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1. Introduction

ABSTRACT

I n this article, we present a new hybrid conjugate gradient method for

solving large Scale in unconstrained optimization problems. This
method is a convex combination of Dai-Yuan conjugate gradient and
Andrei- sufficient descent condition, satisfies the famous D-L conjugacy
condition and in the same time solidarities with the newton direction
with the suitable condition. The suggestion method always yields a
descent search direction at each it iteration. Under strong wolfe
powell(SWP) line search condition, the direction satisfy the global
convergence of the proposed method is established. Finally, the results
we achieved are good and it is show that our method is forceful and
effective.

A conjugate gradient (CG) method is calculated to
solve a nonlinear unconstrained optimization problem
The unconstrained optimization problem has the
following general form:

min{f(x):x € R"} (1)

where x € R™ is a real vector with n = 1 component
and f:R™ — R is smooth, nonlinear function and its

gradient denoted by g(x) = Vf(x) the nonlinear
CG method that starts from an initial guess x, €
R™ will be distinct using the iterations of the
sequence,Dai and Yuan[1] suggested the following
nonlinear conjugate

gradient algorithm:

Xk+1 = X + akdk' k= 0,1,2,3, (2)
Where x, is current iterate point and a;, > 0 is
called a step size determined by some line Searches.
The d is the search direction defined by:

—I9k+1- k=0
dii1 = { 3
T =Gresr + Bredic k=1 ®)
In (3)B, is known as the conjugate gradient

parameter.

The line search in the conjugate gradient algorithms
is often based on the standard Strong Wolfe Powell
(SWP) conditions [2,3]
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f O+ ardy) — £ (%) < pargid, (4)
9(xy + apdy)"dy = agidy (5)
Where d, isadescentdirectionand0 <p <o<1
Various conjugate gradient methods have been
proposed, and they mainly differ in the choice of the
parameter 8,,. Some well-known formulas for g,
being given below:

HS _ Ih+1Vk BFR _ lga+1ll® PRP _
k yide ' k grar ' k
g£+13’k
gk gk
cp _ lgrsall? LS _ 9£+1yk DY _
ko™ yla k™ glay ’ L
g p+ll?
yidg
Where | . || denotes the Euclidean norm, and the y,, =
Ir+1 — Gk-

The corresponding  method is respectively called,
(HS) Hestenes-Stiefel [4], (FR) Fletcher-Revees [5],
(PRP) Polak -Ribiere-Polyak [6,7], (CD) Conjugate
Descent [8], (LS) Liu-Storey [9], And (DY) Dai-
Yuan [1].

For a strictly convex quadratic functionf (x), and the
line search is exact, all these Methods are identical,
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meanwhile the gradients are equally orthogonal, so
the parameters f, in these methods are identical.
When realized to general nonlinear function with
inexact line searches, the behavior of these methods
is apparent

Different. one of important group of (CG) methods is
the hybrid conjugate gradient (HCG) algorithms, the
hybrid computational schemes HCG work better
than classical CG methods because the HCG take the
compensations of two parameters S, [10].

Many researches devoted to the hybrid or mixed
conjugate gradient methods that have better
computational

Have better computational performance and strong
convergence properties.

In this article we focus on hybrid conjugate gradient
methods as a convex combination of DY [1,11,12]
and CGSD [13] CG methods for solving
unconstrained optimization method with appropriate
conditions the consistent conjugate gradient (CG)
parameters are:

T
BDY — 9k+19k+1 (6)
k Yisk
And
T T T
BIEGSD — Ik+19k+1 _ Ok Gk+1)(Sic Gk+1) )

yEsk OV sp)?
The suggested method defined by set the parameter

B by:

(1= 0, )BP + 0,BEP (8)

In this paper, we choose the value of the parameter
0,in the convex combination the search direction
d;of

our algorithm not only is the Newton direction
[14],s0 satisfies the famous DL conjugate condition
proposed

by Dai and Liao [15]. Under the SWP condition, we
prove the global conjunction of the proposed
algorithm,

the numerical results also show the viability and
activity of our algorithm.

