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1. Introduction
Much attention has been given to study the integral
and integro-differential equations because of their
applications in different ways such as fluid dynamics,
biological models, engineering and physical models.
The integral equation is the equation that has no
derivative. Several studies have been considered such
type of equations by using different numerical
methods, for example, the author in [1] used
Bernstein polynomials method for solving Volterra-
Fredholm integral equations of the second Kkind.
While, the same type of equations has been solved by
using the Boubaker polynomials method [2].
Furthermore, the Touchard polynomials method has
been applied to the same type of equations in [3]. A
paper by [4] used Lagrange polynomials method for
solving Volterra-Fredholm integral equations. The
Touchard polynomials method has been applied in [5]
for solving linear and nonlinear Volterra (Fredholm)
integral equations. Then, several examples are given
to illustrate the proposed method. In recent years,
Volterra-Fredholm integral equation was solved by
using Hosoya Polynomials [6]. Moreover, the
hyperbolic basis functions has been used to solve the
second kind linear Volterra-Fredholm integral
equation [7]. On the other hand, the integro-
differential equations played important role in various
fields and they have been taken much interesting by
many studies such as in [8] considered Bernstein
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The goal of this paper is to introduce numerical solution for Volterra-

Fredholm integro-differential equations of the second kind. The proposed
method is Touchard polynomials method, and this technique transforms
the integro-differential equations to the system of algebraic equations.
Four examples are presented in order to illustrate the accuracy and
efficiency of this method.

polynomials method for solving Volterra-Fredholm
integro-differential equations of the second Kkind.
Beside that, the Reliable Iterative method has been
used to solve the same type of equations [9]. The
Modified Decomposition method (MDM) was
applied to Volterra-Fredholm integro-differential
equation using Maple [10]. In addition, Block Pulse
Functions and their operational matrices are used to
solve Volterra-Fredholm integro-differential equation
[11]. Lagrange polynomials method, Repeated
Trapezoidal method, and Repeated Simpson's 1/3
have been applied in [12-13] for solving such types of
equations. Finally, the Power series, Chebyshev
polynomials, and Legendre's polynomials method are
considered in [14] for solving the same equations. In
the present paper, the Touchard polynomials method
has been considered to solve the linear Volterra-
Fredholm integro-differential equations of the second
kind.

The present paper is organized as follows: the
proposed method is presented in section two. The
solution of such types of equations has been
described in section three. Some numerical examples
are given in section four. Then, the comparison with
other results has been presented in section five.
Finally, the conclusions of this paper are stated in
section six.
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Generally, the Volterra-Fredholm integro-differential
equation of the second kind is given in the form:

iﬁg(w)Fg(w):¢(w)+ﬂ1Tu1(w,h)F(h)dh +,sz.u2(w,h)F(h)dh
g=0 a a

(11)

where the initial condition F@)=F,.0=L12,..t for

ab,B.B,eR, $(w)u,(@,h),u,(@,h),
S5,(@),9 =12,...t and S,(w)=0 are known functions

each

which have derivative on the interval [a,b] and
F(w)is the unknown function that will be

determined.

2. Touchard Polynomials Method

The Touchard polynomials has been studied since
1939 by Jacques Touchard which is a French
mathematician. Touchard polynomials is defined as

[5]:

The first six terms of Touchard polynomials are:
ro(r)zl

L(r)y=1+r

T,(r)=1+2r +r?

,(r)=1+3r+3r2+r®

[,(r)=1+4r +6r>+4r®+r*

[, (r)=1+5r +10r® +10r® +5r +r°.

2.1 The Matrix Formulation for (T-Ps)

In this section, the matrix formulation of the proposed
method has been presented. The Touchard
polynomial can be written as a linear combination of
a Touchard basis functions in terms of dot scalar as:

F,(r)=éoru(r)+§1ﬂ(r)+§zrz(r)+--~+§,r,(r)=i§qrq(r)
q=0
2.1)
where £ .q=0,1,2,...,zare the unknown cofficients

that will be found. Equation (2,1) can be written as a
dot scalar of two vectors:

o
S
L.(r)=[(r) Ty(r) Ty(r) L.} |-
S
(2.2)
Equation (2,2) can be convert to the form:
Koo Kou Koz © Ko || o
0 xy &y CoK || &
r=[Lrr [0 0 K - |4
0 0 0 0 « ||

2,3

\(/vhe)re x's are the cofficients of the power basis that
are used to detremine the respective Touchard
polynomial.

3. Solution for Volterra-Fredholm Integro-
Differential Equations of the Second Kind
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This section presents an approximate solution of
Volterra-Fredholm integro-differential equations by
using Touchard polynomials method.

