝑡𝐺(𝐼𝑛𝑡𝐺(𝑀(𝑈))) ≠
𝐼𝑛𝑡𝐺(𝑀(𝑈)). (iv) From (i), it is obvious that 

𝐼𝑛𝑡𝐺(𝑀(𝐻) ∩ 𝑀(𝑊)) ⊆ 𝑀(𝑈) ∩ 𝑀(𝑊). Then by 

definition 2.9, if 𝑚 ∈ 𝐼𝑛𝑡𝐺(𝑀(𝑈) ∩ 𝑀(𝑊)), then 

𝑚 ∈ 𝑀(𝐺), such that 𝑚𝑅 ⊆ 𝑀(𝑈) ∩ 𝑀(𝑊). Then 

𝑣𝑅 ⊆ 𝑀(𝑈) and 𝑚𝑅 ⊆ 𝑀(𝑊). Therefore, 

𝑚 ∈ 𝐼𝑛𝑡𝐺(𝑀(𝑈)) and 𝑚 ∈ 𝐼𝑛𝑡𝐺(𝑀(𝑊)). Then 

𝑚 ∈ 𝐼𝑛𝑡𝐺(𝑀(𝑈) ∩ 𝑀(𝑊)). 
    Conversely 

𝐼𝑛𝑡𝐺(𝑀(𝑈)) ∩ 𝐼𝑛𝑡𝐺(𝑀(𝑊)) ⊆ 𝐼𝑛𝑡𝐺(𝑀(𝑈) ∩
𝑀(𝑊)). Let 𝑚 ∈ 𝐼𝑛𝑡𝐺(𝑀(𝑈)) ∩ 𝐼𝑛𝑡𝐺(𝑀(𝑊)). Then  

𝑚 ∈ 𝐼𝑛𝑡𝐺(𝑀(𝑈)) and 𝑚 ∈ 𝐼𝑛𝑡𝐺(𝑀(𝑊)), by 

definition 2.9, for all 𝑚 ∈ 𝑀(𝐺) such that 𝑚𝑅 ⊆
𝑀(𝑈) and for all 𝑚 ∈ 𝑀(𝐺) such that⁡𝑚𝑅 ⊆ 𝑀(𝑊). 
Then for all 𝑚 ∈ 𝑀(𝐺) such that 𝑚𝑅 ⊆ 𝑀(𝑈) ∩
𝑀(𝑊). Therefore, 𝑚 ∈ 𝐼𝑛𝑡𝐺(𝑀(𝑈) ∩ 𝑀(𝑊)). The 

proof is complete. 

(v) Suppose that 𝑀(𝑈),𝑀(𝑊) ⊆ 𝑀(𝐺), since 

𝑀(𝑈) ⊆ 𝑀(𝑈) ∪ 𝑀(𝑊),𝑀(𝑊) ⊆ 𝑀(𝑈) ∪
𝑀(𝑊).⁡Then 𝐼𝑛𝑡𝐺(𝑀(𝑈)) ⊆ 𝐼𝑛𝑡𝐺(𝑀(𝑈) ∪
𝑀(𝑊)), 𝐼𝑛𝑡𝐺(𝑀(𝑊)) ⊆ 𝐼𝑛𝑡𝐺(𝑀(𝑈) ∪ 𝑀(𝑊)). 
Therefore, 𝐼𝑛𝑡𝐺(𝑀(𝑈)) ∪ 𝐼𝑛𝑡𝐺(𝑀(𝑊)) ⊆
𝐼𝑛𝑡𝐺(𝑀(𝑈) ∪ 𝑀(𝑊)).   
Example 2.11 : Via Example 2.3. Suppose that 𝑈,𝑊 

are subgraphs from 𝐺 with vertices (𝑈) =
{𝑚1, 𝑚3},𝑀(𝑊) = {𝑚1, 𝑚3, 𝑚5},𝑀(𝑈) ∩ 𝑀(𝑊) =
{𝑚1, 𝑚3}, 𝐼𝑛𝑡𝐺(𝑀(𝑈)) = {𝑚1}, 𝐼𝑛𝑡𝐺(𝑀(𝑊)) =
{𝑚1, 𝑚3}, 𝐼𝑛𝑡𝐺(𝐼𝑛𝑡𝐺(𝑀(𝑊))) = Ø, 𝐼𝑛𝑡𝐺(𝑀(𝑈) ∩
𝑀(𝑊) = {𝑚1}. Since 𝐼𝑛𝑡𝐺(𝐼𝑛𝑡𝐺(𝑀(𝑈))) ≠
𝐼𝑛𝑡𝐺(𝑀(𝑈)). Then 𝐼𝑛𝑡𝐺(𝑀(𝑈) ∩ 𝑀(𝑊)) =
𝐼𝑛𝑡𝐺(𝑀(𝑈)) ∩ 𝐼𝑛𝑡𝐺(𝑀(𝑊)).      
Definition 2.12 : Suppose that 𝐺 = (𝑀(𝐺), 𝑁(𝐺))  
be a graph, 𝑈 be a subgraph from G. Then the graph 

exterior from 𝑀(𝑈) has the shape 𝐸𝑥𝑡𝐺(𝑀(𝑈)) =
{𝑚 ∈ 𝑀(𝐺):𝑚𝑅 ∩𝑀(𝑈) = ∅}. 
Theorem 2.13 : Suppose that 𝐺 = (𝑀(𝐺), 𝑁(𝐺)) be 

a graph that contains a topological graph (𝑀(𝐺), 𝜏𝐺). 
If 𝐻,𝑊 are subgraphs from G; then: 

