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ABSTRACT 

In this article, we present a new hybrid conjugate gradient method for 

solving large Scale in unconstrained optimization problems. This 

method is a convex combination of Dai-Yuan conjugate gradient and 

Andrei- sufficient descent condition, satisfies the famous D-L conjugacy 

condition and in the same time solidarities with the newton direction 

with the suitable condition. The suggestion method always yields a 

descent search direction at each it iteration. Under strong wolfe 

powell(SWP) line search condition, the direction satisfy the global 

convergence of the proposed method is established. Finally, the results 

we achieved are good and it is show that our method is forceful and 

effective. 
 

 

1. Introduction 
A conjugate gradient (CG) method is calculated to 

solve a nonlinear unconstrained optimization problem 

The unconstrained optimization problem has the 

following general form:  

min{𝑓(𝑥): 𝑥 ∈ 𝑅𝑛}     (1)  

where  𝑥 ∈ 𝑅𝑛 is a real vector with  𝑛 ≥ 1 component 

and  𝑓: 𝑅𝑛 → 𝑅  is smooth, nonlinear function and its  

gradient denoted by   𝑔(𝑥) = ∇𝑓(𝑥)  the nonlinear 

CG method that starts from an initial guess  𝑥0 ∈
𝑅𝑛  will be distinct using the iterations of the 

sequence,Dai and Yuan[1] suggested the following 

nonlinear conjugate 

gradient algorithm: 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 ,          𝑘 = 0,1,2,3, …  (2) 

 Where 𝑥𝑘  is current iterate point and 𝛼𝑘 > 0 is 

called a step size determined by some line Searches. 

The 𝑑𝑘 is the search direction defined by:   

𝑑𝑘+1 = {
−𝑔𝑘+1 ,                          𝑘 = 0     
−𝑔𝑘+1 + 𝛽𝑘𝑑𝑘   ,          𝑘 ≥ 1      

         (3) 

In (3) 𝛽𝑘 is known as the conjugate gradient 

parameter.    

The line search in the conjugate gradient algorithms 

is often based on the standard Strong Wolfe Powell 

(SWP) conditions [2,3] 

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) − 𝑓(𝑥𝑘) ≤ 𝜌𝛼𝑘𝑔𝑘
𝑇𝑑𝑘   (4) 

𝑔(𝑥𝑘 + 𝛼𝑘𝑑𝑘)𝑇𝑑𝑘 ≥ 𝜎𝑔𝑘
𝑇𝑑𝑘   (5) 

Where  𝑑𝑘  is a descent direction and 0 < 𝜌 ≤ 𝜎 < 1  

Various conjugate gradient methods have been 

proposed, and they mainly differ in the choice of the 

parameter 𝛽𝑘. Some well-known formulas for 𝛽𝑘 

being given below:          

𝛽𝑘
𝐻𝑆 =

𝑔𝑘+1
𝑇 𝑦𝑘

𝑦𝑘
𝑇𝑑𝑘

 ,             𝛽𝑘
𝐹𝑅 =

‖𝑔𝑘+1‖2

𝑔𝑘
𝑇𝑔𝑘

 ,             𝛽𝑘
𝑃𝑅𝑃 =

𝑔𝑘+1
𝑇 𝑦𝑘

𝑔𝑘
𝑇𝑔𝑘

  

𝛽𝑘
𝐶𝐷 =

‖𝑔𝑘+1‖2

𝑦𝑘
𝑇𝑑𝑘

 ,            𝛽𝑘
𝐿𝑆 =

𝑔𝑘+1
𝑇 𝑦𝑘

𝑔𝑘
𝑇𝑑𝑘

 ,           𝛽𝑘
𝐷𝑌 =

‖𝑔𝑘+1‖2

𝑦𝑘
𝑇𝑑𝑘

  

Where ∥ . ∥ denotes the Euclidean norm, and the 𝑦𝑘 =
𝑔𝑘+1 − 𝑔𝑘.  

The corresponding   method is respectively called, 

(HS) Hestenes-Stiefel [4], (FR) Fletcher-Revees [5], 

(PRP) Polak -Ribiere-Polyak [6,7], (CD) Conjugate 

Descent [8], (LS)  Liu-Storey [9], And (DY) Dai-

Yuan [1]. 

For a strictly convex quadratic function𝑓(𝑥), and the 

line search is exact, all these Methods are identical, 

http://tjps.tu.edu.iq/index.php/j
https://doi.org/10.25130/tjps.v26i5.183
mailto:zeyaemoh1978@tu.edu.iq
mailto:Iman.K.Jamal35517@st.tu.edu.iq
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meanwhile the gradients are equally orthogonal, so 

the parameters  𝛽𝑘  in these methods are identical. 

