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ABSTRACT 

An ideal A of a semiring S is called k-ideal if for any two elements 

r∈A and x∈S such that r+x ∈A, then x∈Aʺ. This leads us to introduce 

the new concept feeble ring as generalization of k-ideal. Several basic 

properties, example and characterization of this concept are given. 

Moreover, the study investigate relationship of feeble ring with other 

classes. 

 

1. Introduction 
ʺ Semiring constiute a fairly natural generalization of 

ring, we first introduced by American mathematicianʺ 

Vandiver  in 1934 [1]ʺ, and has since then been 

studied by many authors. For general books and 

papers on semiring theory, one may refer to the 

resources [2,3].ʺA semiring is a nonempty set S 

together with two associative operations + and ·, such 

that for all a, b, c ∈ S then: a · (b + c) = a · b + a · c 

and (a + b) · c = a · c + b · c, a semiring is called 

additively [multiplicatively] commutative if (S, +) 

[(S, ·)] is commutative[1]ʺ. A natural example of 

semiring which is not a ring, is the set of all natural 

numbers under usual addition and multiplication of 

numbers. An element x in a semiring S is called a 

zero if it satisfies: x+a=a=a+x and xa=x=ax, for all 

a∈S.ʺ Zeroid of a semiring (S, +, ⋅) is the set of all x 

in S such that : x + y = y or y + x = y for some y in S 

[4]ʺ. For example let  R
+
 be the set of all nonnegative 

real numbers,  we define: x + y = min {(x,y): x , y in 

R
+
 }, x . y = be usual multiplication. The study 

suggests that  ( R
+
 , + , . ) semiring , and all elements 

of  ( R
+
 , +, . ) are zeroids. A ring contains no non-

trivial zeroids, but a semiring containing no non-

trivial zeroid need not be a ring, every a zero element 

in semiring is zeroid . But the converse need not be 

true in general, we called zero to be trivial zeroid and 

other zeroids be non-trivial zeroids. ʺA nonempty 

subset A of a semiring S is said to be an ideal of S, if 

c + b ∈ A for all c, b ∈ A and sc ∈ A for all s ∈ S and 

c ∈ A. It is clear that the zero element 0 belongs to 

any ideal of S. An ideal A of a semiring S is called a 

proper ideal of the semiring S if A ≠ S [5]ʺ. Semiring, 

as the basic algebraic structure is used in the areas of 

theoretical computer science as well as in the solution 

of graph theory, optimization theory, coding theory, 

formal languages and has many applications in other 

branches of mathematics. In 1958, ʺHenriksen[7] 

defined a more restricted class of ideals in semiring, 

which he called this special kind of ideals a k-

ideal[6]. An ideal A of a semiring S is called k-ideal 

if for any two elements r ∈ A and x ∈ S such that r + 

x ∈ A, then x ∈ A [7]ʺ, for example in the semiring 

Z
+
 under the operations max and min, the set An = {1, 

2, 3, ..., n} is a k-ideal of Z
+
. Since for any element r 

∈ An and x ∈ Z
+
 such that r + x = max{r, x} ∈ An , 

implies x ∈ An  [7]. Every k- ideal in semiring is ideal 

, but the converse in general is need not be true, R is 

k-ideal of itself and {0} is also k-ideal of R if 0 ∈ R, 

The sum of any two k- ideals need not be k-ideal in 

general, for example: Let Z
+
 be the semiring of all 

non-negative integers together with the usual addition 

and multiplication such that : (2) = 2Z
+
 ,   (3) = 3Z

+
 

and k-ideal. But (2) + (3) is not k-ideal both 7 and 6 

are in (2) + (3) , 1 + 6 = 7 but  1 not in (2) + (3), then 

the sum (2) and (3) is not k-ideal. A homomorphism 

of semirings is a map θ : S→S′ that preserves addition 

and multiplication. θ satisfies the following properties 

for all a and b in S such that: θ (a + b ) = θ ( a )+ θ (b) 
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, θ (a. b ) = θ ( a ). θ ( b ) and θ (0S) = (0S′), If there 

