

Tikrit Journal of Pure Science

ISSN: 1813 – 1662 (Print) --- E-ISSN: 2415 – 1726 (Online)

Journal Homepage: http://tjps.tu.edu.iq/index.php/j

Chromatic Number and some Properties of Pseudo-Von Neumann Regular graph of Cartesian Product of Rings

Nermen J. Khalel, Nabeel E. Arif

Department of Mathematic, College of Computer Science and Mathematics, Tikrit, Tikrit University, Iraq

https://doi.org/10.25130/tjps.v25i3.262

ABSTRACT

ARTICLE INFO.

Article history:

-Received: 6/8/2019

-Accepted: 24 / 9 / 2019 -Available online: / / 2020

Keywords: Graph, Chromatic Number, Commutative Ring.

Corresponding Author:

Name: Nermen J. Khalel

E-mail: nrnjamal88@gmail.com

Tel:

1- Introduction

Beck [1] studied coloring of commutative rings and studied chromatic number of it is graph such that two different elements x and y are adjacent iff xy=0, Bhavanari et.al. studied prime graph of a ring with some properties of its graph [2], and he studied cartesian product of prime graph with Srinivasulu [3] Kalita [4] computed chromatic number of prime graph of some finite ring, Patra k. et.al [5]. found chromatic number of prime graph of some rings of Z_n , where $n=\prod_{i=1}^r p_i^{\alpha_i}$, Elizabeth [6] studied colorings of zero divisor graphs of commutative rings . The study obtains the chromatic number of Pseudo-Von Nemann regular graph of cartesian product of rings.

2- Primer lay

Definition 2.1: let R be a ring and $a \in R$, a is called regular element if there exist $b \in R$ such that a = aba, if any element in R is regular then R is regular ring, if R is commutative then $a = a^2b$ and we say that R is Von Neumann regular ring.

Definition 2.2: A graph G is defined by an ordered pair (V(G), E(G)), when V(G) is a non empty set whose elements are called vertices and E(G) is a set (may be empty) of unordered pairs of distinct vertices of V(G). the element of E(G) are called edges of the graph G, we denote by \overline{uv} , an edge between two end vertices u and v.

Definition 2.3: A simple graph that has no loops or multiple edges .

Definition 2.4: A graph H is said to be a subgraph of a graph G if all the edges and all the vertices of H are in G, and it is denoted by $H \subseteq G$.

Let R be a commutative ring, the Pseudo – Von Neumann regular graph of the ring R is define as a graph whose vertex set consists of all elements of R and any two distinct vertices a and b are adjacent if and only if $a = a^2b$ or $b = b^2a$, this graph is denoted by P-VG(R), in this

work we got some new results about chromatic number of Pseudo-Von

Neumann regular graph of cartesian product of rings.

Definition 2.5: A path is a graph G that contains a list v_1, v_2, \ldots, v_n of vertices of G s.t. for $1 \le i \le p-1$, there is an edge $\overline{v_i v_{i+1}}$ in G and these are the only edges in G.

Definition 2.6: let v_1 and v_2 be two vertices, $d(v_1, v_2)$ is called the distance from v_1 to v_2 if it is the shortest path from v_1 to v_2 .

Definition 2.7: A close path is called cylce, the degree of each vertex of a cycle graph is two, a cycle with n vertices denoted by \mathcal{C}_n .

Definition 2.8: Let G(V, E) be a graph and $C \subseteq G$, is called clique if the induced subgraph of G induced by C is a complete graph.

The clique is called maximal if there is no clique with more vertices.

Theorem 2.9:

For circular graph C_n one has

$$\mathcal{X}(C_n) = \begin{cases} 2 & \text{when } n \text{ is even} \\ 3 & \text{when } n \text{ is odd} \end{cases}$$

Definition 2.10: A *h*-coloring of the vertex set of a graph G is a function $\gamma: V(G) \to \{1, 2, ..., h\}$ such that $\gamma(v_1) \neq \gamma(v_2)$ whenever v_1 is adjacent to v_2 , if a *h*-coloring of G exists, then G is called h-colorable.

Definition 2.11: The chromatic number of G is defined as $\mathcal{X}(G) = \min \{ h : G \text{ is } h\text{- colorable } \}$ where $\mathcal{X}(G) = h$, G is called h- chromatic.