This study is prearranged as follows in the next
section we introduce the new proposed hybrid CG
method

HZI, and we got the parameter 8, and we give the
algorithm of our method. We also consider the
sufficient

descent property under the (SWP) condition in
section 3. , section 4. the global convergence property
future method is established. In section 5. , Some
numerical results are described.

2. New Hybrid Conjugate
Algorithm

In this unit, we will define a new proposed HCG
method, in order to get the Sufficient descent
direction, we will compute & as follows: we
conglomerate gPYand BS%P in (8). The direction
d,+1 are generated by:

dis1 = —Gar + B s, (9)

B =

Gradient
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The iterates xy, xy, xy, ... Of the proposed method are
computed by means of the recurrence (2), where the
step size «a is definition according to the SWP
condition (4) and (5).

The scale parameter 6, in (8) satisfying0 < 6, <
1, which will be indomitable a specific method to be
branded later. It is obvious that if 6, < 0 then
BNEW = BBM and if 8, > 1,then BYNEW = pACGHES,
On the other side, if 0< 6, <1, then BYE™ is a
convex combination of SZ™ and BACCHES | from (8)
and (9) it is clear that:

iy
k=1

= [_gm e gk)g,f;%z:u 5o+ 0, <9Z;3i1:+1 _ Ok yk(;?s(ks)lzym)
Our motivation to select the parameter 8, in such a
manner that the defection d,,, given (10) is equal

to the Newton direction df., = —V2f (xx41)  gk+1
.therefore

~V?f (Xk41) " Gra1 = —Gres1 + ((1 — 0B +
Gkﬁl(c:GSD) Sk
_sz(xk+1)_1gk+1 =

T T
Ik+19k+1 Ik+19k+1
—Grs1 + (1 —6) T Tse Sk + Oy (7 -

“Gk+1s

)sk, k>1 (10)

yEsk
(Y£9k+1)(5£gk+1)>
OEsi)?
T
—V2f (Xk41) " Gra1 = —Grer1 + %Sk{ -

0, <(Y£gk+;)(slggk+1)) 5. (11)
(Visk)

Therefore, in order to have an algorithm for solving

large scale problems we assume that pair ( sy , Vi )

satisfies the secant equation

Vi = V2 f (Xp)sic (12)

From (12) we get

sk VA f Ceern) = Vi

Multiplying (11) by sTV?f (x;.1) then we get
—Sk Jies1 = ;

sk V2 f (Xer1) Grer + %Slvzﬂxm)sk -

T T
O (—(y"g"“)(s"g"“)) STV f (o )Si

2
(sk)

_Sggkﬂ = —y;fgkﬂ +

T T
ek <(ykgk+1)(5kgk+1)) ylz‘sk

o)’
After some algebra, we get Denoting 674!
ellc-IZI
_ YeSkWicGrerr = SkGierr = GirrGiern)
(yzgk+1)(s£gk+1)
Algorithm HZI
Step1l : choose x, € R", € > 0, compute f(x,) and
go = —Vf(x,), setdy, = —go, When k=0

T
gk+1gk+1yTs
sk KK

= Qk,

(13)

Step 2 : Stopping criteria, if |l g, lI< €, then its
stop.
Step 3 : Compute a;, by using Strong Wolf Powell

condition in eq(3) and eq(4).
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Step 4 : Compute xp,q =Sk + ardy , and gy, 1 =
g(x,41) .Compute s, = x441 — X ,and

Vie = 9k+1 — Gk
Step5 : Iff, =1 thenputf, =1 . If 0, <0 ,
then put 8, = 0 , otherwise Compute 8, as (13)
Step 6 Compute pf# By (8), and Generate
dir1 = —Grs1 + BEs
Step 7 If the criteria of Powell |g7, gkl =
0.2 |l gxs+q II* Satisfied put the set dyi1 = —Gr+1r
otherwise,

we define dj, ., = d.
Step 8 : Evaluate @), ,setk=k+1
step2.
3. The Sufficient Descent Condition
In this section, we use to the following theorem to
clear up that the search direction d,obtained by HZI
satisfies the sufficient descent condition. For
additional deliberations, we need the assumptions
below:
3.1. Assumption
The level sets Q = {x € R™: f(x) < f(xo)} at x, is
bounded where x, is starting point, that
there exists w > 0, suchthat || x IS w,Vx € Q
3.2. Assumption
In a neighborhood N of Q, the function f is
continuously differentiable and its gradient is
Lipschitz continuous, i.e. there exists a constant
q > 0 , such that