exists a homomorphism from S onto S′, we say that S′ 

is a homomorphic image of S [3], let θ be a semiring 

homomorphism from S into S′ . ʺThe kernel of θ  is 

the set kerθ={ a ∈ S : θ(a) = 0′}, let θ be a semiring 

homomorphism from S into S′. Then kernel of θ  is a 

k- ideal of S. Let A be an ideal of a semiring S, define 

a relation ≡  on S by: c ≡ b (mod A) if only if c + a1 = 

b + a2 for some a1 , a2 ∈ A, Let S be a semiring and A 

is ideal of semiring Sʺ. Then their exists semiring 

homomorphism from S onto S/ A and A ⊆ kerθ. In 

particular if A is a k-ideal then kerθ =A. The current 

study establishes new concept feeble-ring as 

generalization of feeble-ring with other class are 

studied, and given homomorphism theorem. 

2. Feeble-ring 
This section tries to  introduce and study the concept 

of a feeble ring as a generalization of k-ideals. 

ʺDefinition  2.1.  A semiring S is feeble-ring if for 

any a,b∈S , a ʺ ≠ b , there exists x∈S such that either 

a+x=b or a=b+x ʺ. 

Remark 2.2.  It is easily seen that x≠0 and S is a 

feeble-ring if only if S0 is a feeble-ring. 

 
ʺProposition 2.3.   If S1 and S2 are two feeble-rings 

of semiring, then S1∩S2 is also a feeble-ring of the Sʺ. 

Proof: Suppose that S1 and S2 are two feeble-ring of 

semiring. The study affirms  that S1∩S2 is feeble-ring 

of S.  Let a,b∈S1∩S2, and a≠b implies a,b∈S1 and 

a,b∈S2. Since S1, S2 are feeble-ring of semiring S,  

there are exists x∈S1 and x∈S2 such that either a+x=b 

or a=b+x holds, implies that S1∩S2 is feeble-ring of S. 

Lemma 2.4.  The homomorphic image of a feeble-

ring is a feeble. 

Proof: Assume that S feeble-ring and θ 

homomorphic image from S into S′. So that for any 

b1≠ b2∈ θ(S), there are a1 , a2 such that θ(a1)= b1 and 

θ(a2)=b2. Since S is a feeble-ring, then there is x ∈ S 

such that  a1+x=a2 or a1=a2+x, this implies that 

θ(a1)+θ(x)=θ(a2) or θ(a1)= θ(a2) + θ(x ). It is means 

that θ(S) is feeble. 

Lemma 2.5. Every k-ideal in a feeble-ring is a feeble. 

Lemma 2.6. Let A be an ideal of a feeble-ring S. If 

all zeroids of S are contained in A, then the quotient 
S

A
 contains no nontrivial zeroids.   

Proof:  It is obvious true for A={0}, suppose that 

A≠{0} and let x̅ be a zeroid of  
S

A
 . Then there exists 

some y̅ ∈ 
S

A
 such that x̅ +y̅ =  y̅, that is x + y̅̅ ̅̅ ̅̅ ̅ = y̅ and 

so x + y ≡ y ( mod A ). 

Hence y+x+a1=y + a2 for some a1, a2∈ A, if x + a1 = 

a2, then x̅ + a1̅ = a2̅̅ ̅ which implies x̅=0̅.  

If  x + a1 ≠ a2 in feeble-ring S0, then ∃ w ∈ S0 such 

that (x + a1)+ w = a2 or x + a1 = a2 + w which implies 

that y + x + a1= y + a2= y + x + a1+w or y + a2+ w = y 

+ a2 .In either case, w is a zeroid of S0 and so w∈A.  

Hence  x̅+a1̅ = a2̅̅ ̅, which means that x̅ = 0̅ . 

Theorem 2 .7. 
  Let S be a feeble-ring and S′ be a semiring 

containing no non-trivial zeroids. If θ is a semiring 

homomorphism of S onto S′, then S′ is isomorphic to 
S

kerθ
 . In particular S isomorphic to S′. 

Proof:  Since θ is a semiring homomorphism of S 

onto S′, every element in S′ has the form θ(r) where 

r∈S. Define a mapping α : S′ ⟶ 
S

kerθ
 by : α(θ(r) = r̅, 

where r̅ is a coset of modulo kerθ. The mapping α is 

well defined. For if we suppose that θ(r) = θ(s) 

If r ≠ s, then ∃ 0 ≠ x∈S such that x + r = s or r = x + 

s since S is a feeble-ring, consequently, we have : 

θ(x) + θ(r) = θ(s) = θ(r)  or  θ(r) = θ(x) + θ(s) = θ(s). 