When realized to general nonlinear function with 

inexact line searches, the behavior of these methods 

is apparent  

Different. one of important group of (CG)  methods is 

the hybrid conjugate gradient (HCG) algorithms, the 

hybrid computational schemes  HCG  work better 

than classical CG methods because the HCG take the  

compensations of two parameters 𝛽𝑘[10]. 

Many researches devoted to the hybrid or mixed 

conjugate gradient methods that have better 

computational 

Have better computational performance and strong 

convergence properties.  

In this article we focus on hybrid conjugate gradient 

methods as a convex combination of DY [1 ,11 ,12]    

and CGSD [13] CG methods for solving 

unconstrained optimization method with appropriate 

conditions the consistent conjugate gradient (CG) 

parameters are:  

𝛽𝑘
𝐷𝑌 =

𝑔𝑘+1
𝑇 𝑔𝑘+1

𝑦𝑘
𝑇𝑠𝑘

    (6) 

And                 

 𝛽𝑘
𝐶𝐺𝑆𝐷 =

𝑔𝑘+1
𝑇 𝑔𝑘+1

𝑦𝑘
𝑇𝑠𝑘

−
(𝑦𝑘

𝑇𝑔𝑘+1)(𝑠𝑘
𝑇𝑔𝑘+1)

(𝑦𝑘
𝑇𝑠𝑘)2   (7) 

The suggested method defined by set the parameter  

𝛽𝑘 by:                                                           

                                                      𝛽𝑘
𝑁𝐸𝑊 =

(1 − 𝜃𝑘)𝛽𝑘
𝐷𝑌 + 𝜃𝑘𝛽𝑘

𝐶𝐺𝑆𝐷  (8)    

In this paper, we choose the value of the parameter 

𝜃𝑘in the convex combination the search direction 

𝑑𝑘of  

our algorithm not only is the Newton direction 

[14],so satisfies the famous DL conjugate condition 

proposed 

by Dai and Liao [15]. Under the SWP condition, we 

prove the global conjunction of the proposed 

algorithm, 

the numerical results also show the viability and 

activity of our algorithm.  

This study is prearranged as follows in the next 

section we introduce the new proposed hybrid CG 

method   

HZI, and we got the parameter 𝜃𝑘  and we give the 

algorithm of our method. We also consider the 

sufficient  

descent property under the (SWP) condition in 

section 3. , section 4. the global convergence property 

future method is established. In section 5. , Some 

numerical results are described.  

2. New Hybrid Conjugate Gradient 

Algorithm  
In this unit, we will define a new proposed HCG 

method, in order to get the Sufficient descent 

direction, we will compute 𝜃𝑘as follows: we 

conglomerate 𝛽𝑘
𝐷𝑌and  𝛽𝑘

𝐶𝐺𝑆𝐷   in (8). The direction 

𝑑𝑘+1 are generated by: 

𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘
𝑁𝐸𝑊𝑠𝑘  (9) 

The iterates  𝑥𝑘 , 𝑥𝑘 , 𝑥𝑘 , … of the proposed method are 

computed by means of the recurrence (2), where the 

step size  𝛼𝑘  is definition according to the SWP 

condition (4) and (5).  

   The scale parameter  𝜃𝑘 in (8) satisfying 0 ≤ 𝜃𝑘 ≤
1, which will be indomitable a specific method to be 

branded later. It is obvious that if 𝜃𝑘 ≤ 0 then 

𝛽𝑘
𝑁𝐸𝑊 = 𝛽𝑘

𝐵𝑀, and if 𝜃𝑘 ≥ 1,then 𝛽𝑘
𝑁𝐸𝑊 = 𝛽𝑘

𝐴𝐶𝐺𝐻𝐸𝑆. 

On the other side, if  0 < 𝜃𝑘 < 1, then  𝛽𝑘
𝑁𝐸𝑊 is a 

convex combination of 𝛽𝑘
𝐵𝑀 and  𝛽𝑘

𝐴𝐶𝐺𝐻𝐸𝑆 . from (8) 

and (9) it is clear that: 
𝑑𝑘+1

= {

−𝑔𝑘+1,                                         𝑘 = 1                                                                                     

−𝑔𝑘+1 + (1 − 𝜃𝑘)
𝑔𝑘+1

𝑇 𝑔𝑘+1

𝑦𝑘
𝑇𝑠𝑘

𝑠𝑘 + 𝜃𝑘 (
𝑔𝑘+1

𝑇 𝑔𝑘+1

𝑦𝑘
𝑇𝑠𝑘

−
(𝑦𝑘

𝑇𝑔𝑘+1)(𝑠𝑘
𝑇𝑔𝑘+1)