(i) 𝐸𝑥𝑡𝐺(𝑀(𝑈)) = 𝐼𝑛𝑡𝐺(𝐶(𝑀(𝑈))). 
(ii) 𝐸𝑥𝑡𝐺(𝑀(𝑈)) ∩ 𝑀(𝑈) = ∅. 

(iii) 𝐸𝑥𝑡𝐺(𝑀(𝑈)) = 𝐶(𝐶𝑙𝐺(𝑀(𝑈))). 
(iv) If 𝑈 ⊆ 𝑊, then 𝐸𝑥𝑡𝐺(𝑀(𝑊)) ⊆ 𝐸𝑥𝑡𝐺(𝑀(𝑈)). 
(v)𝐸𝑥𝑡𝐺(𝑀(𝑈) ∪ 𝑀(𝑊)) ⊆ 𝐸𝑥𝑡𝐺(𝑀(𝑈)) ∩
𝐸𝑥𝑡𝐺(𝑀(𝑊)). 
Proof: (i) Suppose that 𝑚 ∈ 𝐸𝑥𝑡𝐺(𝑀(𝑈)), then 

𝑚𝑅 ⊂ 𝐶(𝑀(𝑈)), if and only if 

𝑚 ∈ 𝐼𝑛𝑡𝐺(𝐶(𝑀(𝑈))). Therefore, 𝐸𝑥𝑡𝐺(𝑀(𝑈)) =
𝐼𝑛𝑡𝐺(𝐶(𝑀(𝑈))). 
(ii) Suppose that 𝑚 ∈ 𝐸𝑥𝑡𝐺(𝑀(𝑈)), then 

𝐸𝑥𝑡𝐺(𝑀(𝑈)) ∩ 𝑀(𝑈) ⊂ 𝐶(𝑀(𝑈)) ∩ 𝑀(𝑈)),
𝐸𝑥𝑡𝐺(𝑀(𝑈)) ∩ 𝑀(𝑈) ⊂ Ø. Therefore, 

𝐸𝑥𝑡𝐺(𝑀(𝑈)) ∩ 𝑀(𝑈) = Ø. 

(iii) Suppose that⁡𝑚 ∈ 𝐸𝑥𝑡𝐺(𝑀(𝑈)), from 

(i)⁡𝐸𝑥𝑡𝐺(𝑀(𝑈)) = 𝐼𝑛𝑡𝐺(𝐶(𝑀(𝑈))).  
𝐶(𝐸𝑥𝑡𝐺(𝑀(𝑈))) = 𝐶(𝐼𝑛𝑡𝐺(𝐶(𝑀(𝑈)))). 
𝐶(𝐸𝑥𝑡𝐺(𝑀(𝑈))) = 𝐶𝑙𝐺(𝑀(𝑈)), by taking 

complement both sides, 

𝐸𝑥𝑡𝐺(𝑀(𝑈)) = 𝐶(𝐶𝑙𝐺(𝑀(𝑈))). 
(iv) 𝐶(𝑀(𝑈)) ⊂ 𝑀(𝑊)), 𝐶(𝑀(𝑊)) ⊂ 𝐶(𝑀(𝑈)), by 

taking interior both sides, 𝐼𝑛𝑡𝐺(𝐶(𝑀(𝑊))) ⊂
𝐼𝑛𝑡𝐺(𝐶(𝑀(𝑈))),from (i). Then 𝐸𝑥𝑡𝐺(𝑀(𝑈)) =
𝐼𝑛𝑡𝐺(𝐶(𝑀(𝑈))). Therefore, 𝐸𝑥𝑡𝐺(𝑀(𝑊)) ⊆
𝐸𝑥𝑡𝐺(𝑀(𝑈)). 
(v) Suppose that 𝑚 ∈ 𝐸𝑥𝑡𝐺(𝑈 ∪𝑊), from (i) 

𝐸𝑥𝑡𝐺(𝑈 ∪𝑊) = 𝐼𝑛𝑡𝐺(𝐶(𝑀(𝑈) ∪ 𝑀(𝑊)))  
=𝐼𝑛𝑡𝐺(𝐶(𝑀(𝑈)) ∩ 𝐶(𝑀(𝑊))) 
= 𝐼𝑛𝑡𝐺(𝐶(𝑀(𝑈))) ∩ 𝐼𝑛𝑡𝐺(𝐶(𝑀(𝑊))) 
= 𝐸𝑥𝑡𝐺(𝑀(𝑈)) ∩ 𝐸𝑥𝑡𝐺(𝑀(𝑊)). 
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Example 2.14 : Via Example 2.3, if 𝑈 be a subgraph 

from 𝐺. 

