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1. Introduction

Mathematical modeling is an abstract model that uses
mathematical language to describe the behavior of a
system. Mathematical models are particularly used in
computational theory in computer science, natural
sciences, engineering of fields (such as physics,
biology, electrical engineering) and also in social
sciences (such as economics, sociology and politics).
Physicists, engineers, computer scientists, and
economists use mathematical models very widely [1].
in several years the study of predatory- prey systems
was an important research in the 1920s, new horizons
were opened by Lutka and Volterra [2,3]. For
biological species, many researchers later made many
achievements in this area in 1927, Kermack and
Mckendrick were proposed the classical model
affected and infectious and redux that attracted more
scientists attention and references in it. SI Epidemic
model: In which there is no removal that means the
infected individuals is still infected for all the time, so
whenever susceptible becomes infected it will be still
infected, while SIS Epidemic model: In which the
infection does not lead to immunity so that infective
become susceptible again after recovery.

The simplest example of using a mathematical model
in the field of biology, this, in turn, is divided into
two completely different parts within the biology,
namely ecology (which is one of the most important
branches of biology, which reflects the emerging
relationships between the organism and the
environment in which it lives), and the second
branch, epidemiology (a branch of medicine), which
can The epidemic is transmitted through a long series
of neighborhoods, causing epidemic diseases [4].

an epidemic.

ABSTRACT

The aim of this study the mathematical model of the type SIS, healthy

prey is infected by disease and the study proved that solution and
restrictive in which the molecular system do not have periodic
boundaries, then it discussed the stability of those points. the study also
showed how to control the disease using the harvest so as not to become

Predation is, according to the definition of ecologists,
a biological interaction between two objects, one of
which is a predator (pirate, fracture, raptor, or hunting
object) feeding on an organism or a number of other
organisms known as prey (prey or hunted organism)
[5].

Mathematical models have become critical tools in
understanding and analyzing the spread and control
of infectious diseases by studying different types of
disease such as Sl, SIS. Some infectious diseases in
the ecosystem are transmitted through direct contact
[6]. In addition to disease, harvesting can in turn
greatly affect the dynamics of the prey-predator
system, and harvesting can reduce the numbers of
prey or predators [7]. It can also be considered as a
stabilizing factor [8] ,Previous studies have indicated
that Bairagi et al. indicates that harvesting can control
the spread of disease in a particular branch of the
population[9], where the effects of harvesting disease
in prey were studied in the prey-predator model,
while there was another study by cheve et al.
Included harvest and disease this time the predator in
the predator model and prey concluded that the
predator has harvested Prevent the spread of
infectious diseases[10], thus ensuring the resilience
and stability of ecosystems. This paper is divided as
follows: in section two, the study described
mathematical model, in the third section the study the
natural solution. In the fourth section, the study
discussed positive solutions and periodic to
subsystems in addition discussed equilibrium points
with its conditions and its stability. Stability points of
the main model is in the fifth section. Finally, we

108


http://tjps.tu.edu.iq/index.php/j
https://doi.org/10.25130/tjps.v25i1.220
mailto:bilal.azzawi@st.tu.edu.iq

Tikrit Journal of Pure Science Vol. 25 (1) 2020

discussed discuss some results by using Mathematica

Programin.

2. Mathematical Model
d—X:rx(l—x)—oz XY X +6X%,

d I+ox X +X,

Xm =C s _5X1_woxly —0x,

dt X +X, )
dy Xy yz

=Xy +pf——- —d

ar - ﬂ1+a)x 7/1+wy Y

dz yz

—= —-d,z

dt p1+a)y 2

Where x',x7,y',z"'>0. X,X;,Y,Z denoted

susceptible prey, infected prey, intermediate predator
and top predator respectively. Parameters denoted as
follows, I the rate of growth of susceptible prey,
rate o is the per capita rate of predation of the
intermediate predator, rate p measures the efficiency
of biomass conversion from prey to intermediate
predator, rate  is the per capita rate of predation of

the top predator, rate p measures the efficiency of
biomass conversion from intermediate predator to top
predator, , rate @, is the per capita rate of predation

of the intermediate predator, rate @, measures the

efficiency of biomass conversion from infected prey
to intermediate predator. Rate C is the contact
between susceptible prey (S. Prey) and infected prey

(I. Prey) while rate 0 denoted the transformation
from 1. Prey to S, Prey, d,,d, are natural death of
intermediate and top predator respectively. Rate q is

harvesting of I. Prey.
3. Nature of Solution
Lemma 1: All solutions of system (1) which initiate

in Rf are positive and bounded.