Definition 2.12: The Cartesian product $G \times K$ of graphs G and K is a graph such that:

- The vertex set of $G \times K$ is the Cartesian product $V(G) \times V(K)$ and

- The two vertices (u, v) and (s, t) are adjacent in $G \times K$ if and only if either u = s and v is adjacent to t in K or v = t and u is adjacent to s in G.

3- Main Results

Definition 3.1[14]: Let R be a commutative ring. A graph G(V, E) is said to be (Pseudo -Von Neumann regular graph) of R if V(G) = R and $E(G) = \{ \overline{ab}/a = a^2b \text{ or } b = b^2a \text{ and } a \neq b \}$ denoted by P-VG(R), shortly P-Von Neumann regular graph .

Example 3.2:

 $Z_2 = \{0,1\}$

 $Z_3 = \{0,1,2\}$

Fig. 2: $P-VG(Z_3)$

 $Z_4 = \{0,1,2,3\}$

Fig. 3: P- $VG(Z_4)$

 $Z_5 = \{0,1,2,3,4\}$

Fig. 4: P- $VG(Z_5)$

Definition 3.2:

Let $R = R_1 \times R_2$, then the P-VG(R) is define as the vertices set = $\{(a,b): a \in R_1 \text{ and } b \in R_2 \}$ then (a,b) and (u,v) are adjacent in P-VG(R) if and only if a adjacent to u in $P\text{-}VG(R_1)$ and b adjacent to v in $P\text{-}VG(R_2)$, and (0,0) adjacent to all vertices.

Example 3.3:

1- Let $R = Z_2 \times Z_2$

Fig. 5-i: P- $VG(Z_2) \times P$ - $VG(Z_2)$

Fig. 5-ii: P- $VG(Z_2 \times Z_2)$

P- $VG(Z_2) \times P$ - $VG(Z_2) \cap P$ - $VG(Z_2 \times Z_2)$ = 3- star graph.

2- Let $R = Z_3 \times Z_3$

Fig. 6-i: $P-VG(Z_3) \times P-VG(Z_3)$

Fig. 6-ii: P-VG($Z_3 \times Z_3$)

P- $VG(Z_3) \times P$ - $VG(Z_3) \cap P$ - $VG(Z_3 \times Z_3) = 5$ - star graph.

In general $P\text{-}VG(Z_n) \times P\text{-}VG(Z_n) \cap P\text{-}VG(Z_n \times Z_n) = (2n\text{-}1)$ - star graph and the below theorem show that .

Theorem 3.4:

let $R=Z_n$, then the intersection of cartesian product of P-VG (Z_n) and P-VG $(Z_n\times Z_n)$ is equal to (2n-1)-star graph i.e.

 $P-VG(Z_n) \times P-VG(Z_n) \cap P-VG(Z_n \times Z_n) = (2n-1)$ - star graph.

Proof:

Since $\overline{(0,0)(0,a)} \in E (P-VG(Z_n) \times P-VG(Z_n) \cap P-VG(Z_n \times Z_n)).$

Then $P\text{-}VG(Z_n) \times P\text{-}VG(Z_n) \cap P\text{-}VG(Z_n \times Z_n) \neq \emptyset$. Now, let H= { (a,b) , a = 0 or b = 0 } and E(H) = { $\overline{(0,0)(a,b)}$, $(a,b) \neq (0,0)$ }:

H is a subgraph and in the same time H is a star graph by the set E(H).

Now, we need to prove this star has 2n-1 of vertices.

TJPS

The study focuses on a number have of vertices are equal to 2(n-1) because the set of vertices of K graph $\{(0,1),\ldots,(0,n-1),(1,0),\ldots,(n-1,0)\}$ and (0,0) is a center of star graph then H has 2(n-1)+1=2n-1 vertices, i.e. H has order 2n-1

 $H = (2n-1) - \text{star graph} \subset P\text{-}VG(Z_n) \times P\text{-}VG(Z_n)$ and it is in the same time is a sub graph from $P\text{-}VG(Z_n \times Z_n)$.

