

Tikrit Journal of Pure Science

ISSN: 1813 – 1662 (Print) --- E-ISSN: 2415 – 1726 (Online)

Journal Homepage: http://tjps.tu.edu.iq/index.php/j

On $2icro \alpha$ - generalized closed and 2icro semi- generalized closed in 2icro-topological spaces

Saja S. Mohsen¹, Taha H. Jasim²

ARTICLE INFO.

Article history:

-Received: 7/4/2021 -Accepted: 9/6/2021 -Available online: //2021

Keywords:

 $\ensuremath{\mathbb{Z}}$ icro. α — generalized closed, $\ensuremath{\mathbb{Z}}$ icro generalized α — closed, $\ensuremath{\mathbb{Z}}$ icro generalized $\ensuremath{\text{semi}}$ — closed, and $\ensuremath{\mathbb{Z}}$ icro $\ensuremath{\text{semi}}$ — generalized closed.

Corresponding Author:

Name: Saja S. Mohsen

E-mail:

saja.s.mohsen35504@st.tu.edu.iq tahahameed@tu.edu.iq

Tel:

1. Introduction

One of an essential object in a topological space called closed sets so by using the 'Kuratowski closure axioms' or the axioms of it one can present the topology on sets. N. Levine[1], in (1970), introduce an important definition that provides for, A subset ß of (X, \mathcal{F}) is named generalized closed if $Cl.(\mathcal{G}) \subseteq \mathcal{H}$ whenever $\mathfrak{K} \subseteq \mathfrak{V}$ for all \mathfrak{V} is open, P. Bhattacharya and B.K. Lahiri [2], in 1987 present semi-generalized closed sets in topology and in 1995 J. Dontchev [3] study the On generating semi -preopen sets. And it follows in 2002, J.Cao, M. Ganster and I. Reilly [4] described on generalized closed sets. Lellis Thivagar [5] given the concept of Nano-topology in 2013. Also, the authors Bhuvaneswari, Ezhilarasi [6] and Thanga Nachiyar [7] introduced on Nano genaeralized semi closed sets and Nano semi generalized, on Nano A-generalized closed sets and Nano generalized A-closed sets in the spaces of Nano-topology, resp. in 2014. Many authors [8,9] study on Nano Topology and Dicro topological spaces. Recently in 2020 the topic of Micro-α-open sets and Micro-α- continuous functions in Zicro topological spaces was given by Jasim and Rasheed [10]. This prompts us to continue to develop and

ABSTRACT

We're going to study a new definitions in this paper that's are $\mbox{2icro}\ \alpha-\mbox{ generalized closed}$, $\mbox{2icro}\ \mbox{generalized}\ \alpha-\mbox{closed}$, $\mbox{2icro}\ \mbox{generalized}\ \alpha-\mbox{closed}$, $\mbox{2icro}\ \mbox{generalized}\ \mbox{closed}$. Also, we show the relationships between them in illustration diagram and gives some results and examples.

2. Preliminaries

In principle, we call some important basics and acquaintances.

Definition2.1[8]: Let X a non empty finite set things called the universal and \Re is the equivalence relation on X named as the indiscernibility relation elements belonging to the same equivalence class are said to be indiscernible with one another. The pair (X, \Re) is said to be approximation space. Let $A \subseteq X$,

1. The Lower approximation of A with respect to A the set of all things, which can be for certain classified as A with respect to A and is defined by $L_{A}(A) = \bigcup_{x \in X} \{A(x) : A(x) \subseteq A\}, Where A(x)$

denotes the equivalence class determined by x.

2. The upper approximation of A with respect to A is these of all things, which can be possibly classified as A with respect to A and is defined by A by A is A with respect to A and is defined by A is A in A is A in A in A is A in A in

¹ Ministry of Education, General Directorate of Salah Alden Province Education, Tikrit, Iraq.