(𝑦𝑘
𝑇𝑠𝑘)2

) 𝑠𝑘,    𝑘 > 1      (10)  
 

Our motivation to select the parameter 𝜃𝑘 in such a 

manner that the defection  𝑑𝑘+1  given (10) is equal      

to the Newton direction 𝑑𝑘+1
𝑇 = −∇2𝑓(𝑥𝑘+1)−1𝑔𝑘+1  

.therefore 

−𝛻2𝑓(𝑥𝑘+1)−1𝑔𝑘+1 = −𝑔𝑘+1 + ((1 − 𝜃𝑘)𝛽𝑘
𝐷𝑌 +

𝜃𝑘𝛽𝑘
𝐶𝐺𝑆𝐷) 𝑠𝑘  

−𝛻2𝑓(𝑥𝑘+1)−1𝑔𝑘+1 =

−𝑔𝑘+1 + (1 − 𝜃𝑘)
𝑔𝑘+1

𝑇 𝑔𝑘+1

𝑦𝑘
𝑇𝑠𝑘

𝑠𝑘 + 𝜃𝑘 (
𝑔𝑘+1

𝑇 𝑔𝑘+1

𝑦𝑘
𝑇𝑠𝑘

−

(𝑦𝑘
𝑇𝑔𝑘+1)(𝑠𝑘

𝑇𝑔𝑘+1)

(𝑦𝑘
𝑇𝑠𝑘)2 ) 𝑠𝑘  

−𝛻2𝑓(𝑥𝑘+1)−1𝑔𝑘+1 = −𝑔𝑘+1 +
𝑔𝑘+1

𝑇 𝑔𝑘+1

𝑦𝑘
𝑇𝑠𝑘

𝑠𝑘 −

𝜃𝑘 (
(𝑦𝑘

𝑇𝑔𝑘+1)(𝑠𝑘
𝑇𝑔𝑘+1)

(𝑦𝑘
𝑇𝑠𝑘)

2 ) 𝑠𝑘  (11) 

Therefore, in order to have an algorithm for solving 

large scale problems we assume that pair ( 𝑠𝑘 , 𝑦𝑘  )      

satisfies the secant equation 

𝑦𝑘 = ∇2𝑓(𝑥𝑘+1)𝑠𝑘  (12) 

From (12) we get  

 

𝑠𝑘
𝑇∇2𝑓(𝑥𝑘+1) = 𝑦𝑘

𝑇       

Multiplying (11) by 𝑠𝑘
𝑇∇2𝑓(𝑥𝑘+1) then we get  

−𝑠𝑘
𝑇𝑔𝑘+1 =

−𝑠𝑘
𝑇∇2𝑓(𝑥𝑘+1)𝑔𝑘+1 +

𝑔𝑘+1
𝑇 𝑔𝑘+1

𝑦𝑘
𝑇𝑠𝑘

𝑠𝑘
𝑇∇2𝑓(𝑥𝑘+1)𝑠𝑘 −

𝜃𝑘 (
(𝑦𝑘

𝑇𝑔𝑘+1)(𝑠𝑘
𝑇𝑔𝑘+1)

(𝑦𝑘
𝑇𝑠𝑘)

2 ) 𝑠𝑘
𝑇∇2𝑓(𝑥𝑘+1)𝑠𝑘  

−𝑠𝑘
𝑇𝑔𝑘+1 = −𝑦𝑘

𝑇𝑔𝑘+1 +
𝑔𝑘+1

𝑇 𝑔𝑘+1

𝑦𝑘
𝑇𝑠𝑘

𝑦𝑘
𝑇𝑠𝑘 −

𝜃𝑘 (
(𝑦𝑘

𝑇𝑔𝑘+1)(𝑠𝑘
𝑇𝑔𝑘+1)

(𝑦𝑘
𝑇𝑠𝑘)

2 ) 𝑦𝑘
𝑇𝑠𝑘  

After some algebra, we get Denoting 𝜃𝑘
𝐻𝑍𝐼 = 𝜃𝑘 ,  

𝜃𝑘
𝐻𝑍𝐼

=
𝑦𝑘

𝑇𝑠𝑘(𝑦𝑘
𝑇𝑔𝑘+1 − 𝑠𝑘

𝑇𝑔𝑘+1 − 𝑔𝑘+1
𝑇 𝑔𝑘+1)

(𝑦𝑘
𝑇𝑔𝑘+1)(𝑠𝑘

𝑇𝑔𝑘+1)
      (13) 

Algorithm HZI 

Step 1   :  choose  x0 ∈ Rn,   ϵ > 0, compute f(x0) and 

 g0 = −∇f(x0), set d0 = −g0, When  k = 0   

Step 2   : Stopping criteria, if  ∥ 𝑔𝑛 ∥≤ 𝜖 , then its 

stop. 