Hence $H \subset P\text{-}VG(Z_n) \times P\text{-}VG(Z_n) \cap P\text{-}VG(Z_n \times Z_n)$. Let $\overline{(a,b)(u,v)} \in P\text{-}VG(Z_n) \times P\text{-}VG(Z_n) \cap P\text{-}VG(Z_n \times Z_n)$, and $a,b,u,v \neq 0$.

Implies that $\overline{(a,b)(u,v)} \in P\text{-}VG(Z_n) \times P\text{-}VG(Z_n)$ and $\overline{(a,b)(u,v)} \in P\text{-}VG(Z_n \times Z_n)$.

Then (either a=u and $\overline{bv} \in E(P-VG(Z_n))$ or b=v and $\overline{au} \in E(P-VG(Z_n))$ and (\overline{au}) , $\overline{bv} \in E(P-VG(Z_n))$ Hence there are two cases:

Case i: if $(a=u \text{ and } \overline{bv} \in E(P\text{-}VG(Z_n) \text{ and } \overline{au} \in E(P\text{-}VG(Z_n)))$, this is a contradiction by the definition of P-VN- Regular graph).

Case ii : if b=v and $\overline{au} \in E(P-VG(Z_n))$ and $\overline{bv} \in E(P-VG(Z_n))$

, also this is a contradiction by the definition of P-VN-Regular graph).

Then $P\text{-}VG(Z_n) \times P\text{-}VG(Z_n) \cap P\text{-}VG(Z_n \times Z_n) = K = (2n-1)$ - star graph.

lemma 3.5:

Let $R = Z_p$, p > 3 be a prime number then \mathcal{X} (*P*-VG(R))=3.

Proof : since $P\text{-}VG(Z_p)$ has only cycle \mathcal{C}_3 then \mathcal{X} (P-VG(R))=3.

Theorem 3.6:

Let $R = Z_{p^k}$,p > 3 be a prime number, k be a positive integer then \mathcal{X} (P - VG(R))=3.

Proof : since $P\text{-}VG(Z_{p^k})$ has only cycle \mathcal{C}_3 then \mathcal{X} (P-VG(R))=3.

Corollary 3.7:

Let $R=Z_n$, then \mathcal{X} (P-VG(R))= $\begin{cases} 2 & n=2,3,4,8\\ 4 & if \ any \ vertex \ has \ invrse.\\ 3 & other \ wise \end{cases}$

proof:

if $R = Z_n$, n = 2,3,4,8 then P-VG(R) is a star graph and \mathcal{X} (P-VG(R)) =2.

if any vertex $a \in R$ has inverse then $(\overline{pa}, \overline{pa^{-1}}, \overline{aa^{-1}})$ is a cycle C_3 in P-VG(R), and since all vertices in P-VG(R) are adjacent to vertex 0 then \mathcal{X} (P-VG(R)) =4 now in other wise

Case 1 : if n is prime number then \mathcal{X} (P-VG(R)) =3 (by lemma 3.5)

Case 2: if $n=p^k$ where p is prime number and k a positive integer then \mathcal{X} (P-VG(R)) =3 since P-VG(R) has only $\frac{(p-1)n}{2p}-1$ of cycle C_3 .

Case 2: if n=pk where p is prime number and k a positive integer, if any vertex in R has no inverse then $\mathcal{X}(P-VG(R))=3$.

Theorem 3.8:

Let $R=Z_p\times Z_p\times ...\times Z_p$, (n times of Z_p) p>3 is prime number then \mathcal{X} (P-VG(R))= \mathcal{X} ($P\text{-}VG(Z_p)$) +1.

Proof:

Let $(a,0,...,0) \in R$ and $a \neq 0$, then (a,0,0,...,0) is adjacent each to vertices

 $(a^{-1}, a^{-1}, \dots, a^{-1}), (0, a^{-1}, a^{-1}, \dots, a^{-1}), (0, a, a, \dots, a)$ and (a^{-1}, a, a, \dots, a) only. since $a \in Z_p$ and Z_p is a field.

But $(a^{-1}, a, a, ..., a)$ and $(0, a^{-1}, a^{-1}, ..., a^{-1})$ are adjacent and also

 $(0, a, a, \dots, a)$ and $(a^{-1}, a^{-1}, \dots, a^{-1})$ are adjacent

Then, the graph has cycle of length $\bf 3$, therefore, we colored it by $\bf 3$ colors.

