TJPS

Tikrit Journal of Pure Science

ISSN: 1813 – 1662 (Print) --- E-ISSN: 2415 – 1726 (Online)

Journal Homepage: http://tjps.tu.edu.iq/index.php/j

Identification Functions in Hexa Toplogical Spaces

Asmaa S. Qaddoori

Department of Mathematics, College of Education for women, Tikri University, Tikrit, Iraq https://doi.org/10.25130/tjps.v26i6.198

ARTICLE INFO.

Article history:

-Received: 11 / 8 / 2021 -Accepted: 1 / 9 / 2021

-Available online: / / 2021

Keywords: α_h _open set, \mathfrak{p}_h _open set, β_h _open set, α_h _identification, \mathfrak{p}_h -identification, \mathfrak{p}_h _identification, and β_h _identification.

Corresponding Author: Name: Asmaa S. Qaddoori E-mail: <u>asmaasalih@tu.edu.iq</u> Tel:

1. Introduction and Preliminaries

An $\alpha_{(\text{pre}, b_{\beta}, \beta_{\beta})$ open sets have been introduced and investigated by O.Njasted who knows the α_{-} open set and studied α _continuous and α _irresolute[10,3,13], Mashhour [2,3]introduced and studied the concept pre_ open set, pre_continuous and pre_irresolute in topological space.While Andrjevic [4] presented b_ open set and studied its characteristics b_continuous and b irresolute. El-Monsef [8,12] introduced the ideal of β_{-} open set and β_{-} continuous, so studied its characteristics $\beta_{\rm i}$ irresolute by Maheshwair and Thakur [13].

The single topology is extended to bi-topological space, tri-topological space, quad-topological space, penta-topological space [5,6,7,9] and Hexa topological space by R.V.Chandra, et.al ,introduced and investigated the notion of h open sets in $h_{\text{topological spaces}}[11]$. A lso studied some types of functions of Hexa topological spaces[1]. ALkutabi [12] introduced and studied some weak identification functions. Present work we study the concepts of the different types of identifications functions and discuss their relation. Moreover we investigate the relationship between these identification functions types and other types .In this paper, we will use the expressions, \mathcal{N} and Y to denote topological spaces(M, \mathfrak{J}_{h1}), (\mathcal{N} , \mathfrak{J}_{h2}) and(Y, \mathfrak{J}_{h3}) respectively, for subset \mathcal{A} of space (M, \mathfrak{I}_h) with int

ABSTRACT

he fundamental point of the current work is to concentrate on new definitions of $(\alpha_{h_{-}}, \mathfrak{p}_{h_{-}}, \beta_{h_{-}})$ open sets to generalize identification functions in Hexa topological spaces called $(\alpha_{h_{-}}, \mathfrak{p}_{h_{-}}, \beta_{h_{-}}, \beta_{h_{-}})$ identification functions and may relationship between theme were discussed and proved with examples.

 (\mathcal{A}) , and $cl(\mathcal{A})$ denoting the interior and closure of set \mathcal{A} . Subset \mathcal{A} of space M is said to be:

1. α _open set [10] if $\mathcal{A} \subseteq int(cl(int(\mathcal{A})))$. Hence, \mathcal{A}^c is called α _closed.

2. pre_open set [2,3] if $\mathcal{A} \subseteq int(cl(\mathcal{A}))$. Hence, \mathcal{A}^c is called pre_closed.

3. β -open set [4] if $\mathcal{A} \subseteq cl(int(cl(\mathcal{A})))$. Hence, \mathcal{A}^c is called β -closed.

4. b_open set[8] if $\mathcal{A} \subseteq (cl(int(\mathcal{A})) \cup int(cl(\mathcal{A})))$. Hence \mathcal{A}^c is called b_closed.

Definition 1.1 [11]

Let *M* be a non empty set and $\tau_1, \tau_2, \tau_3, \tau_4, \tau_5, \tau_6$ are general topology on *M*. Then a subset \mathcal{A} of space X is said to be hexa-open(*h*-open) set if $\mathcal{A} \in \bigcup_{i=1}^{6} \tau_i$ and its complement is said to be *h*-closed set and the set with six topologies called $(M, \tau_1, \tau_2, \tau_3, \tau_4, \tau_5, \tau_6)$ Hexa Topology and (M, \mathfrak{I}_h) for Hexa Topological Space(*h*_topological) where $\mathfrak{I}_h =$ $(\tau_1, \tau_2, \tau_3, \tau_4, \tau_5, \tau_6)$. And Hexa-open sets satisfy all the axioms of topology.