Step 3   :  Compute 𝛼𝑘   by using Strong Wolf Powell 

condition in eq(3) and eq(4).                                          
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Step 4   : Compute  𝑥𝑘+1 = 𝑠𝑘 + 𝛼𝑘𝑑𝑘 , and 𝑔𝑘+1 =
𝑔(𝑥𝑘+1) .Compute  𝑠𝑘 = 𝑥𝑘+1 − 𝑥𝑘   , and 

               𝑦𝑘 = 𝑔𝑘+1 − 𝑔𝑘     

Step 5   :  If 𝜃𝑘 ≥ 1  then put 𝜃𝑘 = 1  .  If 𝜃𝑘 ≤ 0  , 

then put 𝜃𝑘 = 0   , otherwise Compute 𝜃𝑘 as (13) 

Step 6   :  Compute  𝛽𝑘
𝐻𝑍𝐼 By (8), and Generate   

𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘
𝐻𝑍𝐼𝑠𝑘 

Step 7   :  If the criteria of Powell |𝑔𝑘+1
𝑇 𝑔𝑘| ≥

0.2 ∥ 𝑔𝑘+1 ∥2 Satisfied put the set 𝑑𝑘+1 = −𝑔𝑘+1, 
otherwise,   

               we define 𝑑𝑘+1 = 𝑑𝑘 . 
Step 8   :  Evaluate 𝛼𝑘  , set 𝑘 = 𝑘 + 1   , and go to 

step2.  

3.  The Sufficient Descent Condition 

In this section, we use to the following theorem to 

clear up that the search direction 𝑑𝑘obtained by HZI 

satisfies the sufficient descent condition. For 

additional deliberations, we need the assumptions 

below: 

3.1. Assumption   

 The level sets 𝑄 = {𝑥 ∈ 𝑅𝑛: 𝑓(𝑥) ≤ 𝑓(𝑥0)}  at 𝑥0 is 

bounded where  𝑥0  is starting point, that         

there exists  𝑤 > 0 , such that  ∥ 𝑥 ∥≤ 𝑤, ∀𝑥 ∈ 𝑄  
3.2. Assumption                                                                                               

In a neighborhood  𝑁 𝑜𝑓 𝑄 , the function  𝑓 is 

continuously differentiable and its gradient is 

Lipschitz       continuous, i.e. there exists a constant 

𝑞 > 0  , such that 

∥ 𝛻𝑓(𝑥) − ∇𝑓(𝑦) ∥≤ 𝑞 ∥ 𝑥 − 𝑦 ∥, ∀𝑥, 𝑦 ∈ 𝑁  

Under assumption (3.1) and (3.2), there exists 

positive constant (𝑛, �̅�, 𝑧, 𝑧̅) ,such 

that                                

�̅� ≤ ‖𝑔𝑘+1‖ ≤ 𝑛, 𝑎𝑛𝑑 𝑧̅ ≤ ‖𝑔𝑘‖ ≤ 𝑧  ∀𝑥 ∈ 𝑄  
3.3. Theorem                                 
Let the sequences {𝑔𝑘} and {𝑑𝑘}  be generated by 

HZI method. Then 𝑑𝑘 is the search direction satisfies 

the sufficient descent condition                                                                        

𝑔𝑘+1
𝑇 𝑑𝑘+1 ≤ −𝑐 ∥ 𝑔𝑘+1 ∥2, ∀ 𝑐 ≥ 0   (14) 

with  𝑐 = 𝑐3𝑐2 + (1 − 𝑐3)𝑐1 

Proof 
We demonstration that search direction 𝑑𝑘 shall 

satisfies the sufficient descent condition embraces for 
𝑘 = 0, the proof is a trivial one, i.e.  𝑑0 = −𝑔0 and so 

𝑔0
𝑇𝑑0 = −∥ 𝑔0 ∥2 . and that can be concluded that 

(14) holds for 𝑘 = 0.    
Next is to show that it holds for > 0 .                                                                      

𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘
𝐻𝑍𝐼𝑠𝑘  

Obviously                                                                                                                                                    

𝑑𝑘+1 = −𝑔𝑘+1 + ((1 − 𝜃𝑘)𝛽𝑘
𝐷𝑌 + 𝜃𝑘𝛽𝑘

𝐶𝐺𝑆𝐷)𝑠𝑘  
We can rewrite the direction by the following below:                                                                               