But by definition of P-VG-regular graph of cartesian product of a rings all vertices are adjacent to (0,0,...,0) then $\mathcal{X}(P$ -VG(R))=4

 $\mathcal{X}(P-VG(Z_n))+1=3+1=4=\mathcal{X}(P-VG(R)).$

Theorem 3.9:

Let $R = Z_m \times Z_n$ and $n, m \ge 3$, then

1- \mathcal{X} (P-VG(R)) = \mathcal{X} (P- $VG(Z_m)$) + \mathcal{X} (P- $VG(Z_n)$) - 2 if

i- m and n are a prime.

ii- m is prime and n not prime and \mathcal{X} ($P\text{-}VG(Z_n)$) =3

iii- m and n are not a prime and \mathcal{X} ($P\text{-}VG(Z_m)$) = \mathcal{X} ($P\text{-}VG(Z_n)$)=3

2- $\mathcal{X}\left(P\text{-}VG(R)\right)=\mathcal{X}\left(P\text{-}VG(Z_m)\right)+\mathcal{X}\left(P\text{-}VG(Z_n)\right)-3$ if

i. m and n are not prime . ii. m is prime and n not prime and \mathcal{X} ($P\text{-}VG(Z_n)$) =4

Proof:

1-i:

Let $R=Z_m\times Z_n$, m and n are a prime then \mathcal{X} ($P ext{-}VG(Z_m)$) and \mathcal{X} ($P ext{-}VG(Z_n)$) equal to 3,(by lemma 3.5)

Now, let $(a, b) \in R$ and $a \in Z_m$, $b \in Z_n$, then (a, b) is adjacent only to (a^{-1}, b^{-1}) , $(a^{-1}, 0)$ and $(0, b^{-1})$. But $(a^{-1}, 0)$ and $(0, b^{-1})$ are adjacent therefore we colored it by 3 colors, and since all vertices are adjacent to the vertex (0,0), then \mathcal{X} (P-VG(R)) = 3+1=4.

TJPS

 \mathcal{X} ($P\text{-}VG(Z_m)$) + \mathcal{X} ($P\text{-}VG(Z_n)$) - 2 = 3 + 3 - 2=4 = \mathcal{X} (P-VG(R))

1-ii:

Let m is prime then \mathcal{X} ($P\text{-}VG(Z_m)$) equal to 3, and n is not prime and \mathcal{X} ($P\text{-}VG(Z_n)$) equal to 3. Then we have three sets

 $\{(a,b_1),(a,b_2),(a,0)\},\{(a^{-1},b_1),(a^{-1},b_2),(a^{-1},0)\}$ and $\{(0,b_1),(0,b_2)\}$ where $a\in Z_m$ and $b_1,b_2\in Z_n$ such that $\overline{b_1b_2}\in E(P-VG(Z_n))$

such that the vertices in the same set not adjacent to each other , then we have 3- partite graph and to colored it we need 3 colors, but all vertices are adjacent to vertex (0,0) then \mathcal{X} (P-VG(R)) = 3+1=4 \mathcal{X} ($P\text{-}VG(Z_m)$) + \mathcal{X} ($P\text{-}VG(Z_n)$) - 2 = 3 + 3 - 2=4 = \mathcal{X} (P-VG(R)).

1-iii:

Let m and n are not prime and \mathcal{X} ($P\text{-}VG(Z_m)$) and \mathcal{X} ($P\text{-}VG(Z_n)$) are equal to 3

Let $a_1, a_2 \in Z_m$ such that $\overline{a_1a_2} \in E(P - VG(Z_m))$, $b_1, b_2 \in Z_n$ such that $\overline{b_1b_2} \in E(P - VG(Z_n))$ Now, we have three sets

 $\{(a_1,b_1),(a_1,b_2),(a_1,0)\},\{(a_2,b_1),(a_2,b_2),(a_2,0)\}$ and $\{(0,b_1),(0,b_2)\}$

such that the vertices in the same set not adjacent to each other, then we have 3- partite graph and to colored it we need 3 colors, but all vertices are adjacent to vertex (0,0) then \mathcal{X} (P-VG(R)) = 3+1=4 \mathcal{X} ($P\text{-}VG(Z_m)$) + \mathcal{X} ($P\text{-}VG(Z_n)$) - 2 = 3 + 3 - 2=4 = \mathcal{X} (P-VG(R)).