² Department of Mathematics, College of Computer Science and Mathematics, Tikrit University, Tikrit, Iraq https://doi.org/10.25130/tjps.v26i4.168

TJPS

3. The boundary region of X with respect to R is the set of all things, which can be classified neither as A nor as not A with respect to A and is defined by $B_{A}(A) = U_{A}(A) - U_{A}(A)$.

Definition 2.2[8]: Let X be the universal, \Re be an equivalence relation on X and $\mathfrak{F}_{\Re}(A) = \{X, \emptyset, L_{\Re}(A), U_{\Re}(A), B_{\Re}(A)\}$ where $A \subseteq X$. Then $\mathfrak{F}_{\Re}(A)$ satisfies The following axioms.

- 1. X and $\emptyset \in \mathfrak{F}_{\mathfrak{K}}(A)$.
- 2. The union of the elements of any sub collection of $\mathfrak{F}_{\mathfrak{F}}(A)$ is in $\mathfrak{F}_{\mathfrak{F}}(A)$.
- 3. The intersection of the elements of any finite sub collection of $\mathfrak{F}_{\mathfrak{K}}(A)$ is in $\mathfrak{F}_{\mathfrak{K}}(A)$.

That is $T_R(X)$ forms a topology on X called as Nano topology on X with respect to A. We call $(X, \mathfrak{F}_{\mathfrak{R}}(A))$ as the Nano topological space .The elements of $\mathfrak{F}_{\mathfrak{R}}(A)$ are called Nano open sets .

Definition2.3[9]: Let $(X, \mathfrak{F}_{\mathfrak{K}}(A))$ be Nanotopological space then

 $\mu_{\mathfrak{K}}(A) = \{N_1 \cup (N_2 \cap \mu) : N_1, N_2 \in \mathfrak{F}_{\mathfrak{K}}(A)\}$ is called 'Micro-topology' of $\mathfrak{F}_{\mathfrak{K}}(A)$ by μ where $\mu \notin \mathfrak{F}_{\mathfrak{K}}(A)$.

- a) X and $\phi \in \mathfrak{M}_{\mathfrak{R}}(A)$.
- b) The union of the elements of each sub-collection of $\mu_{\mathfrak{K}}(A)$ is in $\mu_{\mathfrak{K}}(A)$.
- c) The intersection of the elements of each finite sub collection of $\mu_{\Re}(A)$ is in $\mu_{\Re}(A)$.

Then $\mu_{\mathfrak{R}}(A)$ is called 2 icro topology on X, with respect to A. The tripartite $(X, \mathfrak{F}_{\mathfrak{R}}(A), \mu_{\mathfrak{R}}(A))$ is called '2 icro -topological space' and the elements of $\mu_{\mathfrak{R}}(A)$ are called '2 icro -open' sets and the complement of a '2 icro -open' set is called a '2 icro -closed' set.

Definition2.5[1]: A subset \mathcal{R} of (X, \mathfrak{F}) is called generalized closed (shortly \mathfrak{g} -closed) if $\mathcal{C}l$. $(\mathcal{R}) \subseteq \mathcal{H}$ and for all $\mathcal{R} \subseteq \mathcal{H}$ for all \mathcal{H} is open in (X, \mathfrak{F}) .

3. Zicro a — GENERALIZED Closed AND Zicro semi — GENERALIZED Closed Sets

Here in this section we will provide definitions and examples and some results obtained

Definition3.1[10]: The \mathbb{Z} icro- α -closure form a set \mathfrak{L} of a \mathbb{Z} icro topological space $(X, \mathfrak{F}_{\mathfrak{K}}(A), \mu_{\mathfrak{K}}(A))$ is the intersection of all \mathbb{Z} icro- α -closed sets that contain \mathfrak{L} and denoted by \mathbb{Z} ic. $\alpha - Cl$. (\mathfrak{L}) .