𝑀(𝑈) = {𝑚1, 𝑚2},𝑚1𝑅 ∩𝑀(𝑈) ≠ ∅,𝑚2𝑅 ∩
𝑀(𝑈) = ∅,𝑚3𝑅 ∩𝑀(𝑈) ≠ ∅,𝑚4𝑅 ∩  

𝑀(𝑈) = Ø,𝑚5𝑅 ∩ 𝑀(𝑈) ≠ Ø. Then 𝐸𝑥𝑡𝐺(𝑀(𝑈)) =
{𝑚2, 𝑚4}, 𝐶(𝑀(𝑈)) = {𝑚2, 𝑚4, 𝑚5},⁡ 
𝐼𝑛𝑡𝐺(𝐶(𝑀(𝑈))) = {𝑚2, 𝑚4}. Therefore, 

𝐸𝑥𝑡𝐺(𝑀(𝑈)) = 𝐼𝑛𝑡𝐺(𝐶(𝑀(𝑈))). 
Definition 2.15 : Suppose that 𝐺 = (𝑀(𝐺), 𝑁(𝐺)) be 

a graph and 𝑈 be a subgraph from 𝐺. Then the graph 

boundary from 𝑀(𝑈) has the shape                                           

𝐵̇𝐺(𝑀(𝑈)) = {𝑚 ∈ 𝑀(𝐺): 𝐶𝑙𝐺(𝑀(𝑈)) −
𝐼𝑛𝑡𝐺(𝑀(𝑈))} . 
Theorem 2.16 : Suppose that 𝐺 = (𝑀(𝐺), 𝐸(𝐺)) be a 

graph that contains a topological graph (𝑀(𝐺), 𝜏𝐺). If 
𝑈 be a subgraph from 𝐺; then: 

 (i) 𝐵̇𝐺(𝑀(𝑈)) = 𝐶𝑙𝐺(𝑀(𝑈)) ∩ 𝐶𝑙𝐺(𝐶(𝑀(𝑈))). 
(ii) 𝐵̇𝐺(𝑀(𝑈)) ⊆ 𝐵𝐺(𝐶(𝑀(𝑈))). 
(iii) 𝐵̇𝐺(𝑀(𝐺)) = Ø. 

(iv) 𝐵̇𝐺(𝑀(𝑈)) = 𝐶𝑙𝐺(𝑀(𝑈)) − 𝐼𝑛𝑡𝐺(𝑀(𝑈)). 
(v) 𝐶𝑙𝐺(𝑀(𝑈) = 𝑀(𝑈) ∪ 𝐵̇𝐺(𝑀(𝑈)). 
Proof: (i) Suppose that 𝑚 ∈ 𝑀(𝑈),𝑀(𝑈) ∈
𝐶𝑙𝐺(𝑀(𝑈)), then 𝑚 ∈ 𝐶𝑙𝐺(𝑀(𝑈)) and 

𝑚 ∈ 𝐶𝑙𝐺(𝐶(𝑀(𝑈))), then 𝑚 ∈ 𝐶𝑙𝐺(𝑀(𝑈)) ∩
𝐶𝑙𝐺(𝐶(𝑀(𝑈))). 
𝐵̇𝐺(𝑀(𝑈)) = 𝐶𝑙𝐺(𝑀(𝑈)) ∩ 𝐶𝑙𝐺(𝐶(𝑀(𝑈))). 
(ii) Suppose that 𝑚 ∈ 𝑀(𝑈),⁡ by definition 2.15. 

𝐵̇𝐺(𝑀(𝑈)) = 𝐶𝑙𝐺(𝑀(𝑈)) − 𝐼𝑛𝑡𝐺(𝑀(𝑈))}, from (i) 

⁡𝐵𝐺(𝑀(𝑈)) = 

𝐶𝑙𝐺(𝑀(𝑈)) ∩ 𝐶𝑙𝐺(𝐶(𝑀(𝑈))). Since 

𝐶𝑙𝐺(𝐶(𝑀(𝑈))) = 𝐶𝑙𝐺(𝐶(𝑀(𝑈)) ∩ 

𝐶𝑙𝐺(𝐶(𝐶(𝑀(𝑈)))). Therefore, 𝐵̇𝐺(𝑀(𝑈)) ⊆

𝐵̇𝐺(𝐶(𝑀(𝑈))). 
(iii) From (i), 𝐵𝐺(𝑀(𝐺)) = 𝐶𝑙𝐺(𝑀(𝐺)) ∩
𝐶𝑙𝐺(𝐶(𝑀(𝐺))) = 𝑀(𝐺) ∩ 𝐶𝑙𝐺∅ 

= 𝑀(𝐺) ∩ ∅ = ∅. Therefore, 𝐵̇𝐺(𝑀(𝑈)) = Ø. 