2-i:

Let m and n are not prime and $n,m \neq 4,8$ then \mathcal{X} ($P\text{-}VG(Z_m)$) and \mathcal{X} ($P\text{-}VG(Z_n)$) equal to 3 or 4 Then either \mathcal{X} ($P\text{-}VG(Z_m)$) = 3 and \mathcal{X} ($P\text{-}VG(Z_n)$) = 4 or \mathcal{X} ($P\text{-}VG(Z_m)$) and \mathcal{X} ($P\text{-}VG(Z_n)$) equal to 4 case 1:

 \mathcal{X} ($P\text{-}VG(Z_m)$) = 3 and \mathcal{X} ($P\text{-}VG(Z_n)$) = 4 then we have three sets

$$\{(a_1,b_1),(a_1,b_2),(a_1,b_3),(a_1,0)\},\$$

 $\{(a_2,b_1),(a_2,b_2),(a_2,b_3),(a_2,0)\}$ and

$$\begin{split} &\{(0,b_1),(0,b_2),(0,b_3)\} \text{ such that} \\ &\text{where } \ a_1,a_2 \in Z_m \text{such that } \overline{a_1a_2} \in E(P-VG(Z_m), \\ &b_1,b_2,b_3 \in Z_n \text{such that } \overline{b_1b_2} \ , \overline{b_1b_3} \ , \overline{b_2b_3} \in E(P-VG(Z_n)). \end{split}$$

The vertices in the same set not adjacent to each other , then we have 3- partite graph and to colored it we need 3 colors , but all vertices are adjacent to vertex (0,0) then \mathcal{X} (P-VG(R)) = 3+1=4 \mathcal{X} ($P\text{-}VG(Z_m)$) + \mathcal{X} ($P\text{-}VG(Z_n)$) - 3 = 3 + 4 - 3=4 = \mathcal{X} (P-VG(R)).

Case2:

 \mathcal{X} ($P\text{-}VG(Z_m)$) and \mathcal{X} ($P\text{-}VG(Z_n)$) are equal to 4 then we have four sets

$$\begin{aligned} &\{(a_1,b_1),(a_1,b_2),(a_1,b_3),(a_1,0)\},\\ &\{(a_2,b_1),(a_2,b_2),(a_2,b_3),(a_2,0)\},\\ &\{(a_3,b_1),(a_3,b_2),(a_3,b_3),(a_3,0)\},\\ &\{(0,b_1),(0,b_2),(0,b_3)\}. \end{aligned}$$

where $a_1, a_2, a_3 \in Z_m$ such that $\overline{a_1a_2}, \overline{a_1a_3}, \overline{a_2a_3} \in E(P - VG(Z_m), b_1, b_2, b_3 \in Z_n$ such that $\overline{b_1b_2}, \overline{b_1b_3}, \overline{b_2b_2} \in E(P - VG(Z_n))$.

The vertices in the same set not adjacent to each other, then we have 4- partite graph and to colored it we need 4 colors , but all vertices are adjacent to vertex (0,0) then $\mathcal{X}(P\text{-}VG(R)) = 4+1=5$.

 \mathcal{X} ($P\text{-}VG(Z_m)$) + \mathcal{X} ($P\text{-}VG(Z_n)$) - 3 = 4 + 4 - 3=5 = \mathcal{X} (P-VG(R)) .

2-ii:

Let m is prime and n not prime and $\mathcal{X}\left(P\text{-}VG(Z_n)\right)$ =4 then we have three sets

$$\{(a,b_1),(a,b_2),(a,b_3),(a,0)\},\$$

 $\{(a^{-1},b_1),(a^{-1},b_2),(a^{-1},b_3),(a^{-1},0)\}$ and $\{(0,b_1),(0,b_2),(0,b_3)\}$

where $a \in Z_m$ and $b_1, b_2, b_3 \in Z_n$ such that $\overline{b_1 b_2}, \overline{b_1 b_3}, \overline{b_2 b_3} \in E(P - VG(Z_n)),$

the vertices in the same set are not adjacent to each other, then we have 3- partite graph and to colored it we need 3 colors, but all vertices are adjacent to vertex (0,0) then \mathcal{X} (P-VG(R)) = 3+1=4.