Definition1.2 [11]

If (M, \mathfrak{J}_h) is a *h*_topological and $F \subseteq M$. Then 1. The *h*_ interior of F is the union of all *h*-open subset contained in F and is denoted by int $(F)_h$.

subset contained in F and is denoted by int (F). So be int (F)_h is the largest *h*-open subset of F 2. The h_{-} closure of E is the intersection of all h-closed sets containing E and is denoted by $cl(E)_h$. So be $cl(E)_h$ is the smallest h_{-} closed set containing E.

2. Some Types of Hexa Open Sets Definition 2. 1

A subset \mathcal{A} of space (M, \mathfrak{J}_h) is said to be:

1- Hexa α_{-} open set (α_{h} _open) if $\mathcal{A} \subseteq$ int_h (cl_h(int_h(\mathcal{A}))). Hence \mathcal{A}^{c} is called α_{h} _closed set.

2- Hexa pre_open set $(\mathfrak{p}_{h-}open)$ if $\mathcal{A} \subseteq \operatorname{int}_{h}(\operatorname{cl}_{h}(\mathcal{A}))$. Hence \mathcal{A}^{c} is called \mathfrak{p}_{h-} closed set.

3- Hexa β_{open} set $(\beta_{h_{-}open)}$ if $\mathcal{A} \subseteq cl_h(\operatorname{int}_h(cl_h(\mathcal{A})))$. Hence \mathcal{A}^c is called $\beta_{h_{-}closed}$ set.

4- Hexa b_open set (\mathfrak{h}_{h}) open) if A ⊆ $(\mathrm{cl}_h(\mathrm{int}_h(\mathcal{A})) \cup \mathrm{int}_h(\mathrm{cl}_h(\mathcal{A})))$. Hence \mathcal{A}^c called \mathfrak{h}_h _closed set.[11] The family of all $(\alpha_{h-}, \mathfrak{p}_{h-}, \beta_{h-}, \mathfrak{h}_{h-})$ open sets is denoted by $\alpha hO(M)$, $\mathfrak{p}hO(M)$, $\beta hO(M)$, $\mathfrak{h}hO(M)$ respectively.

Proposition 2.2 These statements hold true:

1- Every h – open set is a α_h -open set.

2- Every α_{h} open set is a \mathfrak{p}_{h-} open set.

3- Every \mathfrak{p}_{h-} open set is a \mathfrak{h}_h open set.

4- Every \mathfrak{h}_h _open set is a β_h _open set.

Proof : The proof is obvious.

Remark 2.3 The converse of the proposition above is not true.

By definition 2.1, present the following diagram that illustrates the relationship between the types of h-open sets.

$$h - \text{open } set \rightarrow \alpha_h \text{_open } set \rightarrow \mathfrak{p}_{h-} \text{ open } set \rightarrow \mathfrak{h}_h \text{_open } set \rightarrow \beta_h \text{_open } set$$

Diagram (1)

Example 2.4 Let $\mathfrak{F}_1 = \{M, \emptyset, \{a, b\}\}$, $\mathfrak{F}_2 = \{M, \emptyset, \{a, c\}, \{b\}, \{a, b, c\}\},$ $\mathfrak{F}_3 = \{M, \emptyset, \{a\}, \{b, c, d\}\},$ $\mathfrak{F}_4 = \{M, \emptyset, \{c\}, \{a, c, d\}\},$ $\mathfrak{F}_5 = \{M, \emptyset, \{c, d\}\}$ and

 $\mathfrak{I}_{6} = \{M, \emptyset, \{a, b, c, d\}\}.$ then $\mathfrak{I}_{h} =$

 $\left\{ M, \emptyset, \{a\}, \{b\}, \{a, c\}, \{c, d\}, \{a, b\}, \{a, b, c\}, \{a, b, c, d\} \right\}$ on $M = \{a, b, c, d\}$.