(iv) Suppose that 𝑚 ∈ 𝑀(𝑈),⁡from (i) 𝐵̇𝐺(𝑀(𝑈)) =
𝐶𝑙𝐺(𝑀(𝑈)) ∩ 𝐶𝑙𝐺(𝐶(𝑀(𝑈))) 
= 𝐶𝑙𝐺(𝑀(𝑈)) − 𝐶(𝐶𝑙𝐺(𝐶(𝑀(𝑈)))) = 𝐶𝑙𝐺(𝑀(𝑈)) −
𝐼𝑛𝑡𝐺(𝑀(𝑈)). 
(v) Suppose that 𝑣 ∈ 𝑀(𝑈), 𝐵𝐺(𝑀(𝑈)) ∪
𝐼𝑛𝑡𝐺(𝑀(𝑈)) = (𝐶𝑙𝐺(𝑀(𝑈)) − 

𝐼𝑛𝑡𝐺(𝑀(𝑈))) ∪ 𝐼𝑛𝑡𝐺(𝑀(𝑈)). Therefore, 

𝐶𝑙𝐺(𝑀(𝑈) = 𝑀(𝑈) ∪ 𝐵̇𝐺(𝑀(𝑈)). 
Theorem 2.17 : Suppose that 𝐺 = (𝑀(𝐺), 𝐸(𝐺)) be a 

graph that contains a topological graph (𝑀(𝐺), 𝜏𝐺). If 
𝑈,𝑊 are subgraphs from G.  

Then 𝐵̇𝐺(𝑀(𝑈) ∪ 𝑀(𝑊)) ⊆ 𝐵̇𝐺(𝑀(𝑈)) ∪

𝐵̇𝐺(𝑀(𝑊)).  
Proof: Suppose that 𝑚 ∈ 𝐵̇𝐺(𝑀(𝑈) ∪ 𝑀(𝑊)), then 

by definition 2.16, 

𝑚𝑅 ∩ (𝑀(𝑈) ∪ 𝑀(𝑊)) ≠ ∅⁡𝑎𝑛𝑑⁡𝑚𝑅 ∩ 𝐶(𝑀(𝑈) ∪
𝑀(𝑊))  
→ (𝑚𝑅 ∩ 𝑀(𝑈)) ∪ (𝑚𝑅 ∩𝑀(𝑊)) ≠ ∅⁡𝑎𝑛𝑑⁡𝑚𝑅 ∩
(𝐶(𝑀(𝑈)) ∩ 𝐶(𝑀(𝑊))) ≠ ∅  → (𝑚𝑅 ∩𝑀(𝑈)) ∪
(𝑚𝑅 ∩𝑀(𝑊)) ≠ ∅⁡𝑎𝑛𝑑⁡(𝑚𝑅 ∩ 𝐶(𝑀(𝑈))) ∪
(𝑚𝑅 ∩ 𝐶(𝑀(𝑊))) ≠ ∅ 
→ [𝑚𝑅 ∩𝑀(𝑈) ≠ ∅⁡𝑜𝑟⁡𝑚𝑅 ∩ 𝑀(𝑊) ≠ Ø⁡]⁡𝑎𝑛𝑑⁡[𝑚𝑅 ∩
𝐶(𝑀(𝑈))  

≠ Ø⁡𝑎𝑛𝑑⁡𝑚𝑅 ∩ 𝐶(𝑀(𝑊)) ≠ Ø⁡] 
→ [𝑚𝑅 ∩𝑀(𝑈) ≠ ∅⁡𝑎𝑛𝑑⁡𝑚𝑅 ∩𝑀(𝑊) ≠
Ø⁡]⁡𝑜𝑟⁡[𝑚𝑅 ∩ 𝐶(𝑀(𝑈)) ≠ Ø⁡𝑎𝑛𝑑⁡𝑚𝑅 ∩ 𝐶(𝑀(𝑊)) ≠
Ø⁡], such that 

𝑚 ∈ 𝐵̇𝐺(𝑀(𝑈))⁡𝑜𝑟⁡𝑚 ∈ 𝐵̇𝐺(𝑀(𝑊)),𝑚 ∈
𝐵̇𝐺(𝑀(𝑈)) ⁡∪ 𝐵̇𝐺(𝑀(𝑊)). Therefore, 𝐵̇𝐺(𝑀(𝑈) ∪

𝑀(𝑊)) ⊆ 𝐵̇𝐺(𝑀(𝑈)) ∪ 𝐵̇𝐺(𝑀(𝑊)). 
Example 2.18 : Via Example 2.3, Suppose that 𝑈 be 

a subgraph from 𝐺with vertices 𝑀(𝑈) = {𝑚1, 𝑚3},
𝐶(𝑀(𝑈)) = {𝑚2, 𝑚4, 𝑚5}, 𝐶𝑙𝐺(𝑀(𝑈)) =
{𝑚1, 𝑚3, 𝑚5}, 
𝐼𝑛𝑡𝐺(𝑀(𝑈))) = {𝑚1}, 𝐶𝑙𝐺(𝐶(𝑀(𝑈))) =
{𝑚2, 𝑚3, 𝑚4, 𝑚5}, 𝐵̇𝐺(𝑀(𝑈)) =
{𝑚3, 𝑚5}, 𝐶𝑙𝐺(𝑀(𝑈)) ∩ 𝐶𝑙𝐺(𝐶(𝑀(𝑈))) = {𝑚3, 𝑚5}. 
Therefore, 