𝑑𝑘+1 = −(𝜃𝑘𝑔𝑘+1 + (1 − 𝜃𝑘)𝑔𝑘+1) + ((1 −
𝜃𝑘)𝛽𝑘

𝐷𝑌 + 𝜃𝑘𝛽𝑘
𝐶𝐺𝑆𝐷)𝑠𝑘  

It follows that                                                                                                                                            

𝑑𝑘+1 = 𝜃𝑘(−𝑔𝑘+1 + 𝛽𝑘
𝐶𝐺𝑆𝐷𝑠𝑘) + (1 − 𝜃𝑘)(−𝑔𝑘+1 +

𝛽𝑘
𝐷𝑌𝑠𝑘)  

Wherefrom                                                                                                                                                

𝑑𝑘+1 = 𝜃𝑘𝑑𝑘+1
𝐶𝐺𝑆𝐷 + (1 − 𝜃𝑘)𝑑𝑘+1

𝐷𝑌      (14) 

Multiplying the (14) from the left by 𝑔𝑘+1
𝑇    , we get                                                                               

𝑔𝑘+1
𝑇 𝑑𝑘+1 = 𝜃𝑘𝑔𝑘+1

𝑇 𝑑𝑘+1
𝐶𝐺𝑆𝐷 + (1 − 𝜃𝑘)𝑔𝑘+1

𝑇 𝑑𝑘+1
𝐷𝑌    

(15) 

Firstly, let  𝜃𝑘 = 0  , then  𝑑𝑘+1 = 𝑑𝑘+1
𝐷𝑌   . Remember 

that 

𝑑𝑘+1
𝐷𝑌 = −𝑔𝑘+1 + 𝛽𝑘

𝐷𝑌𝑠𝑘  

𝑔𝑘+1
𝑇 𝑑𝑘+1 = 𝑔𝑘+1

𝑇 (−𝑔𝑘+1 + 𝛽𝑘
𝐷𝑌𝑠𝑘)  

𝑔𝑘+1
𝑇 𝑑𝑘+1 = 𝑔𝑘+1

𝑇 (−𝑔𝑘+1 + (
𝑔𝑘+1

𝑇 𝑔𝑘+1

𝑦𝑘
𝑇𝑠𝑘

) 𝑠𝑘)  

𝑔𝑘+1
𝑇 𝑑𝑘+1 = −∥ 𝑔𝑘+1 ∥2 (1 −

𝑔𝑘+1
𝑇 𝑠𝑘

𝑦𝑘
𝑇𝑠𝑘

) 

𝑔𝑘+1
𝑇 𝑑𝑘+1 = −∥ 𝑔𝑘+1 ∥2 (

𝑦𝑘
𝑇𝑠𝑘−𝑔𝑘+1

𝑇 𝑠𝑘

𝑦𝑘
𝑇𝑠𝑘

)     (16)  

For (16) satisfy sufficient descent condition we have  

 

|
𝑦𝑘

𝑇𝑠𝑘−𝑔𝑘+1
𝑇 𝑠𝑘

𝑦𝑘
𝑇𝑠𝑘

| ≤ 𝑀      , 𝑀 > 0  

So that 

𝑔𝑘+1
𝑇 𝑑𝑘+1

𝐷𝑌 = −𝑀 ∥ 𝑔𝑘+1 ∥2  

We denote 𝑐1 = 𝑀 > 0, then we can write  

𝑔𝑘+1
𝑇 𝑑𝑘+1

𝐷𝑌 = −𝑐1‖𝑔𝑘+1‖2     (17) 

We are done with 𝜃𝑘 = 0 

Now, let 𝜃𝑘 = 1 , then 𝑑𝑘+1 = 𝑑𝑘+1
𝐶𝐺𝑆𝐷  . Remember 

that  

𝑑𝑘+1
𝐶𝐺𝑆𝐷 = −𝑔𝑘+1 + 𝛽𝑘

𝐶𝐺𝑆𝐷𝑠𝑘  

𝑔𝑘+1
𝑇 𝑑𝑘+1 = 𝑔𝑘+1

𝑇 (−𝑔𝑘+1 + 𝛽𝑘
𝐶𝐺𝑆𝐷𝑠𝑘)  