A subset \mathcal{A} of M, is called h-openset if $\mathcal{A} \in \bigcup_{i=1}^{6} \tau_i$. The family of all h-open (h_{closed}) sub sets of (M, \mathfrak{J}_h) will be denoted by (hO(M)), (hC(M)), then

$$hO(M) =$$

 $\begin{cases} M, \emptyset, \{a\}, \{b\}, \{a, c\}, \{c, d\}, \{a, b\}, \{a, b, c\}, \{a, b, c, d\} \end{cases}, \text{ its satisfy all the axioms of topology , } hC(M) = \\ \{\emptyset, M, \{a, b, e\}, \{b, d, e\}, \{c, d, e\}, \{a, c, d, e\}, \{e\}, \{d, e\}, \{b, c, d, e\} \}, \\ \text{And the results 1-} \{b, c, d\} \text{ is } \alpha_h \text{ open set but its not } h \text{ open set} \end{cases}$

2- {c} is \mathfrak{p}_{h-} open set but its not α_{h-} open set

3- {a, b, e} is \mathfrak{h}_h _open set but its not \mathfrak{p}_{h-} open set.

4- {c,e} is β_h _open set but its not \mathfrak{h}_h _open set.

Theorem 2.5 Let \mathcal{B} and \mathcal{A} be subset of \mathcal{M} such that $\mathcal{A} \subseteq \mathcal{B} \subseteq \text{int} (\mathcal{A})_h$, if \mathcal{A} is $\alpha_{h_-}(\mathfrak{p}_{h_-}, \mathfrak{h}_{h_-}, \beta_{h_-})$ open set then \mathcal{B} is also $\alpha_{h_-}(\mathfrak{p}_{h_-}, \mathfrak{h}_{h_-}, \beta_{h_-})$ open set .

Proof. suppose that \mathcal{A} is \mathfrak{p}_{h-} open set, we have $\mathcal{A} \subseteq$ int $(cl(\mathcal{A})_h)_h \subseteq$ int $(cl(\mathcal{B})_h)_h$, so int $(\mathcal{A})_h \subseteq$ int $(cl(\mathcal{B})_h)_h$. Then \mathcal{B} is also \mathfrak{p}_{h-} open set.

Theorem 2.6 The *h*-closed set in *h*_topological is $\alpha_{h_{-}}(\mathfrak{p}_{h_{-}}, \mathfrak{h}_{h_{-}}, \beta_{h_{-}})$ closed set in *h*_topological.

Proof . we prove the case \mathfrak{p}_{h-} closed set

Let \mathcal{B} be a *h*-closed subset of \mathcal{M} . Thus \mathcal{B}^c is *h*-openset ,as long $\mathcal{B}^c \subseteq cl(\mathcal{B}^c)_h \to int(\mathcal{B}^c)_h \subseteq int(cl(\mathcal{B}^c)_h)_h$, we get $\mathcal{B}^c \subseteq int(cl(\mathcal{B}^c)_h)_h$. Hence \mathcal{B}^c is \mathfrak{p}_h -open set, thus \mathcal{B} is \mathfrak{p}_h -closed set.

Definition 2.7 : Let f be a function of space \mathcal{M} into space \mathcal{N} . Then

1- \mathfrak{f} is called an *h*-open (*h*-closed) function if the image of each *h*-open (*h*-closed) set in \mathcal{M} is an *h* _open (*h*_closed) set in \mathcal{N} .

2- f is called α_h open function if the image of each α_h open set in \mathcal{M} is α_h open set in \mathcal{N}

3- f is called p_{h-} open function if the image of each p_{h-} open set in \mathcal{M} is p_{h-} open set in \mathcal{N}

4- \mathfrak{f} is called $\mathfrak{h}_{h_{-}}$ open function if the image of each $\mathfrak{h}_{h_{-}}$ open set in \mathcal{M} is $\mathfrak{h}_{h_{-}}$ open set in \mathcal{N}

5- \mathfrak{f} is called $\beta_{h_{-}}$ open function if the image of each $\beta_{h_{-}}$ open set in \mathcal{M} is $\beta_{h_{-}}$ open set in \mathcal{N}

Remark 2.8 The diagram below holds for functions

h – open fun. $\rightarrow \alpha_h$ _open fun. $\rightarrow \mathfrak{p}_h$ _open fun.

 $\rightarrow \mathfrak{h}_h _ \text{ open fun.} \rightarrow \beta_h _ \text{open fun.}$ **Diagram (2)**

"the following examples ,the converse of these implications is not true in general."

