Chromatic Number and some Properties of Pseudo-Von Neumann Regular graph of Cartesian Product of Rings

Nermen J. Khalel , Nabeel E. Arif

Department of Mathematic, College of Computer Science and Mathematics, Tikrit, Tikrit University, Iraq https://doi.org/10.25130/tjps.v25i3.262

ARTICLEINFO.

Article history:

-Received: 6/8/2019
-Accepted: 24 / 9 / 2019
-Available online: / / 2020
Keywords: Graph, Chromatic Number, Commutative Ring.
Corresponding Author:
Name: Nermen J. Khalel
E-mail: nrnjamal88@gmail.com
Tel:

1- Introduction

Beck [1] studied coloring of commutative rings and studied chromatic number of it is graph such that two different elements x and y are adjacent iff $x y=0$, Bhavanari et.al. studied prime graph of a ring with some properties of its graph [2], and he studied cartesian product of prime graph with Srinivasulu [3] Kalita [4] computed chromatic number of prime graph of some finite ring, Patra k. et.al [5]. found chromatic number of prime graph of some rings of Z_{n} , where $\mathrm{n}=\prod_{i=1}^{r} p_{i}^{\alpha_{i}}$, Elizabeth [6] studied colorings of zero divisor graphs of commutative rings . The study obtains the chromatic number of Pseudo-Von Nemann regular graph of cartesian product of rings.

2- Primer lay

Definition 2.1: let R be a ring and $a \in R, a$ is called regular element if there exist $b \in R$ such that $a=a b a$, if any element in R is regular then R is regular ring, if R is commutative then $a=a^{2} b$ and we say that R is Von Neumann regular ring.
Definition 2.2: A graph G is defined by an ordered pair $(V(G), E(G))$, when $V(G)$ is a non empty set whose elements are called vertices and $E(G)$ is a set (may be empty) of unordered pairs of distinct vertices of $V(G)$. the element of $E(G)$ are called edges of the graph G. we denote by $\overline{u v}$, an edge between two end vertices u and v.
Definition 2.3: A simple graph that has no loops or multiple edges .
Definition 2.4: A graph H is said to be a subgraph of a graph G if all the edges and all the vertices of H are in G, and it is denoted by $H \subset G$.

Definition 2.5: A path is a graph G that contains a list $v_{1}, v_{2}, \ldots, v_{n}$ of vertices of G s.t. for $1 \leq i \leq p-$ 1 , there is an edge $\overline{v_{l} v_{l+1}}$ in G and these are the only edges in G.
Definition 2.6: let v_{1} and v_{2} be two vertices , d (v_{1}, v_{2}) is called the distance from v_{1} to v_{2} if it is the shortest path from v_{1} to v_{2}.
Definition 2.7: A close path is called cylce, the degree of each vertex of a cycle graph is two, a cycle with n vertices denoted by C_{n}.
Definition 2.8: Let $G(V, E)$ be a graph and $C \subset G$, is called clique if the induced subgraph of G induced by C is a complete graph .
The clique is called maximal if there is no clique with more vertices .
Theorem 2.9:
For circular graph C_{n} one has
$x\left(C_{n}\right)= \begin{cases}2 & \text { when } n \text { is even } \\ 3 & \text { when } n \text { is odd }\end{cases}$
Definition 2.10: A h-coloring of the vertex set of a graph G is a function $\gamma: V(G) \rightarrow\{1,2, \ldots, h\}$ such that $\gamma\left(v_{1}\right) \neq \gamma\left(v_{2}\right)$ whenever v_{1} is adjacent to v_{2}, if a h coloring of G exists , then G is called h - colorable.
Definition 2.11: The chromatic number of G is defined as $\mathcal{X}(G)=\min \{h: G$ is h - colorable \} where $\mathcal{X}(G)=h, G$ is called h - chromatic.
Definition 2.12: The Cartesian product $G \times K$ of graphs G and K is a graph such that:

- The vertex set of $G \times K$ is the Cartesian product $V(G) \times V(K)$ and
- The two vertices (u, v) and (s, t) are adjacent in $G \times K$ if and only if either $u=s$ and v is adjacent to t in K or $v=t$ and u is adjacent to s in G.