Definition3.2: A subset ß of a space $(X, \mathfrak{F}_{\mathfrak{K}}(A), \mu_{\mathfrak{K}}(A))$ is said to be \mathbb{Z} icro generalized α – closed (shortly \mathbb{Z} ic. $g\alpha$ – closed) if \mathbb{Z} ic. α – $\mathcal{C}l.$ (ß) \subseteq \mathbb{H} and for all ß \subseteq \mathbb{H} for all \mathbb{H} is \mathbb{Z} icro α – open . The complements of \mathbb{Z} icro generalized α – closed is called \mathbb{Z} icro generalized α – open.

Definition3.3: A subset \mathfrak{K} of a space $(X, \mathfrak{F}_{\mathfrak{K}}(A), \mu_{\mathfrak{K}}(A))$ is said to be \mathbb{Z} icro α – generalized closed (shortly \mathbb{Z} ic. α g – closed) if \mathbb{Z} ic. α – $\mathcal{C}l.(\mathfrak{K}) \subseteq \mathfrak{U}$ and for all $\mathfrak{K} \subseteq \mathfrak{U}$ for all \mathfrak{U} is \mathbb{Z} icro open. The complements of \mathbb{Z} icro α –generalized closed is called \mathbb{Z} icro α –generalized open.

Example 3.4: Let's we have the universe set $X = \{1,2,3,4\}$ with the equivalence relation $X/\Re = \{1,2,3,4\}$

 $\alpha O(X) = \{\phi, X, \{2\}, \{1,2\}, \{2,3\}, \{2,4\}, \{1,2,3\}, \{1,2,4\}, \{2,3,4\}\}\}$ And ②icro α -closed as: $\square \alpha C(X)$

= $\{\phi, X, \{1,3,4\}, \{3,4\}, \{1,4\}, \{1,3\}, \{4\}, \{3\}, \{1\}\}$ Now, we will take the sets of all power of X and we check which one of them are \mathbb{Z} . g. closed, \mathbb{Z} . αq . closed and \mathbb{Z} . αq . closed as in the table:

Table 1

Tubic 1								
P(X)	2. Cl. (A)	2. α <i>Cl</i> . (Ą)	2. g. closed	2. αg.	2. gα.			
{1}	{1,3}	{1}	T	T	T			
{2}	X	X,	F	F	F			
{3}	{1,3}	{3}	T	T	T			
{4}	{1,3,4}	{4}	F	T	T			
{1,2}	X	X,	T	T	F			
{1,3}	{1,3}	{1,3}	T	T	T			
{1,4}	{1,3,4}	{1,4}	T	T	T			
{2,3}	X	X,	T	T	F			
{2,4}	X	X,	F	F	F			
{3,4}	{1,3,4}	{3,4}	T	T	T			
{1,2,3}	X	Х	T	T	F			
{1,2,4}	X	X,	T	T	F			
{1,3,4}	{1,3,4}	{1,3,4}	T	T	T			
{2,3,4}	X	X,	T	T	F			
φ	φ	ϕ	T	T	T			
Х	Х	Х	T	T	T			

Here we consider three collections:

The collection of

$$= \left\{ \begin{matrix} \phi, X, \{1\}, \{3\}, \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{3,4\}, \{1,2,3\}, \{1,2,4\}, \{1,3,4\}, \{2,3,4\} \end{matrix} \right\}$$

The collection of

 $2\alpha gC(X)$

$$= \left\{ \begin{matrix} \phi, X, \{1\}, \{3\}, \{4\}, \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{3,4\} \\ , \{1,2,3\}, \{1,2,4\}, \{1,3,4\}, \{2,3,4\} \end{matrix} \right\}$$

The collection of

 $2g\alpha C(X)$

=
$$\{\phi, X, \{1\}, \{3\}, \{4\}, \{1,3\}, \{1,4\}, \{3,4\}, \{1,3,4\}, \{2,3,4\}\}$$

Result3.5: In a space $(X, \mathfrak{F}_{\mathfrak{K}}(A), \mu_{\mathfrak{K}}(A))$ we have,

- 1) Each \mathbb{Z} . g. closed is \mathbb{Z} . α g. closed.
- 2) Each \mathbb{Z} . g. α closed is \mathbb{Z} . α g. closed.