Definition 2.9 A function $f: (M, \mathfrak{J}_{h1}) \rightarrow (\mathcal{N}, \mathfrak{J}_{h2})$ is called

1. *h*-continuous function if f^{-1} of any *h*-open set in \mathcal{N} is an *h*-open set in M [11]. 2. α_h _continuous function if f^{-1} of any *h*-open set in \mathcal{N} is α_h _open set in \mathcal{M}

3. \mathfrak{p}_{h-} continuous function if \mathfrak{f}^{-1} of any *h*-open set in \mathcal{N} is \mathfrak{p}_{h-} open set in M.

4. \mathfrak{h}_h continuous function if \mathfrak{f}^{-1} of any *h*-open set in \mathcal{N} is \mathfrak{h}_h open set in M

5. $\beta_{h_{-}}$ continuous function if f^{-1} of any *h*-open set in \mathcal{N} is $\beta_{h_{-}}$ open set in M.

Remark 2.10 The diagram below shows the relationship between continuous function .

$$h$$
 - continuous $\rightarrow \alpha_h$ _continuous $\rightarrow \mathfrak{p}_h$ _continuous $\rightarrow \mathfrak{h}_h$ _continuous

 $\rightarrow \beta_h$ _continuous

"In general, the converse of these implications and the following examples. are not true .

Example 2.11 From example 2.4 became

 $\mathfrak{I}_h =$

 $\{M, \emptyset, \{a\}, \{b\}, \{a, c\}, \{c, d\}, \{a, b\}, \{a, b, c\}, \{a, b, c, d\} \}$ on $M = \{a, b, c, d\}$. Then

1. $\mathfrak{f} : M \to M$ defined by $\mathfrak{f}(a) = \mathfrak{c}$, $\mathfrak{f}(b) = \mathfrak{b}, \mathfrak{f}(\mathfrak{c}) = \mathfrak{a}$, $\mathfrak{f}(d) = \mathfrak{d}, \mathfrak{f}(\mathfrak{e}) = \mathfrak{e}$, is \mathfrak{p}_{h-} continuous function but not α_{h-} cont.

 $f: M \longrightarrow M$ defined by f(a) = a, f(b) =2. b, f(c) = c, f(d) = d, f(e) = b, is \mathfrak{h}_{h} -cont.but not \mathfrak{p}_h _cont. .

3. $f: M \to M$ defined by f(a) = c, f(b) = e,f(c) = a, f(d) = d, f(e) = b,is β_h _cont.but not \mathfrak{h}_h _cont.

Definition 2.12 Let f be a function of space *M* into space \mathcal{N} ,Then

1. $\alpha_{h_{-}}$ irresolute function if f^{-1} of any $\alpha_{h_{-}}$ open set in \mathcal{N} is $\alpha_{h_{-}}$ open set in M.

2. \mathfrak{p}_{h-} irresolute function if \mathfrak{f}^{-1} of any \mathfrak{p}_{h-} -open set in \mathcal{N} is \mathfrak{p}_{h-} open set in M.

3. \mathfrak{h}_h _ irresolute function if \mathfrak{f}^{-1} of any \mathfrak{h}_h -open set in \mathcal{N} is \mathfrak{h}_h _ open set in M .

4. $\beta_{h_{-}}$ irresolute function if f^{-1} of any β_{h} -open set in \mathcal{N} is β_h _open set in M.

We get the relationship between irresolute function α _irresolute $\rightarrow p_h$ _irresolute $\rightarrow h_h$ _irresolute

$\rightarrow \beta_{h}$ _irresolute Diagram (4)

Example 2.13 From example 2.4 .Let

$$\mathfrak{J}_{h1} =$$

 $\{M, \emptyset, \{a\}, \{b\}, \{a, c\}, \{c, d\}, \{a, b\}, \{a, b, c\}, \{a, b, c, d\}\}$ on $M = \{a, b, c, d\}$. Then

1. $f: M \to M$ defined by f(a) = a, f(b) = c, f(c) = b, f(d) = d, f(e) = e; is p_{h-} irresol. and not α_h _irresol.

2. $f : M \longrightarrow M$ defined $byf(a) = d_{i}f(b) = b_{i}$ f(c) = e, f(d) = d, f(e) = c; is \mathfrak{h}_{h} -irresol. and not p_{h-} irresol.