This means that θ(x) is a zeroid of S′. Since S′ has no 

zeroid, then the contradiction leads to the fact that r = 

s and hence θ is an isomorphic. Also it implies r̅  = s̅ 

(mod ker θ). 

On the other hand, if S′ has zero 0′, then θ(x) = 0′. 

Hence x̅ =  0′̅. Hence x̅ =  0′̅ the zero of 
S

kerθ
  . 

As α(θ(x + r)) = α(θ(s))  or  α(θ(r)) = α(θ(x + s)), so  

x̅ + r̅ =  s̅  or  r̅ = x̅ +  s̅. 

 Thus we obtain r̅ =  s̅. To prove that α is a semiring 

isomorphism. 

1- To prove that α is a semiring homomorphism, Let 

θ(r), θ(s) ∈ S′, then: 

 α(θ(r) + θ(s)) = α(θ(r + s)) = 𝑟 + 𝑠̅̅ ̅̅ ̅̅ ̅ = r̅ + s̅  = α(θ(r)) 

+ α(θ(s)). 

α(θ(r) . θ(s)) =  α(θ(r . s)) = r. s̅̅ ̅̅  = r̅ . s̅  = = α(θ(r)) 

. α(θ(s)), then α is a semiring homomorphism. 

2-To prove that α is one to one. Let θ(r) , θ(s) ∈ S′, 

such that α(θ(r)) = α(θ(s)) implies r̅ =  s̅, then r̅ -  s̅ = 

0̅  implies r − s̅̅ ̅̅ ̅̅  = 0̅ , then r – s ∈ kerθ and as well as 

have θ(r- s) = 0, so that  θ(r)- θ(s) = 0, or θ(r) = θ(s) 

implies that α is one to one. 

3-To prove that α is onto. ∀ r̅  ∈  
s

kerθ
 , ∃  θ(r) ∈ S

-
 

such that α(θ(r) = r̅ . 

α( r ̅) = { α(θ(r) : θ(r) ∈ S′, r ∈ S }, 

         = {r̅   , r ∈ S } = 
s

kerθ
  . 

Theorem  2.8. Let S be a semiring and A is ideal of 

semiring S. Then there exists semiring 

homomorphism from S onto S/ A and A ⊆ kerθ. In 

particular if A is a k-ideal then kerθ =A.  

Proof:  It is easily to prove that θ: S →  
S

A
 , such 

that θ(r) = r̅(mod A ) is a homomorphism from S 

onto 
S

A
 and hence that the first part of this theorem is 

ok . 

It is important to prove  now to prove that kerθ = A 

when A is a k-ideal.  Let r ∈ kerθ then θ(r) = 0̅, that 

is r̅ =0̅.  Therefor ∃ a1,a2 ∈ A such that :  r+a1 = 0 + a2 

= a2∈ A. Since A is a k-ideal, amit it  obtain that  r ∈ 

A that is kerθ ⊆ A. However, A ⊆ kerθ always holds 

when θ is a semiring homomorphism and thus A = 

kerθ . 
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Corollary 2.9.  Let S be a feeble-ring and A be a k-

ideal of S. If A contains all zeroids of S, then the 

Bourne quotient 
S

A
  is a feeble-ring and is isomorphic 

to some homomorphic image to S . 

Proof:  
S

A
  is a feeble-ring by lemma2.4, and this 

refers to lemma2.5. That 
S

A
 contain no non trivial 

zeroids. Applying theorem 2.7 and theorem 2.8, amit 

it obtain directly that 
S

A
  ≅  

S

kerθ
 . Where θ is a 

semiring homomorphism . 

The following counter examples show that the 

hypothesis of theorem 2.7 cannot be weakened . 