Proof:
Let M =X +X,+y +Z and >0
dM
T-I-,UX =dx +dx, +dy +dz + ux
=x(l-x)-« X X +6X,
l+ox X +X,
XX
+C —L—— 56X, —W X,y —0OX
X +X, 17WoXyY —0Xy
Xy yz
W X, Y + -
X ﬂl+a)x 7/1+wy
yz
-,y +p—/———d,z + ux
1Y p1+wy L T H
=rx(l—x)—(a—ﬂ)i—(wo—wl)xly
1+ wX
_qxl_(}/_p)L_dly —d,z + px
1+ wy

<X (L—x)+ ux

TJPS

<IX A+ ux —1x’

<2+ (r + p)x

S—r(X 2 (r +r/u)x )

2 2
<t Xz_(r+#)x+(r+él) L+ p)
r 4r Ar

RSN S WYY
sr(x (zr))+r( 2)

dM + ux SE(H'T”)2 say v
r

du 1 )
L= (r+up)? sayv.
ot 4Ir( )", say

Then, by using differential inequality [11], we get
Vv _
0<u(X(t),X1(t),y(t),z(t))S;(l—e “)

+HX (), X, (1), y (t),z (t))e 0

4. Subsystems

In absence one or two of population, system (1)
reduce to subsystems. For the purpose of studying
dynamics of system (1), we study all the possibilities
that we mean by subsystems. There are several
subsystems as follows:

4.1 In Case of Absence predator

In absence of all predator system (1) became as the
subsystem content susceptible and infected prey as
follows:

dlzrx(l—x)—c XX + X,
dt X +X,

(2)
dx, XX,
—L=c—L1-8x,—0x,
dt X +X,

4.1.1 Nature of Solution

Lemma 2: All solutions of subsystem (2) are positive
and bounded.

Proof: As lemma 1, see figure 1.

i
Fig. 1: shows the path of the subsystem (2) in the
absence of the predator

Lemma 3: The subsystem (2) has no periodic orbit in
R%.
Proof:
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1 XX,

LetH = h=mx(1-x)-c + 00X,
XX, X +X,
XX
and h, =c —1—-8x, —0x,
1
H.hlzL—ﬁ——C +£ and

X+X, X X

a(h,H )+5(hz’H):_L_£. Now,
X X, X, Xx?

A(X,X,) =

we note that A(X,X,) does not change sign also is

not identically zero and is not identically zero in R® in
its plane. According to Bendixson - Dulic criterion
there is no periodic solution. [12].

Lemma 4: In subsystem 2, ¢ > 5 +(

Proof: if ¢ <& +q and since the carrying capacity of

prey in one, thenC <C implies
X +X,
c <5+q, therefore dx; _ ywhich
X +X, dt

contradiction, then ¢ > 6 +q -

4.1.2. Equilibrium Points and Stability.

In subsystem (2) there are three equilibrium points as
following

1. The trivial point and always exists f(0,0)

2. This point is a border point and always exists
p.(1,0)

3. p,(x,x,)Where ¢ :Mand Jacobean
c—(5+q)
matrix of system (2) is
X2 X 2
r-2rx —c L— < +5
5 - (x +x,) (x +x,)
2 Xlz i
2 c 2 —q
(x +x,) (x +x,)

We study the stability of positive equilibrium point
P, (X_,X_l) and remind the other later. Jacobian
matrix near this point is

2 2
r—2rx‘—cx—12 X =+0
; (X+x,) (X+X,)
2= _, a
S : (5+9) (6+q)-c
(X+x,) c
Hence it's stability with condition . 1 this
2

condition reduce to the main diameter will be positive
and in other hand the secondary diameter is negative.

