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ABSTRACT 

The goal of this paper is to introduce numerical solution for Volterra-

Fredholm integro-differential equations of the second kind. The proposed 

method is Touchard polynomials method, and this technique transforms 

the integro-differential equations to the system of algebraic equations. 

Four examples are presented in order to illustrate the accuracy and 

efficiency of this method.  

 

1. Introduction 
Much attention has been given to study the integral 

and integro-differential equations because of their 

applications in different ways such as fluid dynamics, 

biological models, engineering and physical models. 

The integral equation is the equation that has no 

derivative. Several studies have been considered such 

type of equations by using different numerical 

methods, for example, the author in [1] used 

Bernstein polynomials method for solving Volterra-

Fredholm integral equations of the second kind. 

While, the same type of equations has been solved by 

using the Boubaker polynomials method [2]. 

Furthermore, the Touchard polynomials method has 

been applied to the same type of equations in [3]. A 

paper by [4] used Lagrange polynomials method for 

solving Volterra-Fredholm integral equations. The 

Touchard polynomials method has been applied in [5] 

for solving linear and nonlinear Volterra (Fredholm) 

integral equations. Then, several examples are given 

to illustrate the proposed method. In recent years, 

Volterra-Fredholm integral equation was solved by 

using Hosoya Polynomials [6]. Moreover, the 

hyperbolic basis functions has been used to solve the 

second kind linear Volterra-Fredholm integral 

equation [7]. On the other hand, the integro-

differential equations played important role in various 

fields and they have been taken much interesting by 

many studies such as in [8] considered Bernstein 

polynomials method for solving Volterra-Fredholm 

integro-differential equations of the second kind. 

Beside that, the Reliable Iterative method has been 

used to solve the same type of equations [9]. The 

Modified Decomposition method (MDM) was 

applied to Volterra-Fredholm integro-differential 

equation using Maple [10].  In addition, Block Pulse 

Functions and their operational matrices are used to 

solve Volterra-Fredholm integro-differential equation 

[11]. Lagrange polynomials method, Repeated 

Trapezoidal method, and Repeated Simpson's 1/3 

have been applied in [12-13] for solving such types of 

equations. Finally, the Power series, Chebyshev 

polynomials, and Legendre's polynomials method are 

considered in [14] for solving the same equations.  In 

the present paper, the Touchard polynomials method 

has been considered to solve the linear Volterra-

Fredholm integro-differential equations of the second 

kind. 

The present paper is organized as follows: the 

proposed method is presented in section two. The 

solution of such types of equations has been 

described in section three. Some numerical examples 

are given in section four. Then, the comparison with 

other results has been presented in section five.  

Finally, the conclusions of this paper are stated in 

section six. 

http://tjps.tu.edu.iq/index.php/j
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Generally, the Volterra-Fredholm integro-differential 

equation of the second kind is given in the form: 

1 1 2 2

0

( ) ( ) ( ) ( , ) ( ) ( , ) ( )

bt
g

g

g a a

F u h F h dh u h F h dh



        


    
 

(1,1) 

where the initial condition ( ) ,g 1,2,...,g

gF a F t  , for 

each

 

1 2, , ,a b R   , 
1 2( ), ( , ), ( , ),u h u h   

( ), 1,2,...,g g t    and ( ) 0g    are known functions 

which  have derivative on the interval [ , ]a b  and 

( )F  is the unknown function that will be 

determined. 

2. Touchard Polynomials Method 

The Touchard polynomials has been studied since 

1939 by Jacques Touchard which is a French 

mathematician. Touchard polynomials is defined as 

[5]: 

0

( )  r r











 
   

 


  (2,1)    

The first six terms of Touchard polynomials are:  

0 ( ) 1r   

1( ) 1r r    

2

2 ( ) 1 2r r r     

2 3

3( ) 1 3 3r r r r      

2 3 4

4 ( ) 1 4 6 4r r r r r       

2 3 4 5

5( ) 1 5 10 10 5 .r r r r r r        

2.1 The Matrix Formulation for (T-Ps) 

In this section, the matrix formulation of the proposed 

method has been presented. The Touchard 

polynomial can be written as a linear combination of 

a Touchard basis functions in terms of dot scalar as: 

0 0 1 1 2 2

0

( ) ( ) ( ) ( ) ( ) ( )q q

q

r r r r r r


      


           
  

(2,1) 

where
 

, 0,1,2,...,q q  are the unknown cofficients 

that will be found. Equation (2,1) can be written as a 

dot scalar of two vectors: 

 

0

1

0 1 2 2( ) ( )   ( )   ( )      ( ) .r r r r r 











 
 
 
       
 
 
  

    

(2,2) 

Equation (2,2) can be convert to the form: 

00 01 02 0 0

11 12 1 1

2

22 2 2

0

( ) 1            0 0

0 0 0 0

r r r r







 

 

    

   

  

 

   
   
   

         
   
   
      

 

(2,3) 

where ' s are the cofficients of the power basis that 

are used to detremine the respective Touchard 

polynomial. 