Proof:

- 1) Assume that $\mathfrak{K} \in \mathbb{Z}\operatorname{gC}(X)$ in a space $(X, \mathfrak{F}_{\mathfrak{K}}(A), \mu_{\mathfrak{K}}(A))$ then $\mathbb{Z}\operatorname{ic.} Cl.(\mathfrak{K}) \subseteq \mathfrak{U}$ for $\mathfrak{K} \subseteq \mathfrak{U}$ and for each \mathfrak{U} is $\mathbb{Z}\operatorname{icro}$ open. Since $\mathbb{Z}\operatorname{ic.} \alpha Cl.(\mathfrak{K}) \subseteq \mathbb{Z}\operatorname{ic.} Cl.(\mathfrak{K}) \subseteq \mathfrak{U}$ for each \mathfrak{U} is $\mathbb{Z}\operatorname{icro}$ open, So $\mathfrak{K} \in \mathbb{Z}\operatorname{aqC}(X)$.
- 2) Assume that $\mathcal{B} \in \mathbb{Z} g\alpha C(X)$ in a space $(X, \mathcal{B}_{\mathfrak{R}}(A), \mu_{\mathfrak{R}}(A))$ then $\mathbb{Z} ic. \alpha Cl.(\mathcal{B}) \subseteq \mathcal{H}$ for $\mathcal{B} \subseteq \mathcal{H}$ for each \mathcal{H} is $\mathbb{Z} icro \alpha open$. Since 'every $\mathbb{Z} icro open$ is $\mathbb{Z} icro \alpha open$ ' then $\mathbb{Z} ic. \alpha Cl.(\mathcal{B}) \subseteq \mathcal{H}$ for $\mathcal{B} \subseteq \mathcal{H}$ and for each \mathcal{H} is $\mathbb{Z} icro open$, So $\mathcal{B} \in \mathbb{Z} g\alpha C(X)$.

Remarks3.6: From the above result:

- 1) Not all \mathbb{Z} . αg . closed is \mathbb{Z} . g. closed like in the previous example the set $\mathfrak{K} = \{4\} \in \mathbb{Z} \alpha \mathfrak{g} \mathfrak{C}(X)$ but ß ∉ 2gC(X).
- 2) Also, not all \mathbb{Z} . αg . closed must be \mathbb{Z} . g. α closed as in the same example. The set $N = \{1,2,3\} \in$ $2\alpha gC(X)$ but not belong to $2g\alpha C(X)$.
- 3) Both $\mathbb{Z}gC(X)$ and $\mathbb{Z}g\alpha C(X)$ are independent as : The set $\mathcal{H} = \{1,2\} \in \mathbb{Z} \mathfrak{g} \mathbb{C}(X)$ but not in $\mathbb{Z} \mathfrak{g} \alpha \mathbb{C}(X)$ and $S = \{4\} \in \mathbb{Z} \operatorname{q} \alpha C(X)$ but not in $\mathbb{Z} \operatorname{q} C(X)$.

Proposition3.7: If each one of A and ß are

Suppose that A and ß are ②ic. αg. -closed then we have \mathbb{Z} ic. $\alpha - Cl$. (A) $\subseteq \mathbb{H}$ for $\mathbb{A} \subseteq \mathbb{H}$ for all \mathbb{H} is \mathbb{Z} icro α – open and \mathbb{Z} ic. α – Cl. (\mathfrak{K}) $\subseteq \mathfrak{V}$ and for all $\mathfrak{K} \subseteq \mathfrak{V}$ for all θ is \square icro open. Now, since $A \subseteq \theta$ and $A \subseteq \theta$, so $A \cup B \subseteq U$ s.t. U is \mathbb{Z} icro open, Then \mathbb{Z} ic. α – $Cl.(A \cup B) = \mathbb{Z}ic.\alpha - Cl.(A) \cup \mathbb{Z}ic.\alpha - Cl.(B) \subseteq \mathbb{H}$ hence, \square ic. $\alpha - Cl. (A \cup B) \subseteq \emptyset$ whenever $A \cup B \subseteq \emptyset$ \forall for all \forall is \square icro open implies that $A \cup B$ be \square ic. αg . -closed.