3- Main Results

Definition 3.1[14]: Let R be a commutative ring. A graph $G(V, E)$ is said to be (Pseudo -Von Neumann regular graph) of R if $V(G)=R$ and $E(G)=\{\overline{a b} /$ $a=a^{2} b$ or $b=b^{2} a$ and $\left.a \neq b\right\}$ denoted by P $V G(R)$, shortly P-Von Neumann regular graph .

Example 3.2:

$Z_{2}=\{0,1\}$

Fig. 1: $P-V G\left(Z_{2}\right)$
$Z_{3}=\{0,1,2\}$

Fig. 2: $P-V G\left(Z_{3}\right)$
$Z_{4}=\{0,1,2,3\}$

Fig. 3: $P-V G\left(Z_{4}\right)$
$Z_{5}=\{0,1,2,3,4\}$

Fig. 4: $P-V G\left(Z_{5}\right)$
Definition 3.2 :
Let $R=R_{1} \times R_{2}$, then the $P-V G(R)$ is define as the vertices set $=\left\{(a, b): a \in R_{1}\right.$ and $\left.b \in R_{2}\right\}$ then (a, b) and (u, v) are adjacent in $P-V G(R)$ if and only if a adjacent to u in $P-V G\left(R_{1}\right)$ and b adjacent to v in P $V G\left(R_{2}\right)$, and (0,0) adjacent to all vertices .

Example 3.3:

1 - Let $R=Z_{2} \times Z_{2}$
$(0,1)$

$(1,1)$

Fig. 5-i: $P-V G\left(Z_{2}\right) \times P-V G\left(Z_{2}\right)$

Fig. 5-ii: $P-V G\left(Z_{2} \times Z_{2}\right)$
$P-V G\left(Z_{2}\right) \times P-V G\left(Z_{2}\right) \cap P-V G\left(Z_{2} \times Z_{2}\right)=3$ - star graph.

2- Let $R=Z_{3} \times Z_{3}$

Fig. 6-i: P-VG($\left.Z_{3}\right) \times$ P-VG $\left(Z_{3}\right)$

Fig. 6-ii: $\operatorname{P-VG}\left(\boldsymbol{Z}_{3} \times \boldsymbol{Z}_{3}\right)$
$P-V G\left(Z_{3}\right) \times P-V G\left(Z_{3}\right) \cap P-V G\left(Z_{3} \times Z_{3}\right)=5$ - star graph.
In general $P-V G\left(Z_{n}\right) \times P-V G\left(Z_{n}\right) \cap P-V G\left(Z_{n} \times Z_{n}\right)=$ ($2 n-1$) - star graph and the below theorem show that .

Theorem 3.4:

let $\mathrm{R}=Z_{n}$, then the intersection of cartesian product of P-VG $\left(Z_{n}\right)$ and $P-V G\left(Z_{n} \times Z_{n}\right)$ is equal to (2n-1)star graph i.e.
$P-V G\left(Z_{n}\right) \times P-V G\left(Z_{n}\right) \cap P-V G\left(Z_{n} \times Z_{n}\right)=(2 n-1)-$ star graph.
Proof :
Since $\overline{(0,0)(0, a)} \in E \quad\left(P-V G\left(Z_{n}\right) \times P-V G\left(Z_{n}\right) \cap P-\right.$ $\left.V G\left(Z_{n} \times Z_{n}\right)\right)$.
Then $P-V G\left(Z_{n}\right) \times P-V G\left(Z_{n}\right) \cap P-V G\left(Z_{n} \times Z_{n}\right) \neq \emptyset$.
Now, let $H=\{(a, b), a=0$ or $b=0\}$ and $E(H)=$ $\{\overline{(0,0)(a, b)},(a, b) \neq(0,0)\}$:
H is a subgraph and in the same time H is a star graph by the set $E(H)$.
Now, we need to prove this star has $2 n-1$ of vertices.