, and go to

N7fx) =V I<qllx—yl,vx,y €N

Under assumption (3.1) and (3.2), there exists
positive constant (n,n,z2) ,such
that

n<|gall <nand z< |lgill <z Vx €Q

3.3. Theorem

Let the sequences {g,} and {d,} be generated by

HZI method. Then d,, is the search direction satisfies

the sufficient descent condition
Fi1die1 < =€ | Giepr 12,V

with ¢ = ¢3¢, + (1 — ¢3)cy

Proof

We demonstration that search direction d; shall

satisfies the sufficient descent condition embraces for

k = 0, the proof is a trivial one, i.e. dy = —g, and so

grdy = —Il go 1> . and that can be concluded that

(14) holds for k = 0.

Next is to show that it holds for > 0 .

HZI
—Jik+1 + B Sk

c=0 (14)

dgsr =
Obviously
dis1 = — a1 + (1= 0BT + 0, BE D) sy
We can rewrite the direction by the following below:
—(Or i1 + (1= 0 ) gr+1) + (1 —

0 )BEY + 0B D)k
It follows that

diy1 = 9k(‘9k+1 + ﬁEGSDSk) + (1= 6k )(—Ggrs1 +

diy1 =

B si)
Wherefrom
divr = Odigss” + (1 — Hk)dk+1 (14)
Multiplying the (14) from the left by g7,, , we get
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Gi+1dr+1 = OGirdiss’ + (1 = 01) gk 41dRY,

(15)
Firstly, let 8, =0 , then d;,, = d2Y, . Remember
that
dR¥s = =1 + BR sk
Gk+19k+1 = Jhr1(— k1 +TB}<DY5k)
Ji+1%k+1 = Jia1(—Giar + %) Sk)
Ji+15k
Thardiess = =1 oy 17 (1 = L2y
k °k
Ghirdirs = =1l g 1? (1) (1)

For (16) satisfy sufficient descent condition we have

T T
YieSk—9k+15k

<M
YEsk

,M >0

So that

Iir1dkia =

We denote ¢; =
Jir1dii1 =

We are done with 6,, = 0

Now, let 8, =1 , then dy ., =

that

~M |l Gisr I
M > 0, then we can write

C1||gk+1”2 7)

dCGSD

¥+1_ - Remember

CGSD _
dyi1 =
gk+1dk+1

Gir1is1 = Gha1(—Gr+1 + (
(3’1{9k+1)(5}€9k+1)>5 )
OFsi)? k
Jie+1dk+1 =
g£+1(_gk+1 +
((gk+19k+1)(yk5k) (ykgk+1)(5kgk+1)> k)

(yksk)

—Gr+1 + B
CGSD
i1 (=Grs1 + .3 Sk)
Ik+19k+1 _
yEsk

91€+1dk+1 =
=[G+l +

(9h19k41) VE 51) (9sa 1) = (Vi Grer) (Sk G 1) (a1 Sk)
Tz (18)
(i si)

For (18) satisfy sufficient descent condition we have

(gk+1gk+1)(Yk Sk)(gk+15k) (Yk gk+1)(5k gk+1)(gk+15k)
(yk Sk)

Ll gk+1l? ,where 0 < L < 1
So that
i+1d55530 < =N grsall* + L 11 grsall?
And
ng+1dlgﬁD <-(1-1L) ”gk+1”2

We denote ¢, = (1 — L) > 0 then we can write
gk+1dk+1 < = Il Gi4r _”2 _(19) ]

Next, we are going to prove the direction satisfy the
sufficient descent condition when 0 < 6, <1, we
have gi,i5k < yisk <pllsell®> and v = gisr —
i, then from (13) we get
@lsi®) (1gr+ 11~ ghr1 9k—Plisil> =l gx4111%)