Lemma 5: The equilibrium P, is global stability in
the first positive cone.

TJPS

Proof: The unique positive  equilibrium point
p,(x,x,) s locally asymptotically stable and
subsystem (2) has no periodic solution in thhen by
using Poincare-Bendixon theorem,  p,(x,x,)is

globally asymptotically stable, see Figure (2-a) and
Figure (2-b).

1.0
f S.prey
0.8
£ 06
g l.prey
s
£ 04
0.2 ‘
0.0
0 200 400 600 800 1000
Time
1.0
l S.prey
0.8
£ 06
s
>
Q
g 0.4
l.pre
0.2 \ prey
0.0
0 200 400 600 800 1000

Time

Fig. 2: stability (a) without harvesting (b) with
harvesting

4.2. Prey Predator Subsystem

This subsystem has a healthy prey and predator. As
this system known prey predator model or Lotka
Volterra equations. We describe interaction between
them as:

d XA-x)-a Xy

dt 1+ wx 3)
dy Xy

bt A —d

dt 'Bl+ ox Y

4.2.1. Nature of Solution

Lemma 6: All solutions of subsystem (3) are positive
and bounded.

Proof: As lemma 1, see figure 3.

38 ¢

Fig. 3: The solutions of system (3) is bounded.
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Lemma 7: In subsystem (3) g> wd, -

Proof:
Assume g < qd, since caring capacity of prey is one,

then gx <wd, hence px <ad, therefore®. dy o .
1+ wx dt

Its contradiction, then > ad,
Lemma 8: subsystem (3) has no periodic orbit in R?.
Proof: As lemma 3.

4.2.2. Equilibrium Points and Stability
This subsystem also contains three equilibrium points

1 f’o =(0,0)
2. p,=(10)
3. p,=(X,y) where

x=—91 and y=1r(r_rx). the jacobean
B-dw
matrix of system (3) is
reom-—3 g X
3 (l+w)() 1+ X
P By 5 X
(1+wx)’ 1+ox
And near p, =(X,y)is
r—om-—Y 4 g
] (l+a))() 1+ X
v By .
—~\2
(1+ox)

Then the characteristic equation is

ﬂz+{r(—1+2x*)+ yAzJﬂﬁ

(1+ox)

apxy . it
(1+awx)’

[N

stability if ¢ >=.

N

Lemma 9: The equilibrium P, =(X,y) is global
stability

Proof: As in lemma 5, see figure (4).

08 l\ Prey
., 06
j=
2 Predator
é 0.4
o
a

0.2

0.0

0 200 400 600 800 1000

Time

Fig. 4: The oscillation of solution of system (4)

4.3. Classical Subsystem with Disease

In absence of top predator, system (1) become
classical model with disease. This subsystem known
SIS model because susceptible population become
infected by rate ¢ and transform to susceptible by rate

1) again, hence we describe that as:

TJPS

dx X XX
y _c 1

—=nX({1-x)-a +0X%,

dt l+ox X +X,;

dx, XX

dt =C < +)1( — X, — Xy —0OX, (4)

d

d)'[/ =wX,y + ﬂ ox —-dyy

4.3.1 Nature of Solution

Lemma 10: All solutions of system (4) which

initiate in R ? are positive and bounded.