𝑔𝑘+1
𝑇 𝑑𝑘+1 = 𝑔𝑘+1

𝑇 (−𝑔𝑘+1 + (
𝑔𝑘+1

𝑇 𝑔𝑘+1

𝑦𝑘
𝑇𝑠𝑘

−

(𝑦𝑘
𝑇𝑔𝑘+1)(𝑠𝑘

𝑇𝑔𝑘+1)

(𝑦𝑘
𝑇𝑠𝑘)2 ) 𝑠𝑘)  

𝑔𝑘+1
𝑇 𝑑𝑘+1 =

𝑔𝑘+1
𝑇 (−𝑔𝑘+1 +

(
(𝑔𝑘+1

𝑇 𝑔𝑘+1)(𝑦𝑘
𝑇𝑠𝑘)−(𝑦𝑘

𝑇𝑔𝑘+1)(𝑠𝑘
𝑇𝑔𝑘+1)

(𝑦𝑘
𝑇𝑠𝑘)

2 ) 𝑠𝑘)  

𝑔𝑘+1
𝑇 𝑑𝑘+1 =

−‖𝑔𝑘+1‖2 +
(𝑔𝑘+1

𝑇 𝑔𝑘+1)(𝑦𝑘
𝑇𝑠𝑘)(𝑔𝑘+1

𝑇 𝑠𝑘)−(𝑦𝑘
𝑇𝑔𝑘+1)(𝑠𝑘

𝑇𝑔𝑘+1)(𝑔𝑘+1
𝑇 𝑠𝑘)

(𝑦𝑘
𝑇𝑠𝑘)

2       (18)    

For (18) satisfy sufficient descent condition we have 

|
(𝑔𝑘+1

𝑇 𝑔𝑘+1)(𝑦𝑘
𝑇𝑠𝑘)(𝑔𝑘+1

𝑇 𝑠𝑘)−(𝑦𝑘
𝑇𝑔𝑘+1)(𝑠𝑘

𝑇𝑔𝑘+1)(𝑔𝑘+1
𝑇 𝑠𝑘)

(𝑦𝑘
𝑇𝑠𝑘)

2 | ≤

𝐿‖𝑔𝑘+1‖2  , 𝑤ℎ𝑒𝑟𝑒 0 < 𝐿 < 1  
So that  

𝑔𝑘+1
𝑇 𝑑𝑘+1

𝐶𝐺𝑆𝐷 ≤ −‖𝑔𝑘+1‖2 + 𝐿 ‖𝑔𝑘+1‖2  

And 

𝑔𝑘+1
𝑇 𝑑𝑘+1

𝐶𝐺𝑆𝐷 ≤ −(1 − 𝐿) ‖𝑔𝑘+1‖2  

We denote 𝑐2 = (1 − 𝐿) > 0  then we can write 

𝑔𝑘+1
𝑇 𝑑𝑘+1

𝐶𝐺𝑆𝐷 ≤ −𝑐2 ∥ 𝑔𝑘+1 ∥2    (19) 

   Next, we are going to prove the direction satisfy the 

sufficient descent condition when  0 < 𝜃𝑘 < 1, we 

have 𝑔𝑘+1
𝑇 𝑠𝑘 ≤ 𝑦𝑘

𝑇𝑠𝑘 ≤ 𝑝‖𝑠𝑘‖2  and  𝑦𝑘 = 𝑔𝑘+1 −
𝑔𝑘 , then from (13) we get 

𝜃𝑘
𝐻𝑍𝐼 ≤

(𝑝‖𝑠𝑘‖2)(‖𝑔𝑘+1‖2−𝑔𝑘+1
𝑇 𝑔𝑘−𝑝‖𝑠𝑘‖2−‖𝑔𝑘+1‖2)

(‖𝑔𝑘+1‖2−𝑔𝑘+1
𝑇 𝑔𝑘)(𝑝‖𝑠𝑘‖2)

  

We have |𝑔𝑘+1
𝑇 𝑔𝑘| ≥ 0.2 ‖𝑔𝑘+1‖2  then 

𝜃𝑘
𝐻𝑍𝐼 ≤

−0.2 ‖𝑔𝑘+1‖2−𝑝‖𝑠𝑘‖2

‖𝑔𝑘+1‖2−0.2 ‖𝑔𝑘+1‖2   (20)  

From assumption (3.1), (3.2) and we know that 
𝑠𝑘 = 𝑥𝑘+1 − 𝑥𝑘 ⇒ ‖𝑠𝑘‖ ≤ ‖𝑥𝑘+1 − 𝑥𝑘‖ ≤ ‖𝑥𝑘+1‖ −

‖𝑥𝑘‖ ≤ 𝑤 



  
 

  
Tikrit Journal of Pure Science Vol. 26 (5) 2021 

 