The study focuses on a number have of vertices are equal to $2(n-1)$ because the set of vertices of K graph $\{(0,1), \ldots,(0, n-1),(1,0), \ldots,(n-1,0)\}$ and $(0,0)$ is a center of star graph then H has $2(n-1)+1=2 n-1$ vertices, i.e. H has order $2 n-1$
$H=(2 n-1)-$ star graph $\subset P-V G\left(Z_{n}\right) \times P-V G\left(Z_{n}\right)$ and it is in the same time is a sub graph from $P-V G\left(Z_{n} \times\right.$ Z_{n}).
Hence $H \subset P-V G\left(Z_{n}\right) \times P-V G\left(Z_{n}\right) \cap P-V G\left(Z_{n} \times Z_{n}\right)$.
Let $\overline{(a, b)(u, v)} \in \quad P-V G\left(Z_{n}\right) \times P-V G\left(Z_{n}\right) \quad \cap P-$ $V G\left(Z_{n} \times Z_{n}\right)$, and $a, b, u, v \neq 0$.
$\underline{\text { Implies that }} \overline{(a, b)(u, v)} \in P-V G\left(Z_{n}\right) \times P-V G\left(Z_{n}\right)$ and $\overline{(a, b)(u, v)} \in P-V G\left(Z_{n} \times Z_{n}\right)$.
Then (either $a=u$ and $\overline{b v} \in E\left(P-V G\left(Z_{n}\right)\right.$ or $b=v$ and $\overline{a u} \in E\left(P-V G\left(Z_{n}\right)\right.$ and $\left(\overline{a u}, \overline{b v} \in E\left(P-V G\left(Z_{n}\right)\right)\right.$ Hence there are two cases:
Case i: if ($a=u$ and $\overline{b v} \in E\left(P-V G\left(Z_{n}\right)\right.$ and $\overline{a u} \in E(P-$ $\left.V G\left(Z_{n}\right)\right)$, this is a contradiction by the definition of $P-V N-$ Regular graph).
Case ii : if $b=v$ and $\overline{a u} \in E\left(P-V G\left(Z_{n}\right)\right.$ and $\overline{b v} \in$ $E\left(P-V G\left(Z_{n}\right)\right)$
,also this is a contradiction by the definition of P $V N-R e g u l a r ~ g r a p h ~) . ~$
Then $P-V G\left(Z_{n}\right) \times P-V G\left(Z_{n}\right) \cap P-V G\left(Z_{n} \times Z_{n}\right)=K=$ ($2 n-1$) - star graph.

lemma 3.5:

Let $R=Z_{p} \quad, p>3$ be a prime number then $X(P-$ $V G(R))=3$.
Proof : since $P-V G\left(Z_{p}\right)$ has only cycle C_{3} then $\mathcal{X}(P-$ $V G(R))=3$.

Theorem 3.6:

Let $R=Z_{p^{k}} \quad, p>3$ be a prime number, k be a positive integer then $\mathcal{X}(P-V G(R))=3$.
Proof : since $P-V G\left(Z_{p^{k}}\right)$ has only cycle C_{3} then X $(P-V G(R))=3$.

Corollary 3.7 :

Let $R=Z_{n}$, then $\mathcal{X}(P-V G(R))=$
$\left\{\begin{array}{rr}2 & n=2,3,4,8 \\ 4 & \text { if any vertex has invrse } \\ 3 & \text { other wise }\end{array}\right.$
proof :
if $R=Z_{n}, n=2,3,4,8$ then $P-V G(R)$ is a star graph and $\mathcal{X}(P-V G(R))=2$.
if any vertex $a \in R$ has inverse then ($\overline{p a}, \overline{p a^{-1}}, \overline{a a^{-1}}$) is a cycle C_{3} in $P-V G(R)$, and since all vertices in P $V G(R)$ are adjacent to vertex 0 then $\mathcal{X}(P-V G(R))=4$ now in other wise
Case 1 : if n is prime number then $\mathcal{X}(P-V G(R))=3$ (by lemma 3.5)
Case 2: if $n=p^{k}$ where p is prime number and k a positive integer then $\mathcal{X}(P-V G(R))=3$ since $P-V G(R)$ has only $\frac{(p-1) n}{2 p}-1$ of cycle C_{3}.
Case 2: if $n=p k$ where p is prime number and k a positive integer, if any vertex in R has no inverse then $\mathcal{X}(P-V G(R))=3$.