Example 2.10. Let S=[0,1], the unit interval the 

addition ⨁ and multiplication ⨀  operation on S are 

defined as follows : 

For every pair of elements a , b∈ S, define it is a 

weak phrase : 

  a ⨁ b = ab ,the usual multiplication and a ⨀ b = 0, 

the zero multiplication, then it is easy to see that: (S , 

⨁ , ⨀) is a feeble-ring. Let S′=( {0,1}, +, . ) with 
 

    +     0    1      .     0    1 

    0     0    1     0      0     0 

    1     1     1     1      0     0 
 

Clearly, ( S′, +, . ) is also a semiring with a non- 

trivial zeroid {1} and the zero {0}. 

 
Obviously θ is a semiring homomorphism with kerθ 

= {1}. However  
S

kerθ
 = [ 0,1] and  

 S′={ 0,1}. Hence, there is nothing to refer to does not 

exists a semiring isomorphic between  
S

kerθ
  and S′. 

This example remarks that that the fundamental 

theorem of homomorphism fails to be true if S′ 

contains some non- trivial zeroids . 

Example 2.11. 

Let A = { (x , 0 , 0 ) , x ∈ Z+   }, B = {( 0 , x , 0 ) , x ∈ 

Z+  }, C = {( 0 , 0 , x ) , x ∈ Z+  }, where Z+  is set of 

all non-negative integers. 

Denote (x , 0 , 0 ) by x
(1)

, ( 0 , x , 0 ) by x
(2)

 , ( 0 , 0 , x 

) by x
(3)

.  

Define ⨁ on D =  A ∪ B ∪ C as follows : 

X
(i)

 ⨁ y
(i)

 = (x + y )
(i)

 , i = 1,2,3,  X
(i)

 ⨁ y
(j)

 = (x + 

y)
(3)

 , i ≠ j.  

Define ⨀ on D to be the zero multiplication. Then it 

can be easily to proof that D is a semiring but not 

feeble. 

Let (ZO
+ ,+ , .) be the non-negative integers under 

usual addition and zero multiplication. 

(ZO
+ ,+ , . )  is clearly a semiring with out non-trivial 

zeroids. 

Define a mapping θ: D →   ZO
+ such that θ( x

(i)
) = x. 

Then θ is a semiring homomorphism and kerθ = { ( 0 

, 0 , 0 ) }. 

As  
D

kerθ
  =D, so it is signifieant to argue that claim 

that there does not exists isomorphism from D on to 

ZO
+. 

For if exists such an isomorphism Ψ, then: 

Ψ ( 1
(1)

 ) + Ψ (1
(3)

 ) = Ψ ( 2
(3)

 ) = Ψ ( 1
(2)

 ) + Ψ (1
(3)

),   

Ψ ( 1
(1)

 ) = Ψ (1
(2)

 ).  

So Ψ is not one to one. This example show that the 

fundamental theorem of homomorphism fails to be 

true if the semiring is not feeble. 

Now it is important to prove begin to prove theorems 

for semiring which are analogues those isomorphism 

thermos for semigroup, group, rings, modules and 

vector spaces. 

Lemma 2.12.[3] Let S′ be a homomorphic image of a 

semiring S and A′ be an ideal in S′, then the inverse 

image of A′ is also an ideal in S. In particular, if A′ is 

a k-ideal in S′, then the inverse image of A′ is also a 

k-ideal. 

Theorem 2.13.   

Let S be a feeble-ring with no non-trivial zeroids and 

let S′ be a semiring homomorphic image of S. If A′ is 

a k-ideal of S′, then 
S

A
≅  

S′

A′
 , where A is the inverse of 

A′ in S. 

Proof. Let 𝜏 be the homomorphic from S onto S′, 

and 𝜑 be the homomorphic from S′ onto  
S′

A′
 . Then 

𝜏𝜑 is a homomorphic  from S onto  
S′

A′
 . 

Since ker 𝜑𝜏 = { r ∈ S : 𝜑𝜏( r ) = A′ } = r ∈ S: 

𝜑(𝑟′) = 𝐴′} = r ∈ S :  r′ ∈ A′} =A. There for, 

applying the Fundamental Theorem of 

homomorphism. Have 
S

A
 ≅  

S′

A′
 . 

Corollary 2.14.  Let S be a feeble-ring with no non-

trivial zeroids. If A , B are k-ideals of SO such that A 

⊆ B, then   
S0

B
  ≅   

S0
A
B

A

 . The  proof of this corollary is 

clear. It is preferablc to focus on the following need 

the following lemma to prove Second Isomorphism 

Theorem.   