Remark3.8: The intersection of two \square ic. αg . -closed in a space $(X, \mathcal{F}_{\mathfrak{F}}(A), \mu_{\mathfrak{F}}(A))$ is not \mathbb{Z} ic. αg . -closed, since in example (3.4) {2,3,4}, {1,2,4} are \square ic. αg . -closed but $\{2,4\}$ is not.

Definition3.9: The ②icro-semi-closure form a set ß of a \square icro topological space $(X, \mathcal{F}_{\Re}(A), \mu_{\Re}(A))$ is the intersection of all Dicro-semi-closed sets that contain ß and denoted by \mathbb{Z} ic. $\mathfrak{s} - \mathcal{C}l$. (ß).

Definition3.10: A subset ß in a space $(X, \mathcal{F}_{\mathfrak{R}}(A), \mu_{\mathfrak{R}}(A))$ is said to be \mathbb{Z} icro generalized semi - closed (shortly 2ic. gs - closed) if 2ic. s - $Cl.(\beta) \subseteq \forall$ for $\beta \subseteq \forall$ and for all \forall is \exists icro open. The complements of Dicro generalized semiclosed is called ②icro generalized semi − open.

Definition3.11: A subset ß of a space $(X, \mathcal{F}_{\mathfrak{K}}(A), \mu_{\mathfrak{K}}(A))$ is said to be \mathbb{Z} icro semi – generalized closed (shortly 2ic.s g - closed) if \mathbb{Z} ic. $\mathfrak{s} - \mathcal{C}l.(\mathfrak{K}) \subseteq \mathfrak{t}$ for $\mathfrak{K} \subseteq \mathfrak{t}$ for all \mathfrak{t} is \mathbb{Z} icro The complements semi open. of semi –generalized closed is called 2 icro semi –generalized open.

Example 3.12: In example (3.4) let $\mu = \{3\}$, The □icro − topology $\mu_{\mathfrak{K}}(A) = \{\phi, X, \{3\}, \{2,4\}, \{2,3,4\}\}.$ The $C_{M_{\mathfrak{R}}}(A) =$ $\{\phi, X, \{1,2,4\}, \{1,3\}\{1\}\}\$

We can write the collection of all Zicro semi open as:

2sO(X)

= $\{\phi, X, \{3\}, \{1,3\}, \{2,3\}, \{2,4\}, \{1,2,4\}, \{2,3,4\}\}$ And the collection of Dicro semi closed as: $\mathbb{Z}\mathfrak{sC}(X) = \{\phi, X, \{1,2,4\}, \{2,4\}, \{1,3\}, \{3\}, \{1\}\}\}$ Consider the table:

Table 2

P(X)	2. sCl. (A)	2.g.s	2. sg.
{1}	{1}	T	T
{2}	{2,4}	T	T
{3}	{3}	T	T
{4}	{2,4}	Т	T
{1,2}	{1,2,4}	T	T
{1,3}	{1,3}	T	T
{1,4}	{1,2,4} X	T	T
{2,3}	X	F	F
{2,4}	{2,4}	T	T
{3,4}	X,	F	F
{1,2,3}	X	T	T
{1,2,4}	{1,2,4}	T	T
{1,3,4}	X	T	T
{2,3,4}	Х	F	F
φ	φ	T	T
Х	X	T	T

In this table, the collection of $\mathbb{Z}gsC(X)$ and $\mathbb{Z}sgC(X)$ are the same.