𝐵̇𝐺(𝑀(𝑈)) = 𝐶𝑙𝐺(𝑀(𝑈)) ∩ 𝐶𝑙𝐺(𝐶(𝑀(𝑈))). 
Theorem 2.19 : Suppose that 𝐺 = (𝑀(𝐺), 𝑁(𝐺)) be 

a graph that contains a topological graph (𝑀(𝐺), 𝜏𝐺). 
If 𝑈 be a subgraph from G; then 

(i) 𝐵̇𝐺(𝑀(𝑈)) ∩ 𝐼𝑛𝑡𝐺(𝑀(𝑈)) = ∅. 

(ii) 𝐵̇𝐺(𝑀(𝑈)) ∩ 𝐸𝑥𝑡𝐺(𝑀(𝑈)) = ∅. 

(iii) 𝐼𝑛𝑡𝐺(𝑀(𝑈)) ∩ 𝐸𝑥𝑡𝐺(𝑀(𝑈)) = ∅. 

(iv) 𝐼𝑛𝑡𝐺(𝑀(𝑈)) ∪ 𝐸𝑥𝑡𝐺(𝑀(𝑈)) ∪ 𝐵̇𝐺(𝑀(𝑈)) = 𝐺. 

Proof: (i) Suppose that 𝑚 ∈ 𝑀(𝐺),𝑀(𝑈) ⊆
𝑀(𝐺),⁡by definition 2.15, 

𝐵̇𝐺(𝑀(𝑈)) ∩ 𝐼𝑛𝑡𝐺(𝑀(𝑈)) = (𝐶𝑙𝐺(𝑀(𝑈)) −
𝐼𝑛𝑡𝐺(𝑀(𝑈))) ∩ 𝐼𝑛𝑡𝐺(𝑀(𝑈)), by distributing 

intersection,  

→ (𝐶𝑙𝐺(𝑀(𝑈)) ∩ 𝐼𝑛𝑡𝐺(𝑀(𝑈))) − (𝐼𝑛𝑡𝐺(𝑀(𝑈)) ∩
𝐼𝑛𝑡𝐺(𝑀(𝑈)))  
= 𝐼𝑛𝑡𝐺(𝑀(𝑈)) − 𝐼𝑛𝑡𝐺(𝑀(𝑈)) = Ø. 

(ii) Suppose that 𝑀(𝑈) ⊆ 𝑀(𝐺), 𝐵̇𝐺(𝑀(𝑈)) ∩
𝐸𝑥𝑡𝐺(𝑀(𝑈)), by theorem 2.13 

→ 𝐵̇𝐺(𝐶(𝑀(𝑈))) ∩ 𝐼𝑛𝑡𝐺(𝐶(𝑀(𝑈))) 
= 𝐵̇𝐺(𝐺 − 𝑀(𝑈)) ∩ 𝐼𝑛𝑡𝐺(𝐶(𝐺 −𝑀(𝑈))) = Ø.  

(iii) Suppose that 𝑀(𝑈) ⊆ 𝑀(𝐺), 𝐼𝑛𝑡𝐺(𝑀(𝑈)) ∩
𝐸𝑥𝑡𝐺(𝑀(𝑈)) 
=⁡ 𝐼𝑛𝑡𝐺(𝑀(𝑈)) ∩ 𝐼𝑛𝑡𝐺(𝐶(𝑀(𝑈))) = 𝐼𝑛𝑡𝐺(𝑀(𝑈)) ∩
(𝐶(𝐶𝑙𝐺(𝑀(𝑈)))  
= 𝐼𝑛𝑡𝐺(𝑀(𝑈)) ∩ (𝐺 − 𝐶𝑙𝐺(𝑉(𝑈))), by distributing 

intersection,  
→ (𝐼𝑛𝑡𝐺(𝑀(𝑈)) ∩ 𝐺) − (𝐼𝑛𝑡𝐺(𝑀(𝑈)) ∩ 𝐶𝑙𝐺(𝑀(𝑈)))  

= 𝐼𝑛𝑡𝐺(𝑀(𝑈)) − 𝐼𝑛𝑡𝐺(𝑀(𝑈)) = ∅. 

(iv) Suppose that 𝑀(𝑈) ⊆ 𝑀(𝐺), 𝐼𝑛𝑡𝐺(𝑀(𝑈)) ∪

𝐸𝑥𝑡𝐺(𝑀(𝑈)) ∪ 𝐵̇𝐺(𝑀(𝑈)) 
= 𝐶𝑙𝐺(𝑀(𝑈)) ∪ 𝐼𝑛𝑡𝐺(𝐶(𝑀(𝑈))) = 𝐶𝑙𝐺(𝑀(𝑈)) ∪
𝐶(𝐶𝑙𝐺(𝑀(𝑈))) = 𝐺. 