Consider the VFIDE2K which is given in equation
(11)

259(w)Fg(w)=¢(w)+ﬂju1(w,h>F(h)dh +ﬁ2_b[u2(w,h)F(h)dh

3.1)

Let F(w)=T_(r),then

F(@) =&l (r)+ &0 (r) + &, (r) +--+ &1 ,(r) (3.2)
where I'_(r)is the Touchard polynomial which was
defined in equation (1,1) and &,,&,,&,, -, &, are

the unknown coefficients that will be determined.
Equation (3,2) can be written as a dot product:

So
S
F(@)=[Ty(r) Tu(r) Ty(r) r.]é|.
o]
33)
Equation (3,3) can be converted to be:
Koo Koi Koz Ko || So
0 xy ny K, || &
F(a)):[l ror? ~rrJ 0 0 «xy K, || & |
0 0 O x| &
(3:4)

Now, substituting equation (3,3) into equation (3,1)

we get:
9

&
t &
.5, (@)[[[o(r) (1) T,() - T.0] & || =4(0)
gl'
&
] 51
+4,[u(@,)[T4(r) Ty(r) T,(r) - T.(r)] & [dn
_51
&1
. &
4, Uy (@M)[To(r) Ty(r) T,(r) - T.()] & [dh.
&

(3,5)
Next, applying equation (3,4) into equation (3,5) we
get:

g

&
t 51
2.6, |[To() L) To(r) -+ L] & || =)

gf
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Ko Ky Ko = Ko |G

0 0 xy mp - K |G
Bfu@nL e 00 K, ok ||&|dh

a U |

0 0 0 - &, ||&

Ko K K = Koo || S

b 0wy & = K ||§
+ﬁ2ju2(m,h)[1r o 00 Ky Ky ||t

0 0 0 « «||&
(3.6)
Now, computing the integrations on the right side of
equation (3,6), and this equation will simplified as a
linear equation included @ as a variable. Then,

choosing@; in the interval [a,b]by the formula

o —a+jdwhere §_b=a o .4, After that, a
T

system of a linear equations consisting of 7+1
unknown coefficients &,,<&,,&,, -+, £, can be solved

by using Gauss Elimination to determine the values
of these unknown coefficients. These steps are
summarized and presented in the following
Algorithm.

(Algorithm of Solution)

Input: (F (o),u(w,h),¢(w),w,a,b, 4, 3,)

Output: The polynomials of the degree .

Step 1: Select the degree of the Touchard Polynomial
method.

Step 2: Put the Touchard polynomials in the
unknown function of the VFIDE2K.

Step 3: Compute the following

1- Volterra Integral

2- Fredholm Integral

g=0

Step 4: Compute &;,&,,&,,-++, &,

End.

4. Numerical Examples

In this section, four numerical examples are given in

order to illustrate the proposed method. The

computations associated with the examples have been

performed by using Matlab.

Example 1: Consider the following VFIDE2K [8]

F’(a)):2e‘”—2+:fF(h)dh +jF(h)dh,W'th the initial
0 0

condition F(0)=0 and the exact solution is
F(w)=cwe”.
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Table 1: Numerical Results for Example 1.

Exact Yapp Yapp Yapp LSE
Solution | n=2 n=3 n=4 -
0.0 | 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000
0.1 | 0.1105 0.1976 | 0.1059 | 0.1106 | 0.0000
0.2 | 0.2443 0.4467 | 0.2322 | 0.2445 | 0.0000
0.3 | 0.4050 0.7474 | 0.3848 | 0.4051 | 0.0000
0.4 | 0.5967 1.0997 | 0.5698 | 0.5964 | 0.0000
0.5 | 0.8244 1.5035 | 0.7929 | 0.8234 | 0.0000
0.6 | 1.0933 1.9588 | 1.0601 | 1.0916 | 0.0000
0.7 | 1.4096 2.4657 | 1.3774 | 1.4075 | 0.0000
0.8 | 1.7804 3.0241 | 1.7507 | 1.7781 | 0.0000
0.9 | 2.2136 3.6341 | 2.1859 | 2.2115 | 0.0000
1.0 | 2.7183 4.2957 | 2.6890 | 2.7162 | 0.0000

w

4.5
4r —©— yexact 7
app,n=2
ask | yapp. i
yapp,n=3
3l * yapp,n=4 4
D
25F A
g 2f 1
15+ bt
1k //éb/ ]
&
_—
_—
05| o g
09/4’/6)/ .
05 c c c c c c c c c
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

Fig. 1: Exact and Approximate Solutions for Example 1.
Example 2: Consider the following VFIDE2K [15]

F"(w) = ZSin(a))fa)73+]Z(a)7h)F(h)dh +'2fF(h)dh,With

the initial conditionsF)=F'(0)=1 and F"(0)=-1.
The exact solution is F (@) = sin(w) + cos(w).