3. Solution for Volterra-Fredholm Integro-

Differential Equations of the Second Kind   

 This section presents an approximate solution of 

Volterra-Fredholm integro-differential equations by 

using Touchard polynomials method. 

Consider the VFIDE2K which is given in equation 

(1,1) 

1 1 2 2

0

( ) ( ) ( ) ( , ) ( ) ( , ) ( )

bt
g

g

g a a

F u h F h dh u h F h dh



        


    
 

(3,1) 

Let 

 

( ) ( )F r   , then 

0 0 1 1 2 2( ) ( ) ( ) ( ) ( )F r r r r                (3,2) 

where ( )r is the Touchard  polynomial which was 

defined in equation (1,1) and 
0 1 2, , , ,     are 

the unknown coefficients that will be determined. 

Equation (3,2) can be written as a dot product: 

 

0

1

0 1 2 2( ) ( )   ( )   ( )      ( ) .F r r r r







 



 
 
 
     
 
 
  

   

(3,3) 

Equation (3,3) can be converted to be: 

00 01 02 0 0

11 12 1 1

2

22 2 2

0

( ) 1           0 0 .

0 0 0

F r r r









 

    

   

   

 

   
   
   

       
   
   
      

 

(3,4)                          

Now, substituting equation (3,3) into equation (3,1) 

we get: 

 

0

1

0 1 2 2

0

( ) ( )   ( )   ( )        ( ) ( )

g

t

g

g

r r r r







    





  
  
  
      
  
  
    



 

    

 

0

1

1 1 0 1 2 2( , ) ( )   ( )   ( )        ( )
a

u h r r r r dh











  



 
 
 
     
 
 
  


 

   

 

0

1

2 2 0 1 2 2( , ) ( )   ( )   ( )        ( ) .

b

a

u h r r r r dh







  



 
 
 
     
 
 
  



   

(3,5) 

Next, applying equation (3,4) into equation (3,5) we 

get: 

 

0

1

0 1 2 2

0

( )   ( )   ( )        ( ) ( )

g

t

g

g

r r r r







   





  
  
  
      
  
  
    


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00 01 02 0 0

11 12 1 1

2

1 1 22 2 2

0

( , ) 1              0 0

0 0 0

a

u h r r r dh








 

    

   

    

 

   
   
   

       
   
   
      



 

 

     

00 01 02 0 0

11 12 1 1

2

2 2 22 2 2

0

( , ) 1              0 0

0 0 0

b

a

u h r r r dt









 

    

   

    

 

   
   
   

       
   
   
      



   

(3,6)  

Now, computing the integrations on the right side of 

equation (3,6), and this equation will simplified as a 

linear equation included   as a variable. Then, 

choosing j in the interval [ , ]a b by the formula 

j a jd   where  , 0,1,2, , .
b a

d j 



   After that, a 

system of a linear equations consisting of 1   

unknown coefficients 
0 1 2, , , ,     can be solved 

by using Gauss Elimination to determine the values 

of these unknown coefficients. These steps are 

summarized and presented in the following 

Algorithm. 

(Algorithm of Solution) 

Input:  
1 2( ( ), ( , ), ( ), , , , , )F u h a b             

Output: The polynomials of the degree .   

Step 1: Select the degree of the Touchard Polynomial 

method. 

Step 2: Put the Touchard polynomials in the 

unknown function of the VFIDE2K. 

Step 3: Compute the following 

1- Volterra Integral 

2- Fredholm Integral 

3- The term 

0

( ) ( )
t

g

g

g

F  



.  

Step 4: Compute

 

0 1 2, , , , .      

End. 

4. Numerical Examples 
In this section, four numerical examples are given in 

order to illustrate the proposed method. The 

computations associated with the examples have been 

performed by using Matlab. 