Theorem 2.20 : Suppose that 𝐺 = (𝑀(𝐺), 𝑁(𝐺)) be 

a graph that contains a topological graph (𝑀(𝐺), 𝜏𝐺). 
If 𝐶𝑙𝐺(𝑀(𝑈)) ∩ 𝐶𝑙𝐺(𝑀(𝑊)) = Ø,⁡then 

𝐼𝑛𝑡𝐺(𝑀(𝑈)) ∪ 𝐼𝑛𝑡𝐺(𝑀(𝑊)) = 𝐼𝑛𝑡𝐺(𝑀(𝑈) ∪
𝑀(𝑊)). 
Proof: It`s clear by theorem 2.10, 𝐼𝑛𝑡𝐺(𝑀(𝑈)) ∪
𝐼𝑛𝑡𝐺(𝑀(𝑊)) ⊆ 𝐼𝑛𝑡𝐺(𝑀(𝑈) ∪ 𝑀(𝑊)). To prove that 

𝐼𝑛𝑡𝐺(𝑀(𝑈) ∪ 𝑀(𝑊)) ⊆ 𝐼𝑛𝑡𝐺(𝑀(𝑈)) ∪
𝐼𝑛𝑡𝐺(𝑀(𝑊)).  
Assume that 𝑚 ∉ 𝐼𝑛𝑡𝐺(𝑀(𝑈)) ∪ 𝐼𝑛𝑡𝐺(𝑀(𝑊)) and 

suppose that 𝑚 ∈ 𝐼𝑛𝑡𝐺(𝑀(𝑈) ∪ 𝑀(𝑊)), there exist a 

post stage 𝐴, so that 𝑚 ∈ 𝐴 ⊆ 𝑀(𝑈) ∪ 𝑀(𝑊), since 
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𝐴 ⊆ 𝑀(𝑈)⁡𝑜𝑟⁡𝐴 ⊆ 𝑀(𝑊)⁡𝑜𝑟⁡(𝐴 ⊄ 𝑀(𝑈)⁡&⁡𝐴 ⊄
𝑀(𝑊)).  
(i) If 𝐴 ⊆ 𝑀(𝑈), then 𝑚 ∈ 𝐼𝑛𝑡𝐺(𝑀(𝑈)), Therefore 

𝑚 ∈ 𝐼𝑛𝑡𝐺(𝑀(𝑊)) ∪ 𝐼𝑛𝑡𝐺(𝑀(𝑈)). 
(ii) If 𝐴 ⊆ 𝑀(𝑊), then 𝑚 ∈ 𝐼𝑛𝑡𝐺(𝑀(𝑊)), Therefore 

𝑚 ∈ 𝐼𝑛𝑡𝐺(𝑀(𝑊)) ∪ 𝐼𝑛𝑡𝐺(𝑀(𝑈)).  
(iii) If 𝐴 ⊄ 𝑀(𝑈)⁡&⁡𝐴 ⊄ 𝑀(𝑊), then 𝐴 ∩𝑀(𝑈) ≠
Ø, 𝐴 ∩ 𝑀(𝑊) ≠ Ø. For every 𝑊 ∈ 𝑀(𝐺),𝑚 ∈ 𝑊, we 

get 𝑚 ∈ 𝐶𝑙𝐺(𝑀(𝑈)),𝑚 ∈ 𝐶𝑙𝐺(𝑀(𝑊)). This is 

contraction, because 𝐶𝑙𝐺(𝑀(𝑈)) ∩ 𝐶𝑙𝐺(𝑀(𝑊)) = Ø. 

Therefore, (i) and (ii) true. Then 𝐼𝑛𝑡𝐺(𝑀(𝑈) ∪
𝑀(𝑊)) ⊆ 𝐼𝑛𝑡𝐺(𝑀(𝑈)) ∪ 𝐼𝑛𝑡𝐺(𝑀(𝑊)). 
Example 2.21 : Via example 2.3, suppose that 𝑈 be a 

subgraph from 𝐺. 

𝑀(𝑈) = {𝑚1},𝑀(𝑊) = {𝑚2},𝑀(𝑈) ∪ 𝑀(𝑊) =
{𝑚1, 𝑚2}, 𝐶𝑙𝐺(𝑀(𝑈)) = {𝑚1, 𝑚3}, 𝐶𝑙𝐺(𝑀(𝑊)) =
{𝑚2, 𝑚4, 𝑚5}, then⁡𝐶𝑙𝐺(𝑀(𝑈)) ∩ 𝐶𝑙𝐺(𝑀(𝑊)) = Ø, 