Example 3.13: We take the universe set $X = \{1,2,3,4\}$ with the equivalence relation $X/\Re = \{\{2\}, \{4\}, \{1,3\}\}$ and $A = \{1,2\}$ then the Nano - topology is $\mathfrak{F}_{\mathfrak{K}}(A) = {\phi, X, \{2\}, \{1,3\}, \{1,2,3\}}.$ Let $\mu = \{1\}$, The ②icro − topology

 $\mu_{\Re}(A) = \{\phi, X, \{1\}, \{2\}, \{1,2\}, \{1,3\}, \{1,2,3\}\}\}$. Sets of closed 2icro

 $C_{H_{\mathfrak{R}}}(A) = \{\phi, X, \{2,3,4\}, \{1,3,4\}, \{3,4\}, \{2,4\}, \{4\}\}.$ The collection of \square icro α -open is: $\square \alpha O(X) =$ $\{\phi, X, \{1\}, \{2\}, \{1,2\}, \{1,3\}, \{1,2,3\}, \{1,2,4\}\}.$ 2icro α-closed as:

 $2\alpha C(X)$

= $\{\phi, X, \{2,3,4\}, \{1,3,4\}, \{3,4\}, \{2,4\}, \{4\}, \{3\}\}$

The collection of 2icro semi open is:

2sO(X)

$$= \begin{cases} \phi, X, \{1\}, \{2\}, \{1,2\}, \{1,3\}, \{1,4\}, \{2,4\}, \{1,2,3\} \\ , \{1,3,4\}, \{1,2,4\} \end{cases}$$

And the collection of Dicro semi closed as:

and the collection of Bicro semi closed as:

$$sC(X) = \begin{cases} \phi, X, \{2,3,4\}, \{1,3,4\}, \{3,4\}, \{2,4\}, \{2,3\} \\ , \{1,3\}, \{4\}, \{2\}, \{3\} \end{cases}$$

Now, we will take the sets of all power of X and we check which one of them are $2.\alpha g. closed$, \mathbb{Z} . ga. closed, \mathbb{Z} . sg. closed and \mathbb{Z} . g. s closed as in the table:

Table	3
-------	---

Tubic 5							
P(X)	2. sCl. (A)	2. sg.	2.g.s	2. α <i>Cl</i> . (Ą)	2. gα.	2. αg.	
{1}	{1,3}	F	F	{1,3,4}	F	F	
{2}	{2}	T	T	{2,4}	F	F	
{3}	{3}	T	T	{3}	T	T	
{4}	{4}	T	T	{4}	T	T	
{1,2}	X	F	F	X,	F	F	
{1,3}	{1,3}	T	T	{1,3,4}	F	F	
{1,4}	{1,3,4}	F	T	{1,3,4}	F	T	
{2,3}	{2,3}	T	T	{2,3,4}	F	F	
{2,4}	{2,4}	T	T	{2,4}	T	T	
{3,4}	{3,4}	T	T	{3,4}	T	T	
{1,2,3}	X	F	F	X,	F	F	
{1,2,4}	X	F	T	X,	F	T	
{1,3,4}	{1,3,4}	T	T	{1,3,4}	T	T	
{2,3,4}	{2,3,4}	T	T	{2,3,4}	T	T	
φ	φ	T	T	φ	T	T	
Х	Х	T	T	Х	T	T	

Here we consider four collections: The collection of 2icro semi generalized closed 2sgC(X)

$$= \left\{ \begin{matrix} \phi, X, \{2\}, \{3\}, \{4\}, \{1,3\}, \{2,3\}, \{2,4\}, \{3,4\}, \\ \{1,3,4\}, \{2,3,4\} \end{matrix} \right\}$$

The collection of Dicro generalized semi closed 2gsC(X) =

$$\{\phi, X, \{2\}, \{3\}, \{4\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}, \{1,2,4\}, \{1,3,4\}, \{2,3,4\}$$