Lemma 2.15.  A feeble-ring S with no non-trivial 

zeroids is cancellable. (cancellable means that if r+x 

=r+y, then x=y for all r,x,y∈S ). 

Proof: Let x,y,r be element of S such that r+x = r+y . 

Suppose x≠y. Then since S is a feeble- ring, there 

exists 0 ≠ t ∈ S such that x+t = y or t+y = x. 

Consequently either:  r+y = r+( x+t) or r+( t+y) = r+x, 

that t is a non-trivial zeroid which contradicts our 

assumption. Hence x = y. 

Theorem 2. 16.   

Let S be a feeble-ring with no non-trivial zeroids. If 

A1 , A2 are k-ideals of S, then  

                                  
A1+ A2 

A1
  ≅  

A2

A1 ∩  A2
  . 

Proof: Define a mapping 𝜑 : A1+ A2 → 
A2

A1 ∩  A2
 by 

𝜑(r) = a2̅̅̅̅ ( mod  A1 ∩ A2) 

 where r = a1 + a2 ∈ A1+ A2 and a1∈ A1, a1 ∈A2. We 

first show 𝜑 that is well defined. 
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Suppose that r = a1 + a2 =a′1+a′2∈ A1+ A2.Then for a1, 

a′1 ∈ A1, there exists a ∈ A such that a1 + a = a′1      or     

a1= a′1 + a . 

Therefore we have :  a1 + a2 = a1 + a + a′2  or a + a′1 + 

a′2 = a′1+a′2  and  a2 = a + a′2  or 

 a + a2 = a′2. This implies that a∈A2 since A2 is a k-

ideal. Hence a1̅=a2̅̅ ̅( mod  A1 ∩ A2). 

To prove that 𝜑 is a semiring homomorphism. 

Let r1 , r2 ∈A1+ A2 such that r1 = a1 + a2 and r2 = b1 + 

b2 where a1,b1∈A1 and a2,b2∈A2  such that  θ(r) = θ(a1 

+ a2) = a2̅̅ ̅   

1- θ (r1 + r2) = θ(a1 + a2+ b1 + b2) = θ((a1 + b1)+( a2 

+ b2))  

=  a2 + b2
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  = a2̅̅ ̅ + b2

̅̅ ̅  . 

= θ (r1) + θ ( r2). 

2- θ (r1 . r2) = θ((a1 + a2).( b1 + b2)) = θ( a1b1 + a1b2 + 

a2b1 + a2b2) 

= a2. b2
̅̅ ̅̅ ̅̅ ̅ = a2̅̅ ̅ . b2

̅̅ ̅=θ(r1) . θ( r2). 

Hence 𝜑 is a semiring homomorphism. We still to 

prove that ker 𝜑 = A. It is obvious that A1⊆ ker 𝜑 . 

For converse, let r = a1+ a2 ∈ ker 𝜑. Then 𝜑(r) = a2̅̅ ̅ 

=0̅ ( mod  A1 ∩ A2). 

Hence there exists  a∈ A1 ∩ A2 such that a1 + a2 ∈  

A1 ∩ A2. 

Thus a2∈ A1 ∩ A2 since A1 ∩ A2 is a k-ideal of S. 

Hence r = a1+a2 ∈  A, so ker 𝜑 = A. 

It is better to apply the  the fundamental 

homomorphism theorem and the result is :   
A1+ A2 

A1
≅

A2

A1 ∩  A2
  . 

Theorem 2.17. 
Let S be a feeble-ring with no non-trivial  zeroids . If 

A, A′, B, B′ are k-ideals of S such that A′⊂ A, B′ ⊂ B 

and A′+ B′ is also k-ideals of S. Then A′ + ( A ∩  B′) 

and B′ + ( B ∩  A′) are k-ideals and there is an 

isomorphism 
A′+( A ∩ B)

A′+( A ∩ B′)
  ≅   

B′+( B ∩ A)

B′+( B ∩ A’)
 .  

Proof: Let H=A + B , K = ( A ∩  B′) + ( B ∩  A’). H 

is a k-ideals and K⊂H and  

H ∩  B′ = A ∩  B ∩  B′= A ∩  B′. Similary, H ∩  A′ = 

A′ ∩  B. 