89 

Set the overhead in (20) become 

𝜃𝑘
𝐻𝑍𝐼 ≤

−0.2 �̅�2−𝑝 𝑤2

0.8 �̅�2 = 𝑐3      (21)  

From (15), (17), (19), and (21) we get     

∴ 𝑔𝑘+1
𝑇 𝑑𝑘+1 ≤ −[𝑐3𝑐2 + (1 − 𝑐3)𝑐1]‖𝑔𝑘+1‖2  

∴ 𝑔𝑘+1
𝑇 𝑑𝑘+1 ≤ −𝑐 ‖𝑔𝑘+1‖2 ,    𝑤𝑖𝑡ℎ  𝑐 = 𝑐3𝑐2 + (1 −

𝑐3)𝑐1  

Therefore, it is showed that 𝑑𝑘+1 satisfied the 

sufficient descent condition. 

4. Global Convergence analysis  
For any conjugate gradient method with strong wolf 

line search, the convergence holds. But for general         

function, only weak form of the zoutendijk condition 

is needed  (Dai and Liao, 2001).  

4.1. Lemma 
Let Assumption (3.1) and (3.2) holds. Consider the 

method (2) and (3) where 𝑑𝑘 is a descent direction          

𝛼𝑘is established from the SWP if 

∑
1

∥𝑑𝑘∥2𝑘≥1 = ∞         

  Then 

lim𝑘→∞ 𝑖𝑛𝑓 ∥ 𝑔𝑘 ∥ = 0  

4.2. Theorem 

     Suppose that Assumption (3.1) and (3.2) holds. 

Consider the algorithm HZI were 0 ≤ 𝜃𝑘 ≤ 1 , and 

𝛼𝑘  

is achieved by the strong wolfe line search and  𝑑𝑘+1  

is the descent direction. Then   

                                                                                                                          

lim𝑘→∞ 𝑖𝑛𝑓 ∥ 𝑔𝑘 ∥ = 0  

Proof 

For the descent condition holds, we have 𝑑𝑘+1 ≠ 0 . 

So using lemma (4.1) it is sufficient to prove that   

 ∥ 𝑑𝑘+1 ∥ is confined above. From (9)    

𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘
𝑁𝐸𝑊𝑠𝑘  

∥ 𝑑𝑘+1 ∥=∥ 𝑔𝑘+1 ∥ +∥ 𝛽𝑘
𝑁𝐸𝑊 ∥∥ 𝑠𝑘 ∥ 

∥ 𝑑𝑘+1 ∥≤∥ 𝑔𝑘+1 ∥ +[|1 − 𝜃𝑘|. |𝛽𝑘
𝐷𝑌| +

|𝜃𝑘||𝛽𝑘
𝐶𝐺𝑆𝐷|]. ∥ 𝑠𝑘 ∥  

By using Lipschitz condition and assumption (3.2) we 

get  

|𝛽𝑘
𝐷𝑌| ≤

‖𝑔𝑘+1‖2

‖𝑦𝑘‖‖𝑠𝑘‖
≤

𝑛2

𝐴𝑤
= 𝑘1  

And 

|𝛽𝑘
𝐶𝐺𝑆𝐷| ≤

‖𝑔𝑘+1‖2

‖𝑦𝑘‖‖𝑠𝑘‖
−

‖𝑦𝑘‖ .‖𝑔𝑘+1‖ .‖𝑠𝑘‖ .‖𝑔𝑘+1‖

(‖𝑦𝑘‖‖𝑠𝑘‖)2   

≤
𝑛2

𝐵(𝐴 𝑤)2 −
𝐴 .𝑛 .𝑤.𝑛 

(𝐴 𝑤)2   

≤
𝑛2(1−𝐴 𝑤 𝐵)

𝐵(𝐴 𝑤)2 = 𝑘2  

Now, we have 

|𝜃𝑘| ≤ |
𝑦𝑘

𝑇𝑠𝑘(𝑦𝑘
𝑇𝑔𝑘+1−𝑠𝑘

𝑇𝑔𝑘+1−𝑔𝑘+1
𝑇 𝑔𝑘+1)

(𝑦𝑘
𝑇𝑔𝑘+1)(𝑠𝑘

𝑇𝑔𝑘+1)
|  

Using SWC, we get   𝑦𝑘
𝑇𝑠𝑘 ≤ p 𝛼𝑘 ‖𝑠𝑘‖2 

≤
p αk‖sk‖2 (‖𝑦𝑘‖‖𝑔𝑘+1‖−‖𝑠𝑘‖‖𝑔𝑘+1‖−‖𝑔𝑘+1‖2)