3. $f: M \to M$ defined by f(a) = c, f(b) = b, f(c) = ba, f(d) = e, f(e) = d is β_{h} -irresol. not and \mathfrak{h}_h _irresol.

3. Identifications Function in Hexa Toplogical **Spaces**

In this section we introduce new definitions of identification function bv using $(\alpha_{h-}, \mathfrak{p}_{h-}, \mathfrak{h}_{h-}, \beta_{h-})$ open sets . Further we study the relations between these.

Definition 3.1

А function $f: (M, \mathfrak{J}_{h1}) \to (\mathcal{N}, \mathfrak{J}_{h2})$ is called α_{i} dentification function iff f is surjective , and one of " these conditions is satisfied:"

1- W is α_h open set in \mathcal{N} iff $f^{-1}(w)$ is α_h open set in M.

2- W is $\alpha_{h_{-}}$ closed set in \mathcal{N} iff $f^{-1}(w)$ is $\alpha_{h_{-}}$ closed set in *M*.

Example 3.2 Let
$$\Im_{h1} = \{M, \emptyset, \{b\}, \{b, c\}, \{a, b\}, \{a, b, c\}\}$$
 on $M =$

 $\{a, b, c, d\}$ and $\mathfrak{I}_{h2} = \{\mathcal{N}, \varphi, \{1,2\}, \{2\}, \{2,3\}, \{1,2,3\}\}$ on $\mathcal{N} =$ {1,2,3,4 }

 $f: M \to \mathcal{N}$ defined by (a) = 1, f (b) = 2, If f(c) = 3, f(d) = 4,then f is under α_{i} dentification function.

Theorem 3.3

Every α_h irresolute function and α_h open $(\alpha_h \text{ closed})$ surjective functions is α_h identification function.

Proof. Suppose that $f: (M, \mathfrak{J}_{h1}) \to (\mathcal{N}, \mathfrak{J}_{h2})$ and f(W) is α_h _open set

since f is surjective and α_h open set .Hence $f(\mathfrak{f}^{-1}(\mathbf{w})) = \mathbf{w}$ is α_h open set and $\mathbf{W} \subseteq \mathcal{N}$. Since \mathfrak{f} is α_h _irresolute function and $f^{-1}(w)$ is α_h open in *M*, then f falls set under α_h _identification function .

Definition 3.4

A surjective function $f: (M, \mathfrak{J}_{h1}) \to (\mathcal{N}, \mathfrak{J}_{h2})$ is called p_{h-} identification function and W is p_{h-} open set in \mathcal{N} iff $f^{-1}(w)$ is \mathfrak{p}_{h-} – open set in M. Result 3.5

function Every α_h identification as p_{h-} identification function but the reverse is not true. Form example3.2L

et $\Im_{h1} = \{M, \emptyset, \{c, d\}, \{b\}, \{b, c, d\}, \{a, b\}, \{a, b, c, d\}\}$ on $M = \{a, b, c, d, e\}$ and

 $\mathfrak{I}_{h2} = \{\mathcal{N}, \varphi, \{1,2\}, \{2\}, \{2,3\}, \{1,2,3\}\}$ on $\mathcal{N} =$ $\{1,2,3,4\}$. If $f: M \to \mathcal{N}$ defined by f(a) =1, f(b) = 2, f(c) = 3, f(d) = 4. Then f is under p_{h-} identification function.

Lemma 3.6

Let surjective function $f: (M, \mathfrak{J}_{h1}) \to (\mathcal{N}, \mathfrak{J}_{h2})$ be called p_{h-} identification function and W is p_{h-} closed set in \mathcal{N} iff $f^{-1}(w)$ is \mathfrak{p}_{h-} closed set in M. **Proposition 3.7**

Every p_{h-} irresolute function and p_{h-} open $(\mathfrak{p}_h \text{-} \text{closed})$ surjective functions are p_{h} -identification function.

Proof. Since every $\alpha_{h_{-}}$ function is $\mathfrak{p}_{h_{-}}$ function and every $\alpha_{h_{-}}$ irresolute is $p_{h_{-}}$ irresolute. Then by theorem (3.3)obtain every α_h identification function $isp_{h-}identification$ function.