Thererfor :  K = ( H ∩  B′) +( H ∩  A′) = H ∩ ( A′ + 

B′) is k-ideal. 

Now it is easy to define a mapping 𝜑 from A′ + H 

onto  
H

K
  such that : 

𝜑 ( a′+ h ) =  h ̅̅ ̅( mod K ) where a′∈ A′, h ∈ H. 

𝑖 ) 𝜑 is well-define . 

Suppose that a′1
 
+ h1 = a′2

 
+ h2 for a′1, a′2 ∈ A′, there 

exists a′ ∈ A′ such that 

a + a′1 = a′2      or     a′1 = a + a′2. Therefore  a′1 + h1 = 

a + a′1 + h2   or   a + a′2 + h1 = a′2 + h2. 

Since k is cancellable, we have :  h1 = a  + h2  or  a + 

h1 = h2. 

Hence a ∈ H  since H is a k-ideal. And a∈H ∩  A = 

A′ ∩ B ⊆ k. Thus 𝑎̅= 0( mod k ) and we have a1̅  = a2̅̅ ̅ 

( mod K ). 

ii) To prove 𝜑 is a homomorphism  

Let a′1
 
+h1 , a′2

 
+ h2∈A′ + H, where a′1 ,a′2 ∈ A′ and 

h1,h2 ∈ H. 

1) 𝜑 ( a′1
 
+ h1 + a′2

 
+ h2  ) = h1 + h2

̅̅ ̅̅ ̅̅ ̅̅ ̅̅  = h1
̅̅ ̅ + h2

̅̅ ̅  . 

= 𝜑 ( a′1
 
+ h1 )  + 𝜑 (  a′2

 
+ h2  ). 

2) 𝜑 (( a′1
 
+ h1 ) . ( a′2

 
+ h2  )) = 𝜑 ( a′1a′2 + a′1h2 

+h1a′2 + h1h2)  

= h1. h2
̅̅ ̅̅ ̅̅ ̅ = h1

̅̅ ̅ . h2
̅̅ ̅  = 𝜑 ( a′1

 
+ h1 ) . 𝜑 ( a′2

 
+ h2 ). 

iii) ker 𝜑 = A′ + ( A ∩  B′) is a k-ideal.  

Obvious A′ + ( A +  B′)  ⊆ ker 𝜑 since  A ∩  B′ ⊆ K. 

Let a′
 
+ h∈ ker 𝜑, i. e. 

 0 = 𝜑 ( a′+ h ) = h̅ ( mod K). Hence h ∈ K  since K is 

k-ideal . 

Therefore a′+ h ∈ A′ +K = A′ + ( A ∩ B′) + ( A′ ∩
 B) ⊆ A′ + ( A ∩  B′). 

By the fundamental homomorphism theorem we have 

: 
A′+( A ∩ B)

A′+( A ∩ B’)
  ≅   

H

K
 . 

Similarly, we can define a homomorphism from 

B′ + ( B ∩  A) on to  
H

K
  with kernel B′ + (A′ ∩ B). 

Therefore  B′ + (A′ ∩  B) is a k-ideal of S and  
A′+( A ∩ B)

A′+( A ∩ B′)
  ≅  

H

K
 ≅   

B′+( B ∩ A)

B′+( B ∩ A′)
 .  
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 الحلقة الضعيفة
 2علاء ناهي سلمان,  1الصالحيسنان عمر 

 كلية التربية للبنات , جامعة تكريت , تكريت , العراق، قسم الرياضيات  1

 م الصرفة ، جامعة تكريت ، تكريت ،العراقلعلو ية التربية لكل، قسم الرياضيات  2
 

 الملخص

r+x أن بحيثx∈S و   r∈Aاذا كان لأي عنصريين  k-أسم المثالي Sلشبه الزمرة   Aيطلق على المثالي ∈A فأن x∈A  هذا قادنا الى تقديم
هذا المفهوم. علاوة على ذلك, نحن نتحرى وأمثلة لتوصيف تم اعطاء العديد من الخصائص الاساسية, و  .k-يلهوم الحلقة الضعيفة كتعميم للمثامف

 الضعيفة و الفئات الاخرى.العلاقة بين الحلقة 
 

 