Table 2: Numerical Results for Example 2.
Exact Yapp Yapp

Solution | n=4 n=5 LSE
0.0 | 1.0000 1.0000 | 1.0000 | 0.0000
0.1 | 1.0948 1.0948 | 1.0948 | 0.0000
0.2 | 1.1787 1.1788 | 1.1788 | 0.0000
0.3 | 1.2509 1.2513 | 1.2509 | 0.0000
0.4 | 1.3105 1.3117 | 1.3107 | 0.0000
0.5 | 1.3570 1.3596 | 1.3575 | 0.0002
0.6 | 1.3900 1.3949 | 1.3909 | 0.0008
0.7 | 1.4091 1.4176 | 1.4107 | 0.0027
0.8 | 1.4141 1.4277 | 1.4168 | 0.0078
0.9 | 1.4049 1.4257 | 1.4095 | 0.0209
1.0 | 1.3818 1.4119 | 1.3890 | 0.0524

w

15

—O— Exact
#— Approx.4
—+— Approx.5

14

13

11

0.9 c c c ¢ c ¢ c ¢ c
0 01 02 03 04 05 06 07 08 09 1

x-axis

Fig. 2: Exact and Approximate Solutions for Example 2.
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Example 3: Consider the following VFIDE2K [9]

F'(@) :1+T(w—h)F(h)dh +.1[th(h)dh,

with

the

initial

condition F(0)=1 and the exact solution is
F(w)=e”.
Table 3: Numerical Results for Example 3.
Exact Yapp Yapp
@ Solution n=7 n=8 LSE
0.0 1.0000 1.0000 1.0000 0.0000
0.1 1.1052 1.1053 1.1053 0.0000
0.2 1.2214 1.2222 1.2220 0.0000
0.3 1.3499 1.3524 1.3519 0.0000
0.4 1.4918 1.4983 1.4970 0.0000
0.5 1.6487 1.6623 1.6596 0.0001
0.6 1.8221 1.8475 1.8417 0.0004
0.7 2.0138 2.0566 2.0444 0.0009
0.8 2.2255 2.2922 2.2674 0.0018
0.9 2.4596 2.5560 2.5084 0.0024
1.0 2.7183 2.8488 2.7617 0.0019
3
—©&— Exact r

2.5

y-axis

0.5

[¢]

—#— Approx.7
—t— Approx.8
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r r

r r

r

.

0.1

0.2 0.3

0.4 0.5
x-axis

0.6 0.7

0.8

0.9 1

Fig. 3: Exact and Approximate Solutions for Example 3.
Example 4: Consider the following VFIDE2K [14]

F’"(a)):%z+]:F(h)dh + T oF (h)dh,

conditions F(0)=F'©0)=1 and —F"(0) =1.The exact

with

solution is F (@) = o + coS(w).

the

initial

Table 4: Numerical Results for Example 4.

Exact Yapp Yapp

“ | solution | n=4 n=5 LSE

0.0 | 1.0000 1.0000 | 1.0000 | 0.0000
0.1 | 1.0950 1.0950 | 1.0950 | 0.0000
0.2 | 1.1801 1.1796 | 1.1800 | 0.0000
0.3 | 1.2553 1.2538 | 1.2552 | 0.0000
04 | 1.3211 1.3174 | 1.3207 | 0.0000
0.5 | 1.3776 1.3702 | 1.3770 | 0.0000
0.6 | 1.4253 1.4121 | 1.4243 | 0.0000
0.7 | 1.4648 1.4432 | 1.4635 | 0.0000
0.8 | 1.4967 1.4634 | 1.4951 | 0.0000
0.9 | 1.5216 1.4728 | 1.5203 | 0.0000
1.0 | 1.5403 1.4716 | 1.5401 | 0.0000
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Fig. 4: Exact and Approximate Solutions for Example 4.

5. Comparison With Other Methods

In this section, the comparison of our results with
some existing results that have been computed by
using Bernstein polynomials method are presented.
The comparison had been done for example one and
displayed that the results are almost the same between
the two numerical methods even with their degrees
are different. But for this example, the proposed
method had reached up to the exact solution faster
than Bernstein polynomials method. Therefore,
Touchard polynomials method is accurate and more
efficient than Bernstein polynomials method of
Example 1.

Table 5: Comparison Numerical Results for Example 1.

Exact Touchard Bernestein
w | Solution | Polynomials | Polynomials
Yapp, n=4 | Yapp, n=5 [8]
0.0 | 0.0000 0.0000 0.0000
0.1 0.1105 0.1106 0.1105
0.2 0.2443 0.2445 0.2443
0.3 | 0.4050 0.4051 0.4050
0.4 | 0.5967 0.5964 0.5968
0.5 | 0.8244 0.8234 0.8244
0.6 | 1.0933 1.0916 1.0933
0.7 1.4096 1.4075 1.4097
0.8 1.7804 1.7781 1.7805
0.9 2.2136 2.2115 2.2137
1.0 | 27183 2.7162 2.7184

6. Conclusion

The types of equations are difficult to solve
analytically, so they required approximate solutions,
and for this purpose, Touchard polynomials method
has been applied to introduce the numerical solution
for these equations. The obtained results showed that
this method is efficient and accurate to estimate the
solution of these equations. Also, we noticed that
when the degree of the proposed method is increased,
the error is decreased as a result of that. It is clear that
from the Tables and Figures, more accurate results
can be obtained by increasing the degree of the
proposed method. Furthermore, the results of this
study are compared with some existing results that
have computed by different method. The comparison
showed that the proposed method is an accurate and
efficient for solving such types of equations. A
suggestion for future work may include the solution
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algorithm can be programmed and then executed
programmatically. Then, can apply the same method
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