Definition 3.8

" A surjective function $f: (M, \mathfrak{J}_{h1}) \to (\mathcal{N}, \mathfrak{J}_{h2})$ called \mathfrak{h}_{h-} identification functionand one of the following conditions is satisfied"

 $f^{-1}(w)$ is 1) W is \mathfrak{h}_{h-} open set in, iff \mathfrak{h}_{h-} open set in M.

2) W is \mathfrak{h}_{h-} closed set in \mathcal{N} iff $\mathfrak{f}^{-1}(w)$ is $\mathfrak{h}_{h_{-}}$ closed set in M.

"From Diagram (1), if every p_{h-} -open set is \mathfrak{h}_{h-} open set, then each

 p_{h-} identification function is

 \mathfrak{h}_{h-} identification function."

Example 3.9 From example 3.2 If $f: M \to M$ defined by f(a) = a, f(b) = b, f(c) = bd, f(d) = c, then f is \mathfrak{h}_h -identification function but not p_{h-} identification function.

Proposition 3.10

Let $f: (M, \mathfrak{J}_{h1}) \to 0$	$(\mathcal{N},\mathfrak{J}_{h2})$ be		surjective
function \mathfrak{h}_{h-} open	$(\mathfrak{h}_{h-} \operatorname{close})$	ed)	and
\mathfrak{h}_{h-} irresolute function,	then	f	is
$\mathfrak{h}_{h_{-}}$ identification function	on.		

Proposition 3.11

The composition of two α_h _identification (p_h -identification, $\mathfrak{h}_{h_{-}}$ identification)

functions

are

 $\alpha_{h_}identification(\mathfrak{p}_{h_}identification,$

 \mathfrak{h}_{h-} identification) functions.

Proof. Suppose that $f: (M, \mathfrak{J}_{h1}) \to (\mathcal{N}, \mathfrak{J}_{h2})$ and $g: (\mathcal{N}, \mathfrak{J}_{h2}) \rightarrow (Y, \mathfrak{J}_{h3})$ are $\alpha_{h_{-}}$ identification function, whenever the compositions of two onto functions are surjective. If W be any α_h _open set in hypothesis, g and f by \mathfrak{J}_{h3} , are $\alpha_{h_} identifications \ function \ , then \ g^{-1} \left(W \right)$ is $\alpha_{\rm h}$ _open set in \mathcal{N} and we get $f^{-1}(g^{-1}(W)) =$ $(gof)^{-1}(W)$ is α_h open in M and W is α_h open set in M .Then gof is α_{h} _identification function Similarly that gof is $(p_{h-}identification, h_{h-}identification)$ functions. **Proposition 3.12**

Let $f: (M, \mathfrak{J}_{h1}) \to (\mathcal{N}, \mathfrak{J}_{h2})$ and $g: (\mathcal{N}, \mathfrak{J}_{h2}) \to (Y, \mathfrak{J}_{h3})$ be functions and f be α_h identification $(\mathfrak{p}_h$ -identification, \mathfrak{h}_h -identification)functions Then the following statements are valid

function. Proof

1) Let gof: $(M, \mathfrak{J}_{h1}) \rightarrow (Y, \mathfrak{J}_{h3})$ be α_h cont. and assume that k is any h-open set in Y Let V = $g^{-1}(k)$ and W= $f^{-1}(V)$. Whenever $gof^{-1}(k) =$ $f^{-1}(g^{-1}(k)) = W$ is α_h open in M, then $gof^{-1}(k)$ α_h open set in M but f is α_h identification function. Therefore V is α_h open set in \mathcal{N} . As $g^{-1}(k)$ is α_h open set in \mathcal{N} , then g is α_h cont.

2) Assume that k is any α_h open set in Y, Let V = $g^{-1}(k)$ and W= $f^{-1}(V)$, we have $gof^{-1}(k) = f^{-1}(g^{-1}(k)) = W$ that is W is α_h open set in M, we obtain $gof^{-1}(k) = \alpha_h$ open set in M, since f is α_h identification function. Then V is α_h open set in \mathcal{N} , whenever $f^{-1}(k)$ is α_h openset in \mathcal{N} . we get g is α_h irresolute function.

Definition 3.13

Let function $f : (M, \mathfrak{J}_{h1}) \to (\mathcal{N}, \mathfrak{J}_{h2})$ be surjective β_{h} -identification function and W is β_{h} -open set in \mathcal{N} iff f^{-1} (w) is β_{h} -openset in M.