Theorem 3.8:

Let $R=Z_{p} \times Z_{p} \times \ldots \times Z_{p},\left(n\right.$ times of $\left.Z_{p}\right) p>3$ is prime number then $\mathcal{X}(P-V G(R))=\mathcal{X}\left(P-V G\left(Z_{p}\right)\right)$ +1 .

Proof:

Let $(a, 0, \ldots, 0) \in R$ and $a \neq 0$, then $(a, 0,0, \ldots, 0)$ is adjacent each to vertices
$\left(a^{-1}, a^{-1}, \ldots, a^{-1}\right),\left(0, a^{-1}, a^{-1}, \ldots, a^{-1}\right),(0, a, a, \ldots, a)$ and $\left(a^{-1}, a, a, \ldots, a\right)$ only. since $a \in Z_{p}$ and Z_{p} is a field.
But $\left(a^{-1}, a, a, \ldots, a\right)$ and ($0, a^{-1}, a^{-1}, \ldots, a^{-1}$) are adjacent and also
$(0, a, a, \ldots, a)$ and $\left(a^{-1}, a^{-1}, \ldots, a^{-1}\right)$ are adjacent

Then, the graph has cycle of length 3 , therefore, we colored it by 3 colors .
But by definition of $P-V G$-regular graph of cartesian product of a rings all vertices are adjacent to (0 $, 0, \ldots, 0)$ then $X(P-V G(R))=4$
$\mathcal{X}\left(P-V G\left(Z_{p}\right)\right)+1=3+1=4=X(P-V G(R))$.
Theorem 3.9:
Let $R=Z_{m} \times Z_{n}$ and $n, m \geq 3$, then
1- $\mathcal{X}(P-V G(R))=\mathcal{X}\left(P-V G\left(Z_{m}\right)\right)+\mathcal{X}\left(P-V G\left(Z_{n}\right)\right.$) -2 if
i- m and n are a prime.
ii- m is prime and n not prime and $\mathcal{X}\left(P-V G\left(Z_{n}\right)\right)$ =3
iii- m and n are not a prime and $\mathcal{X}\left(P-V G\left(Z_{m}\right)\right)=\mathcal{X}$ $\left(P-V G\left(Z_{n}\right)\right)=3$

2- $\mathcal{X}(P-V G(R))=X\left(P-V G\left(Z_{m}\right)\right)+\mathcal{X}\left(P-V G\left(Z_{n}\right)\right)-3$ if
i. m and n are not prime .
ii. m is prime and n not prime and $X\left(P-V G\left(Z_{n}\right)\right)$ =4

Proof:

1-i :
Let $R=Z_{m} \times Z_{n}, m$ and n are a prime then $X(P-$ $V G\left(Z_{m}\right)$) and $\mathcal{X}\left(P-V G\left(Z_{n}\right)\right)$ equal to 3, (by lemma 3.5)

Now, let $(a, b) \in R$ and $a \in Z_{m}, b \in Z_{n}$, then (a, b) is adjacent only to $\left(a^{-1}, b^{-1}\right),\left(a^{-1}, 0\right)$ and $\left(0, b^{-1}\right)$. But $\left(a^{-1}, 0\right)$ and $\left(0, b^{-1}\right)$ are adjacent therefore we colored it by 3 colors, and since all vertices are adjacent to the vertex $(0,0)$, then $\mathcal{X}(P-V G(R))=$ $3+1=4$.
$\mathcal{X}\left(P-V G\left(Z_{m}\right)\right)+\mathcal{X}\left(P-V G\left(Z_{n}\right)\right)-2=3+3-$ $2=4=\mathcal{X}(P-V G(R))$