Example 1: Consider the following VFIDE2K [8] 
1

0 0

( ) 2 2 ( ) ( ) ,F e F h dh F h dh


     

with the initial 

condition (0) 0F   and the exact solution is 

( ) .F e   
 

 

 

 

 

 

 

 

 

 

Table 1: Numerical Results for Example 1. 

𝝎 
Exact 

Solution 

Yapp 

n=2 

Yapp 

n=3 

Yapp 

n=4 
L.S.E 

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 

0.1 0.1105     0.1976     0.1059     0.1106 0.0000 

0.2 0.2443     0.4467     0.2322     0.2445 0.0000 

0.3 0.4050     0.7474     0.3848     0.4051 0.0000 

0.4 0.5967     1.0997     0.5698     0.5964 0.0000 

0.5 0.8244     1.5035     0.7929     0.8234 0.0000 

0.6 1.0933     1.9588     1.0601     1.0916 0.0000 

0.7 1.4096     2.4657 1.3774     1.4075 0.0000 

0.8 1.7804     3.0241     1.7507     1.7781 0.0000 

0.9 2.2136     3.6341     2.1859     2.2115 0.0000 

1.0 2.7183     4.2957     2.6890     2.7162 0.0000 
 

 
Fig. 1: Exact and Approximate Solutions for Example 1. 
 

Example 2: Consider the following VFIDE2K [15]  

2

0 0

( ) 2sin( ) 3 ( ) ( ) ( ) ,F h F h dh F h dh





          
with 

the initial conditions (0) (0) 1F F    and (0) 1.F   

The exact solution is ( ) sin( ) cos( ).F      
 

Table 2: Numerical Results for Example 2. 

𝝎 
Exact 

Solution 

Yapp 

n=4 

Yapp 

n=5 
L.S.E 

0.0 1.0000 1.0000     1.0000 0.0000 

0.1 1.0948     1.0948     1.0948 0.0000 

0.2 1.1787     1.1788     1.1788 0.0000 

0.3 1.2509     1.2513     1.2509 0.0000 

0.4 1.3105     1.3117     1.3107 0.0000 

0.5 1.3570     1.3596     1.3575 0.0002 

0.6 1.3900     1.3949     1.3909 0.0008 

0.7 1.4091     1.4176     1.4107 0.0027 

0.8 1.4141     1.4277     1.4168 0.0078 

0.9 1.4049     1.4257     1.4095 0.0209 

1.0 1.3818     1.4119     1.3890 0.0524 
 

 
Fig. 2: Exact and Approximate Solutions for Example 2. 
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Example 3: Consider the following VFIDE2K [9]  
1

0 0

( ) 1 ( ) ( ) ( ) ,F h F h dh hF h dh



       
with the initial 

condition (0) 1F   and the exact solution is 

( ) .F e   
 

Table 3: Numerical Results for Example 3. 

𝝎 
Exact 

Solution 

Yapp 

n=7 

Yapp 

n=8 
L.S.E 

0.0 1.0000 1.0000 1.0000 0.0000 

0.1 1.1052 1.1053 1.1053 0.0000 

0.2 1.2214 1.2222 1.2220 0.0000 

0.3 1.3499 1.3524 1.3519 0.0000 

0.4 1.4918 1.4983 1.4970 0.0000 

0.5 1.6487 1.6623 1.6596 0.0001 

0.6 1.8221 1.8475 1.8417 0.0004 

0.7 2.0138 2.0566 2.0444 0.0009 

0.8 2.2255 2.2922 2.2674 0.0018 

0.9 2.4596 2.5560 2.5084 0.0024 

1.0 2.7183 2.8488 2.7617 0.0019 
 

 
Fig. 3: Exact and Approximate Solutions for Example 3. 
 

Example 4: Consider the following VFIDE2K [14]  
2

0

( ) ( ) ( ) ,
2

F F h dh F h dh

 




 



    
with the initial 

conditions (0) (0) 1F F    and (0) 1.F   The exact 

solution is ( ) cos( ).F      
 

Table 4: Numerical Results for Example 4. 