Proof: As lemma (1)

4.3.2. Equilibrium Points and Stability

And then subsystem also contains three equilibrium
points

1. p,=(0,0,0)The point is trivial means society is
nil

2. 5 (1,0,0) Here only the sound prey exists

3. =(x,x,,y) The equilibrium point when the
system does not contain the top predator where
_ X(5 y
T= ( + @Y +Q)
—(6+ay +q)

c-2farsts)

, 1+ X
_ XX, =
y:[rx(l X)—C—= +5x1}

aX X +X,
Jacobean matrix of system as

2

%:r— Y __ CX; y
154 1+ wx) (x +x1)
oA _oxP o ax
X,  (x+x)° oy l+ax

2 2

= - —6-wy —q
X (x+x,) ok (x+x,)
o,
of of
Ay _ By ., Ly
ox  (L+wx) oX,
)
A e L,
oy 1+ wx
Jacobian matrix near a positive equilibrium point is:
o, o= ay 3 cX?
OX (1+ wX)? (X:erzl)z’
ofy cx? o, ax
K, (X+%) & liex
of, Xy of, =
P 1= T 0K
X (X+X, ) oy
o, ~(6+m 7 +q)(c—(5+m,¥ +a))
oK, c '
oy By Ay _ = sy let
X (+ox) oKX ay o
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NP SR B = (Kyks —Koky —Kk, —k k)
v S e A
~ L C =(k1k6—k3k4)k8—(kzke—ksks)k7>O
k :—:Liﬁ , Bz_i_: The Equilibrium Point p, is stable if AB —C >0.
(X+x,) 1f‘ox B Lemma 11: The equilibrium § =(x,x,.y) is global
o2 (5+w07+q)(c —(6+w0)7+q)) P, Y
krmy ky=— c stability with conditions yX < ¥X ,XX, < X,X and
_ c o
ke = —aX, == <=
BY o o (X +x,)(X+X,)  Xx
T +ex)? @y K= Proof:
Equilibrium Point 7, = (X,X,.3) W (x,xl,y>:c1(x—x:—ﬂni;}cz[xl—xi—iln% +ca[y—?—?ln%j

2 +AA*+BA+C =0, where z = -
- 1 M=C1(X X]dx +C2(X1 Xl]dx1+cs[ujdy
A =—(Arc J(p3))>0|fx_25 X

W, _X=)Cl[r i _&_Cx_lﬂsﬁ}

dt 1+wx X +X X
= c X
(xl—xl)Cz[X+X ~5—am,y q] a)lx +1+ﬂwx —dl)
W g)e| - o K K s N X
dt X 1+a)x X+X;, X+X, X X
_ X X _
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OB e e e U e )
S e e ]
xR et ((ﬁ;f;()li;x))]‘ccl(x‘X)[(x fil)(ilix)J
w0 Fetonotie R
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+6C1(x—x:)():(1 )::J_C(Xl_XI)C{MJ<O

Figure (5-a) and (5-b) Oscillation of system (4) when
we fixed the parameters as:r =0.856,« =0.482, § =0.247,
0 =0.008,c =0.5,

®=0.503,q =0.022,d, =0.057, @, =0.181, , =0.109

Predator

Populations

S.prey

400

200

600

Time
0.0

1000

Fig. (5-a) and (5-b):Solution of subsystem (4).
4.4. Subsystem without Disease.

In the case of absence disease, subsystem known as
food chain model. Food Chain Model consist three
populations, prey, intermediate predator and top
predator. In such model, intermediate predator
depends entirely on prey in its food, in other word, no
resource in his food except prey. Also, no source for
top predator except intermediate predator. Describe
this subsystem as follows:

*a-x)-a

d 1+ wx

dy Xy yz

== -dy (5
dt 7 1+wx 71+a)y Y )
dz yz

—= —-d,z

dt pl+a)y g

4.4.1. Nature of Solution

lemma 12:

All the solutions of the subsystem (5) in R® are
positive and bounded.

Proof: As lemma (1).

Lemma 13: In subsystem (5)p>a)d2 .

Proof: Aslemma 7.

4.4.2. Equilibrium Points and Stability

And then subsystem also contains three equilibrium
points

1. p,=(0,0,0)

2. p,=(10,0)

3. Py=(X.,Ya24)

r(0-1)£yr* (0-1) +4dor (r-ay.)