1-ii :

Let m is prime then $\mathcal{X}\left(P-V G\left(Z_{m}\right)\right)$ equal to 3 , and n is not prime and $\mathcal{X}\left(P-V G\left(Z_{n}\right)\right)$ equal to 3
Then we have three sets

$\left\{\left(a, b_{1}\right),\left(a, b_{2}\right),(a, 0)\right\},\left\{\left(a^{-1}, b_{1}\right),\left(a^{-1}, b_{2}\right),\left(a^{-1}, 0\right)\right\}$ and $\left\{\left(0, b_{1}\right),\left(0, b_{2}\right)\right\}$ where $a \in Z_{m}$ and $b_{1}, b_{2} \in Z_{n}$ such that $\overline{b_{1} b_{2}} \in E\left(P-V G\left(Z_{n}\right)\right)$
such that the vertices in the same set not adjacent to each other, then we have 3- partite graph and to colored it we need 3 colors, but all vertices are adjacent to vertex $(0,0)$ then $\mathcal{X}(P-V G(R))=3+1=4$
$\mathcal{X}\left(P-V G\left(Z_{m}\right)\right)+\mathcal{X}\left(P-V G\left(Z_{n}\right)\right)-2=3+3-$ $2=4=X(P-V G(R))$.

1-iii:

Let m and n are not prime and $\mathcal{X}\left(P-V G\left(Z_{m}\right)\right)$ and $\mathcal{X}\left(P-V G\left(Z_{n}\right)\right)$ are equal to 3
Let $a_{1}, a_{2} \in Z_{m}$ such that $\overline{a_{1} a_{2}} \in E\left(P-V G\left(Z_{m}\right)\right)$
$, b_{1}, b_{2} \in Z_{n}$ such that $\overline{b_{1} b_{2}} \in E\left(P-V G\left(Z_{n}\right)\right)$
Now, we have three sets
$\left\{\left(a_{1}, b_{1}\right),\left(a_{1}, b_{2}\right),\left(a_{1}, 0\right)\right\},\left\{\left(a_{2}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{2}, 0\right)\right\}$ and $\left\{\left(0, b_{1}\right),\left(0, b_{2}\right)\right\}$

such that the vertices in the same set not adjacent to each other, then we have 3- partite graph and to colored it we need 3 colors, but all vertices are adjacent to vertex $(0,0)$ then $\mathcal{X}(P-V G(R))=3+1=4$ $\mathcal{X}\left(P-V G\left(Z_{m}\right)\right)+\mathcal{X}\left(P-V G\left(Z_{n}\right)\right)-2=3+3-$ $2=4=X(P-V G(R))$.
2-i :
Let m and n are not prime and $\mathrm{n}, \mathrm{m} \neq 4,8$ then $\mathcal{X}(P$ $\left.V G\left(Z_{m}\right)\right)$ and $X\left(P-V G\left(Z_{n}\right)\right)$ equal to 3 or 4
Then either $\mathcal{X}\left(P-V G\left(Z_{m}\right)\right)=3$ and $X\left(P-V G\left(Z_{n}\right)\right)$ $=4$ or $\mathcal{X}\left(P-V G\left(Z_{m}\right)\right)$ and $\mathcal{X}\left(P-V G\left(Z_{n}\right)\right)$ equal to 4 case 1:
$\mathcal{X}\left(P-V G\left(Z_{m}\right)\right)=3$ and $\mathcal{X}\left(P-V G\left(Z_{n}\right)\right)=4$ then we have three sets
$\left\{\left(a_{1}, b_{1}\right),\left(a_{1}, b_{2}\right),\left(a_{1}, b_{3}\right),\left(a_{1}, 0\right)\right\}$,
$\left\{\left(a_{2}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{2}, b_{3}\right),\left(a_{2}, 0\right)\right\}$ and
$\left\{\left(0, b_{1}\right),\left(0, b_{2}\right),\left(0, b_{3}\right)\right\}$ such that
where $a_{1}, a_{2} \in Z_{m}$ such that $\overline{a_{1} a_{2}} \in E\left(P-V G\left(Z_{m}\right)\right.$, $b_{1}, b_{2}, b_{3} \in Z_{n}$ such that $\overline{b_{1} b_{2}}, \overline{b_{1} b_{3}}, \overline{b_{2} b_{3}} \in$ $E\left(P-V G\left(Z_{n}\right)\right)$.