 \mathcal{X} (P- $VG(Z_m)$) + \mathcal{X} (P- $VG(Z_n)$) - 3 = 3 + 4 - 3=4 = \mathcal{X} (P-VG(R)).

Example 3.10:

 $R = Z_3 \times Z_5$ $\mathcal{X} (P-VG(R)) = \mathcal{X} (P-VG(Z_3)) + \mathcal{X} (P-VG(Z_5)) - 2 = 2 + 3 - 2 = 3$

Fig. 7: $\mathcal{X}(P-VG(Z_3 \times Z_5))$

References

- [1] Beck.I, (1988).Coloring of commutative rings, *Journal of Algebra*.**116(1)**:208-226.
- [2] Bhavanari .S, Prasad .Syam and Dasari .N, (2010).Prime Graph of a Ring, *Journal of Combinatorics, Information and System Sciences*, **35(1-2)**, 27-42.
- [3] Bhavanari S., and Devanaboina S., (2015). Cartesian Product of Graphs VS Prime Graphs of Rings, *Global Journal of Pure and Applied Mathematics*, **11**(2), 199-205.
- [4] Kalita.S, (2014). Some Aspects of Prime Graph of Some Rings, Phd , Univrsity of Gauhati, India.
- [5] Patra .K, Kalita. S , (2014). Prime Graph of the Commutative Rings Z_n , UTM center for Industrial and Applied Mathematics, $\mathbf{30}(\mathbf{1})$: 59-67.
- [6] Ramos .R.E., (2015).Colorings of Zero-Divisor Graphs of Commutative Rings, M.Sc, North Dakota state University,

Example 3.11:

 $R=Z_6\times Z_9$ \mathcal{X} (P-VG(R)) = \mathcal{X} ($P\text{-}VG(Z_6)$) + \mathcal{X} ($P\text{-}VG(Z_9)$) - 2 = 3 + 3 - 2 = 4

Fig. 8: \mathcal{X} (P-VG($Z_6 \times Z_9$))

4- Conclusion

In this paper we gave a definition of Pseudo-Von Neumann regular graph of Cartesian product of commutative rings and found the relation between it and Cartesian product of Pseudo-Von Neumann regular graph of commutative ring. Also found the chromatic number \mathcal{X} (P-VG(R)) where R is commutative ring, and R is Cartesian product of commutative ring.

- [7] AL-Hisso Sh.S , (2004). Types of Strongly Regular Rings, M.Sc, Mosul Univrsity, Mosul.
- [8] Rahman .Md..S, (2017).Basic Graph Theoey, Springer, .
- [9] Bhavanari. S, Syam. P, (2014). Discrete Mathematics and Graph Theory, PHL Learning Private Limited, Delhi.
- [10] Gross, J.L. and Yellen J. (2006). Graph Theory and its Applications, second edition, Chapman & Francis Group, Boca Raton FL33487-2742,.
- [11] R.M.R. Lewis, (2016). A Guide to Graph Colouring Algorthms and Applications, Springer.
- [12] Aurenhammer, F.; Haganer, J.; Imrich, W.(1992), "Cartesian graph factorization at logarithmic cost per edge", *Computational complexity*, **2(4)**:331-349
- [13] Arif. N, Khalel. N, (2019). Chromatic number of pseudo-Von Neumann Regular , *Ibn AL-Haitham Journal for pure and Applied Science*. Accepted .

العدد اللونى و بعض خصائص البيان المنتظم الزائف للضرب الديكارتي للحلقات الابدالية

نرمين جمال خليل ، نبيل عز الدين عارف قسم الرياضيات ، كلية علوم الحاسوب والرياضيات ، جامعة تكريت ، تكريت ، العراق

الملخص

لتكن R حلقة ابدالية, فأن البيان المنتظم الزائف للحلقة R يعرف على انه البيان الذي مجموعة رؤوسه هي جميع عناصر الحلقة R واي رأسين مختلفين $a=a^2b$ وا $b=b^2a$ وا $b=b^2a$, في بحثنا حصلنا على $a=a^2b$ بعض النتائج حول العدد اللوني للبيان المنتظم الزائف بالنسبة للضرب الديكارتي لبعض الحلقات الابدالية .