Xu = ,
20r
yo= d, l*=1+wy*[ X _dlj
p—ad, 14 1+ wX.
The Jacobean matrix of subsystem (5) as:
Mlzr—er—Lz, 2= s )
1+ wx) 1+ wx
X z
= By M, = px_ 7y _—d, The
@+ wx) 1+ wX (1+a)y)
M. = —7y N
* ltoy (1+a)y)2
Py
M= —d,.
! 1+ wy 2

characteristic equation near the interior equilibrium
point is

A*+AA* +BA+C =0where

A :(—Ml—M4—M7)
B=(MM,+MM,+M,M,-M;M;-M,M,)

C=(-MM M, +M MM +M,M;M,)

from Routh Hurwitz criteria, this point is stable if
A>0 ,C >O and AB -C >0

Lemma 14: The equilibrium p,=(x,,y,,z,) is
global stability

Proof : as in lemma 11

Then
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5. Existence of Equilibrium Point and Stability of
General System .

And then system also contains three equilibrium
points

1. The vanishing equilibrium point E_ =(0,0,0,0)

always exist

2. The axial equilibrium point E,
exist

3. The positive equilibrium point E_=(x*,x;,y",z")

. %[5+ 0y +q)

=(1,0,0,0) always

X - *
~(0+ayy " +q)
xfzi( rz ~+d, — Px j
o, \ 1+ oy 1+ wx
.d,
y =t
(P‘a’dz)
Z*:1+a)y* .

* X . .
(@Xl +ﬂ1+wx* _dlj with  condition

c>(5+my +q)
The Jacobean matrix of system is

o, o, of, o

oXx oOx, oy oz

A, A, A, A,
S| o oy e |
Tt o oy o,

ox oOx, oy oz

o, o, A, o,

| OX oOx, oy oz |
Ay oy WY ox/? ,
ox (I+ax) (x+x,)
of ox? of, -
_1:_2+5,_1:LX2
OX, (x+x1) oy b+x
of cx?  of cx
Teo N T2 S-wy—q
X (x+xy)" Xy (X +Xy)
81:2
,—2 =X,
oy
of
ads _ Ay Loy,
X (l+wx) OX
oy 1+ wx (1+a>y) oz 1l+wy
o __pr  d_ pY
o (+oy) &z liey C
o, _of, _of, ot _
ox 01 01 0X,

1. The eigenvalues near E, =(0,0,0,0) is

=T, /12:_(5‘“:]) ) ﬂsz_dl ) ’14:_d2

Saddle point.

All societies are extinct except for prey because
intrinsic value is positive.

2. Equilibrium Point E, = (1,0,0,0)

By ko
(tox) Box (L4oy )
0 0 L,
(+ay)

‘-J(El)—/il‘=0

-r—A1 C+0

c c-6-q-4 0 0

0 0 L 42 o
l+w

0 0 0

d,-2
A®(r+5+q —i+d1+d2)/13 ®
1+ o
pr pe

(6r +gr -——+rd, +rd, +-——cd,
l+ow l+ow

—ed,—c~P% i 5d,+o0,- L
l+o l+w

qd, +qd, - A, +d,d, —c?-co)A?
1+ o

crdl—crdz—cr—’gr +rdd,
ﬂ d

oL ﬂ
+rdd,
ﬂqd
1

+r§d2— ﬂq +qrd +qrd, —

+ﬂ—cdlo|2
l+w

ﬁéd

2
ﬂc _ 2d1_C2d2_

cpo
+qd.d, + Z—=———c ——
a9 1+ @

1+w
_prod,
l+o

cprd,
l+w
N pcid, | Boed,
l+0o l+o0 1+o
+qrd,d, -c’dd, +scd,d,)=0

/14 +Al3+Bﬂ.2

sed, +ocd, ) A @ (——=2

Brad,

—crdd, +ordd,

+Cca+D =0 where

A=r+0+(q ——1ﬂ +d, +d,
+o
pr

B=0r+qr———+rd, +rd, +— e -cd, —cd,
1+w 1+o

—c—lﬂ—+§d +od, - ﬂq +qd +qd, -
+

+dd,-c*-co
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Cc :ﬂ—crdl—crdz—cr—ﬁ+r5d1+r6d2
l+o +o
A prd, cpd,
——+qrd, +qrd, — rd,d —cdd
l+a)+q 1A l+(o+ ! 2+l+a) e
ﬂ5d2 ﬂqu ﬂcz 2 2
——24+6dd, - dd,+—-c’d,—c*d
a)+ e 1+a)+q ! 2+1+a) ! 2
—@+5Cd1+50d2
l+o

cprd, prod, prad, +,Bczdz | pocd,
l+o 1l+o0o l+o0o l+o l+o

.