From diagram (1)we obtain every \mathfrak{h}_{h-} identification function as β_{h-} identification function, but the converse is not true. For instance 3.2 let $f: M \to M$ be defined by f(a) = a, f(b) =b, f(c) = e, f(d) = d, f(e) = cthen f is \mathfrak{h}_{h-} identification function but not p_{h-} identification function.

Proposition 3.14

Let function $f: M \to \mathcal{N}$ be surjective β_{h} -identification function and W is β_{h} -open set in \mathcal{N} iff f^{-1} (W) is β_{h} -closed set in M.

Proof. Let W be β_{h-} closed subset of \mathcal{N} , then W^c is β_{h-} open in \mathcal{N} , since f is β_{h-} identification function , we get f^{-1} (W) is β_{h-} closed set in M (because f is

onto and $(f^{-1}(W))^c = f^{-1}(W^c)$ is β_{h_-} openset in M). Similarly if $f^{-1}(W)$ is β_{h_-} closed set in M, we obtain that $f^{-1}(W)^c = f^{-1}(W^c)$ is β_{h_-} openset in M and f is β_{h_-} identification function, hence W is β_{h_-} closed set in \mathcal{N} , since W be β_{h_-} open set in M. Then W^c is β_{h_-} closed set in \mathcal{N} , whenever $(f^{-1}(W))^c = f^{-1}(W^c)$ is β_{h_-} closed set in M, we get $f^{-1}(W)$ is β_{h_-} open set in M. Then W^c is β_{h_-} open set in M. Then W^c is β_{h_-} open set in M.

Proposition 3.15

Let surjective function $f : M \to \mathcal{N}$ be $\beta_{h_{-}}$ open($\beta_{h_{-}}$ closed) and $\beta_{h_{-}}$ irresolute. Then f is $\beta_{h_{-}}$ identification function.

Proof .Suppose that W is β_{h-} closed set in M and $W \subseteq \mathcal{N}$ such that $f^{-1}(W)$ is β_{h-} closed set in M ,whenever $(f(f^{-1})(W)) = W$, we obtain that W is β_{h-} closed set in M(since $f^{-1}(W)$ is β_{h-} closed set in M and f is β_{h-} closed set in M). Hence W^c is β_{h-} open set in M, since f is β_{h-} irresolute function ,then $f^{-1}(W)$ is β_{h-} openset in M, whenever f is onto $(f^{-1}(W))^c = f^{-1}(W^c)$, we get $f^{-1}(W)$ is β_{h-} open set in M by Proposition (3.14). Then f is β_{h-} identification function.

Theorem 3.16 These statements hold true.

1-Every

 $\alpha_{h_}identification \ function is \mathfrak{p}_{h_}identification \ function$

Proposition 3.17

"The composition of two β_{h} _identification functions is β_{h} _identification function".

Proof. $f: M \to \mathcal{N} \text{ and } g: \mathcal{N} \to Y$ be Let β_{h} -identifications function ,whenever the composition of two onto functions is surjective, let W be any β_{h} open in Y since g , f are g^{-1} (W) β_{h} -identifications function Then is $\beta_{h_{-}}$ open in \mathcal{N} , we have that $f^{-1}(g^{-1}(W)) =$ $(gof)^{-1}(W)$ is β_{h-} open in M , we get W is β_{h} open set in M. Then gof is β_{h} identification function.

Proposition 3.18

Let function $f: M \to \mathcal{N}$ and $g: \mathcal{N} \to Y$ be β_h _identification function. These statements are valid

1- If gof is β_h _cont. then g is β_h _cont.

2- If gof is $\beta_h_irresolute$ then g is $\beta_h_irresolute$. Proof

1- Let $f: M \to \mathcal{N}$ be $\beta_{h_}$ cont. and assume that k is any open set in Y, Let $V = g^{-1}$ (k) and $W = f^{-1}(V)$. We have $gof^{-1}(k) = f^{-1}(g^{-1}(k)) = W$ is $\beta_{h_}$ open set in M.Moreover $gof^{-1}(k)$ is $\beta_{h_}$ open in M,but f is $\beta_{h_}$ identification function

then V is β_{h} open we get $g^{-1}(k)$ is β_{h} open in \mathcal{N} and g is β_{h} cont.