(I19k+112=9k1191) @lIsicl?)
We have |gi, 19kl = 0.2 [lgi+1II* then
HzI < ~021gks1 2 -Plisil? (20)

K T gk lP-02 g l?
From assumption (3.1), (3.2) and we know that

X = Isiell < Mxgsr = il < Mgl =
lxgll < w

GHZI

Sk = Xk+1 —
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Set the overhead in (20) become
=2 2
QII(_IZI < O.ZOT;ﬁ;JW =y

From (15), (17), (19), and (21) we get

“ Gher s < —lezep + (1 = c3)eq ]l gusal?
“ Gi1disr S —C llgrsall?, with ¢ = cze, + (1 -

€3)c1

Therefore, it is showed that d,,, satisfied the
sufficient descent condition.
4. Global Convergence analysis
For any conjugate gradient method with strong wolf
line search, the convergence holds. But for general
function, only weak form of the zoutendijk condition
is needed (Dai and Liao, 2001).
4.1. Lemma
Let Assumption (3.1) and (3.2) holds. Consider the
method (2) and (3) where d,, is a descent direction

a,is established from the SWP if
1
ZkZl ||dk||2 -

Then

(21)

limy_einf ll g =0
4.2. Theorem
Suppose that Assumption (3.1) and (3.2) holds.
Consider the algorithm HZI were 0 <6, <1, and
Ay
is achieved by the strong wolfe line search and dj
is the descent direction. Then

limy o inf Il gx Il = 0
Proof
For the descent condition holds, we have d;,; # 0 .
So using lemma (4.1) it is sufficient to prove that
Il disq Il is confined above. From (9)
dis1 = —Gresr + Be"W sk
I dipr I=I0 Grerr I+ BEEY M s I
I diees ISI Grean I +[1T = 6,el- 1B | +
1651 BEEP ] 1 s N
By using Lipschitz condition and assumption (3.2) we
get

2 2
n
< Ngisal

DY
< <—=k
1B Iyillsell = aw — ©1
And
|ﬂCGSD| < lgrs1ll? el N grall skl -Ngr+all
k T lykllisgll lyelilskDN?

n? An.wn

— B(Aw)? (Aw)2

n?(1-AwB) _ K

= B@aw)?z 2

Now, we have
|9k| < y;fSk(y;fgk;l—sxfgk;l—g%“wu)
(v 9r+1) Sk Gre+1)
Using SWC, we get y7's, < p ay |Isll?
<P ollsil? (Iyrlllgr+all=lsillgr+1l-Nlgr+11%)

Iy rlllgr+all=lsellil g+l

p ax w2(An-wn-n?)

(An-wn)
p ax w2(A—w-n) _ K
(A-w) -3
"'” dk+1 ”S” gk+1 ” +[(1 - k3)k1 + k3k2]. ” Sk ”
<n+kw=1
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= Zkzlm = ni%z:kzl 1=
= lim,_, lnf”gk” =0

5. Numerical Results
In this section, we present the computational
performance of a FORTRAN implementation of the
(HzI)
algorithm on a set of 75 unconstrained optimization
test problems. And compiled with 77 (default
compiler
settings) on a Intel core i7. The test problems are the
unconstrained problems in CUTE [Bongratz et al,
1995] [16] library. Along with other large-scale
optimization problems presented in [17]. with the
number of variables (n=1000, and 10000). Along
with other large-scale optimization test problems in
[Andrei, 2008].All algorithm implement the wolf line

search condition ()] and (5) with
& =0.0001 and &, = 0.001 and the stopping
criterion ||gxlleo < (10)7¢  where ||.|l is the

maximum absolute component of a vector. The
criterion used here is CPU time.

From the figures below, we can conclude that (HZI)
algorithm behaves equally to or healthier than the
other algorithms.
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Conclusions

In this research, we proposed a new hybrid algorithm
in which we used the Newton direction method

to improve the constraints of the unconstrained
problem in the nonlinear optimization. The algorithm
was

also treated from the theoretical and practical sides,
with encouraging results in this field. The condition
of sufficient regression and universal convergence
was achieved under some assumptions. The new
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