—crdd, +ord,d, +qrd,d, —c’dd, +cd,d, )

2

.. A=ABC —C2—A D

At (K —kg =k, —kg) A%+ (kkg+k,

TJPS
By Routh Hurwitz theorem this point is stable if
A>0andA>0and D >0..

3. The positive equilibrium point
Eg=(x"x{,y"2")
k,-4 Kk, K, 0

. ki—=24 kg 0 _o

7 ks kg_ﬂ* klO

0 0 k, ky,-2

k9 + klk12 + k5k9 + k5k12 + k9k12 - k10k11

_k6k12 _k3k7 —k2k4)12 +(_k1k5k9 _k1k5k12 _klklZ + k1k10k11 + klk6k8 _k5k9k12
+K Kok, + KKk, + KoK K, + KoK Ky — KKk, —k Kk, kg +k kK, +k3k7k12)/1+
k1k5k9k12 + k1k5k9k10 - keksklz - k5k9k12 - k2k4k9k12 + k2k4k10k11 + k2k7k12
koK Kok, — K kk k, =0
24 a2 4BA%4Cca+D =0 where l
) ) 08| |.Predator
LA=ABC-C"-A"D
By Routh Hurwitz theorem this point is stable if £ o6l S.Prey
A >0withconditionMy-M, <-M,-M. | emma 15: The %
and.I.D >.0 ,A>0. . N S o T Prey
equilibrium E_=(x",x;,y",z") is global stability
Proof: as in lemma 11. wl I.Predator
6. Numerical Simulation ; o o o - P

In this section, the study employs Mathematica
Programing to illustration some results. the study
shows that the effect of harvesting and cure rate from
the disease on the behavior of the solution. the study
deals with two cases: First when the model is the kind
SI. In such model, susceptible prey become infected
prey and not able to become susceptible again. Then
it employs the harvest to see its impact on behavior.
Figure (6) the behavior of solution of system (1) as SI
model without harvesting, while, figure (7) the
behavior of solution with harvesting. the study
reveals the note in these two cases how employ the

harvesting to disease control.
10 T T

|.Predator

08 -

08| T.Predator

Populations

04t S.Prey

I.Prey

02 -

600 1000
Time

Fig. 6: SI model without harvesting.

0 200 400

Time

Fig. 7: SI model with harvesting.

The second case, the model is the kind SIS. In such
model susceptible prey become infected prey and
become susceptible again. Figure (8) behavior of
solution of system (4) as SIS model without
harvesting, while figure (9) employ the harvesting to
disease control. Also, we note the effect of

harvesting on disease to not become as epidemic.

10 F7

1.Predator

08 -

oor T.Predator

Populations

04t
S.Prey

02 -

I.Prey
00

200 400 600 800 1000
Time

Fig. 8: SIS model without harvesting.
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Fig. 9: SIS model with harvesting.
7. Conclusion
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1- SIS and SI models were studied as well as partial
models as the study proven that solutions are
constrained and positive .

2- It was concluded that there are no periodic
solutions for bilateral models.

3- Stability points were found and conditions were
established, and the conditions that make the stability
points stable local stability, where the benefit of the
lack of periodic solutions to prove the overall
stability, as was the benefit of the Lebanov function
to prove the overall stability of non-bilateral models.
4- the study also showed how to control the sick prey
and prevent the disease from turning into a pandemic
and it proved that (harvest / vaccine) does not affect
the stability of the system , and we discussed some of
the results by the numerical simulations whether the
model is SIS or SI.

prey populations, Mathematical biosciences, 68(2):
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