𝐼𝑛𝑡𝐺(𝑀(𝑈)) = Ø, 𝐼𝑛𝑡𝐺(𝑀(𝑊)) =
{𝑚4}, 𝐼𝑛𝑡𝐺(𝑀(𝐻) ∪ 𝑀(𝑊)) = {𝑚4}. Therefore, 

𝐼𝑛𝑡𝐺(𝑀(𝑈)) ∪ 𝐼𝑛𝑡𝐺(𝑀(𝑊)) = 𝐼𝑛𝑡𝐺(𝑀(𝑈) ∪
𝑀(𝑊)). 
Definition 2.22 : Suppose that 𝐺 = (𝑀(𝐺), 𝑁(𝐺)) be 

a graph and 𝑈 be a subgraph from 𝐺. It is said that the 

vertex 𝑚 ∈ 𝑀(𝑈) is limit point to 𝑀(𝑈) if each set 

𝑚𝑅 contain 𝑚. Also contain a point other than m 

shape: 

𝑑̇𝐺 = {𝑚 ∈ 𝑀(𝐺):𝑚𝑅 ∩𝑀(𝑈) − {𝑚} ≠ ∅}.  
Theorem 2.23 : Suppose that 𝐺 = (𝑀(𝐺), 𝑁(𝐺)) be 

a graph that contains a topological graph (𝑀(𝐺), 𝜏𝐺). 
If 𝑈,𝑊 are subgraphs from G; then 

(i) If 𝑈 ⊆ 𝑊, then 𝑑̇𝐺(𝑀(𝑈)) ⊆ 𝑑̇𝐺(𝑀(𝑊)). 

(ii) 𝑑̇𝐺(𝑀(𝑈) ∪ 𝑀(𝑊)) = 𝑑̇𝐺(𝑀(𝑈)) ∪ 𝑑̇𝐺(𝑀(𝑊)). 

(iii) 𝑑̇𝐺(𝑀(𝑈) ∩ 𝑀(𝑊)) ⊆ 𝑑̇𝐺(𝑀(𝑈)) ∩ 𝑑̇𝐺(𝑀(𝑊)). 
Proof: (i) Suppose that 𝑚 ∈ 𝑀(𝑈), then 𝑚 ∈
𝑚𝑅⁡𝑎𝑛𝑑⁡𝑚𝑅 ∩𝑀(𝑈) − {𝑚} ≠ ∅, 

𝑚 ∈ 𝑚𝑅⁡𝑎𝑛𝑑⁡𝑚𝑅 ∩𝑀(𝑊) − {𝑚} ≠ ∅, since 

𝑀(𝑈) ⊆ 𝑀(𝑊), by definition 2.22, 𝑚 ∈ 𝑀(𝑊). 

Therefore, 𝑑̇𝐺(𝑀(𝑈)) ⊆ 𝑑̇𝐺(𝑀(𝑊)).    

(ii) To prove that 𝑑̇𝐺(𝑀(𝑈) ∪ 𝑀(𝑊)) =

𝑑̇𝐺(𝑀(𝑈)) ∪ 𝑑̇𝐺(𝑀(𝑊)). 
𝑀(𝑈) ⊆ (𝑀(𝑈) ∪ 𝑀(𝑊)), by definition 2.22, 

𝑑̇𝐺(𝑀(𝑈)) ⊆ 𝑑̇𝐺(𝑀(𝑈) ∪ 𝑀(𝑊)), 𝑑̇𝐺(𝑀(𝑊)) ⊆

𝑑̇𝐺((𝑀(𝑈) ∪ 𝑀(𝑊)). Therefore, 

𝑑̇𝐺(𝑀(𝑈)) ∪ 𝑑̇𝐺(𝑉(𝑊)) ⊆ 𝑑̇𝐺(𝑀(𝑈) ∪ 𝑀(𝑊))…… 1) 

      Conversely  

Suppose that 𝑚 ∉ 𝑑̇𝐺(𝑀(𝑈) ∪ 𝑀(𝑊)), then 𝑚 ∉

𝑑̇𝐺(𝑀(𝑈) and 𝑣 ∉ 𝑑̇𝐺(𝑀(𝑊), by definition 2.21, 

𝑚 ∈ 𝑥𝑅⁡𝑎𝑛𝑑⁡𝑥𝑅 ∩ 𝑀(𝑈) − {𝑚} = ∅⁡𝑎𝑛𝑑⁡𝑚 ∈
𝑦𝑅⁡𝑎𝑛𝑑⁡𝑦𝑅 ∩ 𝑀(𝑈) − {𝑚} = ∅, 𝑚 ∈ 𝑥𝑅 ∩
𝑦𝑅⁡𝑎𝑛𝑑⁡(𝑥𝑅 ∩ 𝑦𝑅) ∩ (𝑉(𝑈) ∪ 𝑀(𝑊)) − {𝑚} = Ø, 

since 𝑚 ∉ 𝑑̇𝐺(𝑀(𝑈) ∪ 𝑉(𝑊)). Therefore, 𝑑̇𝐺(𝑀(𝑈) ∪

𝑀(𝑊)) ⊆ 𝑑̇𝐺(𝑀(𝑈)) ∪ 𝑑̇𝐺(𝑀(𝑊))………….(2)  

From (1) and (2) we have 𝑑̇𝐺(𝑀(𝑈) ∪ 𝑀(𝑊)) =

𝑑̇𝐺(𝑀(𝑈)) ∪ 𝑑̇𝐺(𝑀(𝑊)). 