The vertices in the same set not adjacent to each other, then we have 3- partite graph and to colored it we need 3 colors, but all vertices are adjacent to vertex $(0,0)$ then $X(P-V G(R))=3+1=4$
$\mathcal{X}\left(P-V G\left(Z_{m}\right)\right)+\mathcal{X}\left(P-V G\left(Z_{n}\right)\right)-3=3+4-$ $3=4=X(P-V G(R))$.

Case2:

$\mathcal{X}\left(P-V G\left(Z_{m}\right)\right)$ and $\mathcal{X}\left(P-V G\left(Z_{n}\right)\right)$ are equal to 4 then we have four sets
$\left\{\left(a_{1}, b_{1}\right),\left(a_{1}, b_{2}\right),\left(a_{1}, b_{3}\right),\left(a_{1}, 0\right)\right\}$, $\left\{\left(a_{2}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{2}, b_{3}\right),\left(a_{2}, 0\right)\right\}$, $\left\{\left(a_{3}, b_{1}\right),\left(a_{3}, b_{2}\right),\left(a_{3}, b_{3}\right),\left(a_{3}, 0\right)\right\}$, $\left\{\left(0, b_{1}\right),\left(0, b_{2}\right),\left(0, b_{3}\right)\right\}$.

where $a_{1}, a_{2}, a_{3} \in Z_{m}$ such that $\overline{a_{1} a_{2}}, \overline{a_{1} a_{3}}, \overline{a_{2} a_{3}} \in$ $E\left(P-V G\left(Z_{m}\right), \quad b_{1}, b_{2}, b_{3} \in Z_{n} \quad\right.$ such that $\overline{b_{1} b_{2}}, \overline{b_{1} b_{3}}, \overline{b_{2} b_{2}} \in E\left(P-V G\left(Z_{n}\right)\right)$.
The vertices in the same set not adjacent to each other, then we have 4 - partite graph and to colored it we need 4 colors, but all vertices are adjacent to vertex $(0,0)$ then $X(P-V G(R))=4+1=5$.
$\mathcal{X}\left(P-V G\left(Z_{m}\right)\right)+\mathcal{X}\left(P-V G\left(Z_{n}\right)\right)-3=4+4-$ $3=5=\mathcal{X}(P-V G(R))$.
2-ii:
Let m is prime and n not prime and $\mathcal{X}\left(P-V G\left(Z_{n}\right)\right)=4$ then we have three sets
$\left\{\left(a, b_{1}\right),\left(a, b_{2}\right),\left(a, b_{3}\right),(a, 0)\right\}$,
$\left\{\left(a^{-1}, b_{1}\right),\left(a^{-1}, b_{2}\right),\left(a^{-1}, b_{3}\right),\left(a^{-1}, 0\right)\right\}$ and
$\left\{\left(0, b_{1}\right),\left(0, b_{2}\right),\left(0, b_{3}\right)\right\}$

where $\quad a \in Z_{m}$ and $b_{1}, b_{2}, b_{3} \in Z_{n} \quad$ such that $\overline{b_{1} b_{2}}, \overline{b_{1} b_{3}}, \overline{b_{2} b_{3}} \in E\left(P-V G\left(Z_{n}\right)\right)$,
the vertices in the same set are not adjacent to each other, then we have 3-partite graph and to colored it we need 3 colors, but all vertices are adjacent to vertex $(0,0)$ then $\mathcal{X}(P-V G(R))=3+1=4$.
$X\left(P-V G\left(Z_{m}\right)\right)+X\left(P-V G\left(Z_{n}\right)\right)-3=3+4-$ $3=4=X(P-V G(R))$.