‖𝑦𝑘‖‖𝑔𝑘+1‖−‖𝑠𝑘‖‖𝑔𝑘+1‖
  

≤
p αk w2(A n−w n−n2)

(A n−w n)
  

≤  
p αk w2(A−w−n)

(A−w)
= k3  

∴∥ 𝑑𝑘+1 ∥≤∥ 𝑔𝑘+1 ∥ +[(1 − 𝑘3)𝑘1 + 𝑘3𝑘2]. ∥ 𝑠𝑘 ∥  

≤ n + k w = Ƞ  

⟹ ∑
1

‖sk‖2k≥1 ≥
1

Ƞ1
2 ∑ 1k≥1 = ∞  

⟹ lim𝑛⟶∞ 𝑖𝑛𝑓‖𝑔𝑘‖ = 0  

5. Numerical Results 
In this section, we present the computational 

performance of a FORTRAN implementation of the 

(HZI) 

algorithm on a set of 75 unconstrained optimization 

test problems. And compiled with f77 (default 

compiler 

settings) on a Intel core i7. The test problems are the 

unconstrained problems in CUTE [Bongratz et al, 

1995] [16] library. Along with other large-scale 

optimization problems presented in [17]. with the 

number of variables (n=1000, and 10000). Along 

with other large-scale optimization test problems in 

[Andrei, 2008].All algorithm implement the wolf line 

search condition (4) and (5) with 

𝜀1 = 0.0001 𝑎𝑛𝑑 𝜀2 = 0.001 and the stopping 

criterion ‖𝑔𝑘‖∞ ≤ (10)−6  where ‖ . ‖∞ is the 

maximum absolute component of a vector. The 

criterion used here is CPU time. 

From the figures below, we can conclude that (HZI) 

algorithm behaves equally to or healthier than the 

other algorithms. 

 
Fig. 1: Performance profiles based on iterations (PI) 

 

 
Fig. 2: Performance profiles based on function 

evaluations (PFE) 
 

 
Fig. 3: Performance profiles based on CPU time (PT) 
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Conclusions 
In this research, we proposed a new hybrid algorithm 

in which we used the Newton direction method  

to improve the constraints of the unconstrained 

problem in the nonlinear optimization. The algorithm 

was 

also treated from the theoretical and practical sides, 

with encouraging results in this field. The condition 

of sufficient regression and universal convergence 

was achieved under some assumptions. The new 

algorithm has the property of generalization, while 

the standard algorithm does not have such a property. 

Therefore, we can say that the new algorithm is 

effective for all dimensions of unconstrained 

problems. 

The new algorithms included improvements in 

Number of iterations (NOI)), and the total number of 

computed functions (Number of Function Evaluations 

NOF), in addition, Time is a comparison of algorithm 

performance based on CPU time. 
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 باستخدام طريقة اتجاه نيوتن CGSDو  DYلتدرج المترافق لـكل من ل طريقة جديدةهجين ت

 ايمان خالد جمال الدين،  زياد محمد عبدالله
 ، كلية علوم الحاسوب والرياضيات ، جامعة تكريت ، تكريت ، العراق قسم الرياضيات

 

 الملخص
ذي   الطريقية عثيارل عي  و غدير المقديدل  اللاخطيية  مللييةابمسيال  ابثعياد الكرديرل في  لحي   هجدنيةطريقية جدديدل للتيدرل المترافي  ال قدمنا في  ذي ا الثحي 

شيير  تحقديي  تفي  رذيي   الخواريميية الجددييدل ، و Andrei-sufficient descent conditionو Dai-Yuan رييد   مييي  محييدب مي  التييدرل المترافي 
وبتقييارب عنييد كيي  تكييرار ليي   منحييدر كييا  دالمًييا اتجييا  ثحيي  الجددييدل تولييد  طريقيية ال ا  دنييت    اتجييا  ندييوت  صييي ة ثاسييتخدامو  ،الشييهدر D-Lاقتييرا  

تم تطرد  ذي   الخواريميية الجدديدل  عليم مجموعية مي  اليدواا ابختثيار للملليية اللاخطيية غدير أخدرًا  و ( ، SWPالقوي )شام  ثاستخدام شر  وولف 
النتييال  التيي  كفييا ل ذيي   الخواريمييية ثمقارنيية نتالجهييا رنتييال  الخواريميييات ابساسييية ، والتيي  ا هييرت المقدييدل المعروفيية فيي  ذيي ا المجيياا ل يير  تقديييم 

  قوية وفعالةذ   طريقتنا ا  حققناذا جددل و 
 
 
 
 
 
 
 