𝝎 
Exact 

Solution 

Yapp 

n=4 

Yapp 

n=5 
L.S.E 

0.0 1.0000     1.0000     1.0000 0.0000 

0.1 1.0950     1.0950     1.0950 0.0000 

0.2 1.1801     1.1796     1.1800 0.0000 

0.3 1.2553     1.2538     1.2552 0.0000 

0.4 1.3211     1.3174     1.3207 0.0000 

0.5 1.3776     1.3702     1.3770 0.0000 

0.6 1.4253     1.4121     1.4243 0.0000 

0.7 1.4648     1.4432     1.4635 0.0000 

0.8 1.4967     1.4634     1.4951 0.0000 

0.9 1.5216     1.4728     1.5203 0.0000 

1.0 1.5403     1.4716     1.5401 0.0000 
 

 
Fig. 4: Exact and Approximate Solutions for Example 4. 
 

5. Comparison With Other Methods 
In this section, the comparison of our results with 

some existing results that have been computed by 

using Bernstein polynomials method are presented. 

The comparison had been done for example one and 

displayed that the results are almost the same between 

the two numerical methods even with their degrees 

are different. But for this example, the proposed 

method had reached up to the exact solution faster 

than Bernstein polynomials method. Therefore, 

Touchard polynomials method is accurate and more 

efficient than Bernstein polynomials method of 

Example 1. 
 

Table 5: Comparison Numerical Results for Example 1. 

𝝎 

Exact  

Solution 

 

Touchard  

Polynomials 

Yapp, n=4 

Bernestein  

Polynomials 

Yapp, n=5 [8] 

0.0 0.0000 0.0000 0.0000 

0.1 0.1105 0.1106 0.1105 

0.2 0.2443 0.2445 0.2443 

0.3 0.4050 0.4051 0.4050 

0.4 0.5967 0.5964 0.5968 

0.5 0.8244 0.8234 0.8244 

0.6 1.0933 1.0916 1.0933 

0.7 1.4096 1.4075 1.4097 

0.8 1.7804 1.7781 1.7805 

0.9 2.2136 2.2115 2.2137 

1.0 2.7183 2.7162 2.7184 
 

6. Conclusion  
The types of equations are difficult to solve 

analytically, so they required  approximate solutions, 

and for this purpose, Touchard polynomials method 

has been applied to introduce the numerical solution 

for these equations. The obtained results showed that 

this method is efficient and accurate to estimate the 

solution of these equations. Also, we noticed that 

when the degree of the proposed method is increased, 

the error is decreased as a result of that. It is clear that 

from the Tables and Figures, more accurate results 

can be obtained by increasing the degree of the 

proposed method. Furthermore, the results of this 

study are compared with some existing results that 

have computed by different method.  The comparison 

showed that the proposed method is an accurate and 

efficient for solving such types of equations. A 

suggestion for future work may include the solution 
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algorithm can be programmed and then executed 

programmatically. Then, can apply the same method 

for solving the nonlinear Volterra-Fredholm integro-

differential equations of the second kind.  
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 فريدهولم التفاضلية التكاملية الخطية -متعددات حدود توجارد لحل معادلة فولتيراطريقة 
 محمد خالد شاحوذ 

‏،‏العراقالرمادي‏،‏‏مديرية‏تربية‏الانبار
 

 الملخص
اضددةية‏التمامةيددة‏ال ميددة‏مدده‏الندددا‏الدددانت‏بااددت داد‏متعددددا ‏حددددد‏التفلريدددادلد‏‏–لمعادلددة‏لدددلتيرا‏‏البحدده‏اددد‏ت ددديد‏حدد ‏ ددددي‏مدده‏ادد ا‏الهددد ‏

مدع‏‏النتداج م ارندة‏‏ ال دارزمية‏دالامدةة‏المعماة‏ات‏لتدضيح‏الح ‏باات داد‏ا ه‏المري ة‏دم ارنته‏مع‏الح ‏الدقيق.‏اضف‏الى‏ لد،،‏قدد‏تمد‏تدجارد.
ة‏دصدة ‏الدى‏اه‏المري دة‏الم ترحد‏لحةددل‏العدديدة.‏ادبتد ‏الم ارندةمري ة‏متعددا ‏حددد‏برنشتايه‏دالم ارنة‏كان ‏ممتازة‏دمتدال ة‏بيه‏الحةدل‏الدقي ة‏دا

ه‏اه‏مري ددة‏متعددددا ‏حددددد‏تدجددارد‏اددت‏مري ددة‏جيدددة‏دلعالددة‏لحدد ‏ادد ا‏الندددا‏مدده‏يممددا‏يبدد‏،مدده‏متعددددا ‏حددددد‏برنشددتايه‏ الحدد ‏الدددقيق‏لددت‏درجددة‏اقدد
‏‏‏المعادلا .