2- Let k be any $\beta_{h_{-}}$ open set in Y and V = $f^{-1}(k)$ and W = $f^{-1}(V)$.We have $gof^{-1}(k) = f^{-1}(g^{-1}(k)) = W$ that is W is $\beta_{h_{-}}$ open set in M,we obtain $gof^{-1}(k)$ as $\beta_{h_{-}}$ open in M but f is $\beta_{h_{-}}$ identification function and V is $\beta_{h_{-}}$ open set in \mathcal{N} , hence g is $\beta_{h_{-}}$ irresolute.

Remark 3.19 From the above discussion and known results, we state the following implications.

 $\begin{array}{l} \alpha_{h_} \text{identification} \longrightarrow \mathfrak{p}_{h_} \text{ identification} \\ \longrightarrow \mathfrak{h}_{h_} \text{identification} \\ \longrightarrow \beta_{h_} \text{identification} \\ \textbf{Diagram (5)} \end{array}$

References

[1] A. A. Shihab, H.O.Mousa, R. A.Zaben, Hexa_ Homeomorphisms in Hexa Topological Spaces, Periodicals of Engineering and Natural Sciences . acceptable for publication (2021).

[2] A.S. Mashhour, M.E. Abd El-Monsef, S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Pros. Math. Science Egypt 53 (1982), 47–53.

[3] A. S.Mashhour, I. A. Hasonein, S. N. El-Deeb, α -Continuous and α -open Mapping, Acta. Math. Hunger 41 (1983), 213–218.

[4] D. Andrijevic, on b- open sets, Mat. Vesnik, 48 (1996), 59–64.

[5] J. C.Kelly, Bitopological Spaces, Proc. London Math. Soc., 3(1963), 17-89.

[6] M. S. Khan, and G. A. Khan, p-Continuity and p-Homeomorphism in penta topological spaces , European International Journal of Science and Technology, Vol. 7 ,(2018), No. 5, ISSN: 2304-9693.
[7] M, Kovar, On 3-Topological Version of Theta-Regularity, Internet. J. Math. Math. Sci., Vol., 23, (2000), No.6, 393-398.

Conclusion

Herein, we investigated the different types of identification functions in Hexa Toplogical Spaces and discussed their relation. Also investigated the relationship of this set of identification function with other types and proved many properties of these functions. Future work, we introduce the Generalization of the separation axioms on Hexa Toplogical Spaces and use the types of identification functions to raise the characteristic of Hexa _separation \Im_1 – spaces of the h_topological to another h_topological.

[8] M.E. AbdEl - Monsef, S.N. El-Deed, R.A. Mahmoud, β – open setsand β – continuous mappings, Bull. Fac. Sci. Assiut. Univ. 12 (1983), 77–90.

[9] D. V. Mukundan, introduction to Quad topological spaces (4 – tuple topology), International Journal of Scientific & Engineering Research, Volume 4, (2013), Issue 7, 2483-2485.

[10] O. Njastad, On some classes of nearly open sets, *Pacific. J. Math.* 15 (1965), 961–970.

[11] R.V. Chandra, V. Pushpalatha , introduction to Hexa Topological spaces (6-tuple topology),International Journal of Management, Technology And Engineering ISSN NO : 2249-7455 , Volume X, Issue I, JANUARY (2020) , 16-18.

[12] S.H. Al-kutaibi, On some types of identification, Dept. of Mathematics University of Tikreet, Tikreet Univ. J. Sci. 4 (1998), 49

[13] S.N. Maheshwair, S.S. Thakur, α -irresolute Mapping, Tamkang J. Math. **11** (1980), 209–21.

دالة الهوية في فضاءات التبولوجية السداسية أسماء صالح قدوري

قسم الرياضيات ، كلية التربية للبنات ، جامعة تكريت ، تكريت ، العراق

الملخص

الهدف الأساسي من العمل الحالي هو التركيز على تعاريف جديدة للمجموعات المفتوحة من نوع (α_h, p_h, b_h, b_h, β_h) في فضاءات التبولوجية السداسية المساسي من العمل الحالي هو التركيز على تعاريف جديدة للمجموعات المفتوحة من نوع (α_h_identification, p_h_identification, التبولوجية السداسية المسماة , المعامي في فضاءات (α_h_identification, p_h_identification, p_h_identification, β_h_identification)