Example 3.10:

$R=Z_{3} \times Z_{5}$
$X(P-V G(R))=X\left(P-V G\left(Z_{3}\right)\right)+\mathcal{X}\left(P-V G\left(Z_{5}\right)\right)-$ $2=2+3-2=3$

Fig. $7: \mathcal{X}\left(P-V G\left(Z_{3} \times Z_{5}\right)\right)$

References

[1] Beck.I, (1988).Coloring of commutative rings, Journal of Algebra.116(1) :208-226.
[2] Bhavanari .S, Prasad .Syam and Dasari .N, (2010).Prime Graph of a Ring, Journal of Combinatorics, Information and System Sciences, 35(1-2), 27-42.
[3] Bhavanari S., and Devanaboina S., (2015). Cartesian Product of Graphs VS Prime Graphs of Rings, Global Journal of Pure and Applied Mathematics, 11(2), 199-205.
[4] Kalita.S, (2014). Some Aspects of Prime Graph of Some Rings, Phd, Univrsity of Gauhati, India.
[5] Patra .K, Kalita. S , (2014). Prime Graph of the Commutative Rings Z_{n}, UTM center for Industrial and Applied Mathematics, 30(1) : 59-67.
[6] Ramos .R.E., (2015).Colorings of Zero-Divisor Graphs of Commutative Rings, M.Sc, North Dakota state University,

Example 3.11:

$R=Z_{6} \times Z_{9}$
$X(P-V G(R))=X\left(P-V G\left(Z_{6}\right)\right)+X\left(P-V G\left(Z_{9}\right)\right)-2=$ $3+3-2=4$

Fig. 8: $\mathcal{X}\left(P-V G\left(Z_{6} \times Z_{9}\right)\right)$

4- Conclusion

In this paper we gave a definition of Pseudo-Von Neumann regular graph of Cartesian product of commutative rings and found the relation between it and Cartesian product of Pseudo-Von Neumann regular graph of commutative ring. Also found the chromatic number $\quad \mathcal{X}(P-V G(R))$ where R is commutative ring, and R is Cartesian product of commutative ring.
[7] AL-Hisso Sh.S , (2004). Types of Strongly Regular Rings, M.Sc, Mosul Univrsity, Mosul.
[8] Rahman .Md..S, (2017).Basic Graph Theoey, Springer, .
[9] Bhavanari. S, Syam. P, (2014). Discrete Mathematics and Graph Theory, PHL Learning Private Limited, Delhi.
[10] Gross, J.L. and Yellen J. (2006). Graph Theory and its Applications, second edition, Chapman \& Francis Group, Boca Raton FL33487-2742,.
[11] R.M.R. Lewis, (2016). A Guide to Graph Colouring Algorthms and Applications, Springer.
[12] Aurenhammer, F.; Haganer, J.; Imrich, W.(1992), "Cartesian graph factorization at logarithmic cost per edge", Computational complexity, 2(4):331-349
[13] Arif. N, Khalel. N, (2019). Chromatic number of pseudo-Von Neumann Regular , Ibn AL-Haitham Journal for pure and Applied Science. Accepted .

العدد اللوني و بعض خصائص البيان المنتظ الزائف للضرب الايكارتي للحلقات الابدالية
قسم الرياضيات ، كلية علوم الحاسوب والرمال خليل ، نبيل عز الاين عارفيات ، جامعة تكريت ، تكريت ، العرق

الملخص

لتكن R حقة ابدالية, فأن البيان الننظم الزائف للحقة R يعرف على انه البيان الذي مجموعة رؤوسه هي جميع عناصر الحلقة R واي رأسين
 بعض النتائج حول العدد اللوني للبيان المنتظ الزائف بالنسبة للضرب الديكارتي لبعض الحلقات الابدالية .