(iii) To prove 𝑑̇𝐺(𝑀(𝑈) ∩ 𝑀(𝑊)) ⊆ 𝑑̇𝐺(𝑀(𝑈)) ∩

𝑑̇𝐺(𝑀(𝑊)). 

Let 𝑚 ∈ 𝑑̇𝐺(𝑀(𝑈) ∩ 𝑀(𝑊)), by definition 2.22, 

𝑚 ∈ 𝑚𝑅⁡𝑎𝑛𝑑⁡𝑚𝑅 ∩ (𝑀(𝑈) ∩ 𝑀(𝑊)) − {𝑚} ≠ ∅, 

then 𝑚 ∈ 𝑚𝑅⁡𝑎𝑛𝑑⁡[(𝑚𝑅 ∩𝑀(𝑈) − {𝑚}) ∩
⁡(𝑚𝑅 ∩𝑀(𝑊) − {𝑚})] ≠ ∅, by definition 2.22, 

(𝑚𝑅 ∩𝑀(𝑈) − {𝑚}) ≠ ∅⁡𝑎𝑛𝑑⁡(𝑚𝑅 ∩𝑀(𝑊) −
{𝑚}) ≠ Ø, then 𝑚 ∈ 𝑑̇𝐺(𝑀(𝑈)),𝑚 ∈ 𝑑̇𝐺(𝑀(𝑊)), 

𝑚 ∈ 𝑑̇𝐺(𝑀(𝑈) ∩ 𝑀(𝑊)). Therefore, 𝑑̇𝐺(𝑀(𝑈) ∩

𝑀(𝑊)) ⊆ 𝑑̇𝐺(𝑀(𝑈)) ∩ 𝑑̇𝐺(𝑀(𝑊)).     
Example 2.24: Via Example 2.3, suppose that 𝑈,𝑊 

are subgraphs from G. 

𝑀(𝑈) = {𝑚1, 𝑚3},𝑀(𝑊) = {𝑚1, 𝑚3, 𝑚5}, Then 

𝑑̇𝐺(𝑀(𝑈)) = {𝑚1, 𝑚4}, 𝑑̇𝐺(𝑀(𝑊)) = {𝑚1, 𝑚4}. 

Therefore, 𝑑̇𝐺(𝑀(𝑈)) ⊆ 𝑑̇𝐺(𝑀(𝑊)).  

Conclusion  
In this paper, we were can topological construct of 

any graph by using the definition of topological 

graph, we studied the graph closure, graph exterior, 

graph interior, graph boundary, and graph limit point 

with some result.   
References 
[1] Engelking, R.(1976). "General Topology", PWN-

Polish Scientific Publishers. 
[2] Munkres, J.(2000). "Topology", 2nd; Prentice-

Hall: Upper Saddle River,  

NJ, USA. 

[3] Kelley J. L. (1975). "General Topology", 

Nostrand; Springer-Verlag, New York. 
[4] Jung, S.-M. (2016). ''Interiors and closures of sets 

and applications''. Int. J. Pure Math. 3, 41–45. 

[5] Bondy. J.A and  Murty. U.S.R. (2008). ''Graph 

Theory'', Springer, Berli. 

 [6] Chartrand. G, Lesniak. L, Zhang. P. (2016). 

Textbooks in Mathematics ''Graphs and Digraphs'', 

Taylor and Francis Group, LLC. 

 [7] Diestel. R. (2000). ''Graph Theory'', Springer-

Verlag Heidelberg Press, New York. 

 

  

 

 

 

 

 

 

 

 

 



   

 

  

Tikrit Journal of Pure Science Vol. 25 (4) 2020 
 

122 

 

 بعض المفاهيم التوبولوجية بواسطة نظرية البيان
 2اياد ابراهيم عواد،  1طه حميد جاسم

 العراق، تكريت ، قسم الرياضيات , كلية علوم الحاسوب والرياضيات , جامعة تكريت  1
  ، الموصل ، العراق قسم الرياضيات, كلية علوم الحاسوب والرياضيات , جامعة الموصل 2
 

 الملخص
ي نظرية نظرا لصعوبة ايجاد تطبيقات على الفضاءات التوبولوجية والتي تعتبر من فروع الرياضيات البحتة تأتي اهمية هذا البحث لايجاد تطبيقات ف

البيان )دواخل البيان, انغلاق البيان, خوارج البيان, حدود البيان, نقطة  نظرية بعض مفاهيم الفضاء التوبولوجي فاننا عممنا على البيان. من خلال
 على الاقل كتوصيف وبعض الامثلة المقدمة لشرح الموضوع.  عديدةات م اثبات نظريوتمت دراسة العلاقات بينهم ث غاية البيان(