The collection of $2g\alpha C(X)$

= $\{\phi, X, \{3\}, \{4\}, \{2,4\}, \{3,4\}, \{1,3,4\}, \{2,3,4\}\}$

The collection of

The collection of
$$\square \alpha gC(X) = \begin{cases} \phi, X, \{3\}, \{4\}, \{1,4\}, \{2,4\}, \{3,4\}, \{1,2,4\} \\ , \{1,3,4\}, \{2,3,4\} \end{cases}$$

Result3.14: In a space $(X, \mathcal{F}_{\Re}(A), \mu_{\Re}(A))$ we have,

- 1) Each \mathbb{Z} . g. α closed is \mathbb{Z} . g. α closed.
- 2) Each \mathbb{Z} . αg . closed is \mathbb{Z} . g. s closed.
- 3) Each 2. sg. closed is 2. g. s closed.

Proof:

- 1) Assume that $\mathcal{L} \in \mathbb{Z} \mathfrak{g} \alpha \mathcal{C}(X)$ in a space $(X, \mathfrak{F}_{\mathfrak{K}}(A), \mu_{\mathfrak{K}}(A))$ then \mathbb{Z} ic. $\alpha Cl.(\mathfrak{K}) \subseteq \mathbb{H}$ for $\mathfrak{K} \subseteq \mathbb{H}$ for each θ is \square icro α – open. Since 'every \square icro open is $2icro \alpha - open'$ and $2ic. s - Cl. (R) \subseteq$ \mathbb{Z} ic. $\alpha Cl.(\mathbb{S}) \subseteq \mathbb{H}$ for each \mathbb{H} is \mathbb{Z} icro open, So $\mathbb{S} \in \mathbb{Z}gsC(X)$.
- 2) Assume that $\mathcal{L} \in \mathbb{Z} \alpha \mathfrak{g} \mathcal{C}(X)$ in a space $(X, \mathcal{F}_{\mathfrak{K}}(A), \mu_{\mathfrak{K}}(A))$ then $2ic. \alpha - Cl.(\beta) \subseteq \theta$ for $\mathbb{S} \subseteq \mathbb{H}$ for each \mathbb{H} is \mathbb{Z} icro open. Since \mathbb{Z} ic. \mathbb{S} – $Cl.(\mathfrak{K}) \subseteq \mathbb{Z}ic.\alpha Cl.(\mathfrak{K}) \subseteq \mathbb{U}$ then $\mathbb{Z}ic.\mathfrak{s} - Cl.(\mathfrak{K}) \subseteq \mathbb{U}$ for $\mathcal{S} \subseteq \mathcal{U}$ for each \mathcal{U} is \mathbb{Z} icro open, So $\mathcal{S} \in \mathbb{Z}$ gsC(X).

References

Nano topological space. International Journal of Mathematics and Computer Applications Research, 4(3)(2014), 117-124.

[7] Thanga Nachiyar.R, Bhuvaneswari.K, On nano generalized A-Closed sets and Nano A-Generalized Closed Sets in Nano Topological Spaces. International Jornal of Engineering Trends and Technology (IJETT). 13(6)(2014), 257-260.

[8] M. Bhuvaneswari, A study on Nano Topology, A Journal of Nehru Arts and Science College, 5(1), (2017), ISSN: 2349-9052.

[9] S. Chandrasekar. On micro topological spaces. Journal of New Theory, 26, (2019), 23–31.

[10] R. O. Rasheed and T. H. Jasim. On Micro-a-Open Sets and Micro-a- Continuous Functions in Micro Topological Spaces. Journal of Physics: Conference Series, 1530(012061) (2020), 1742-6596.

 $\mathfrak{K} \in \mathbb{Z}\mathfrak{sgC}(X)$ in a space 3) Assume that $(X, \mathcal{F}_{\mathfrak{K}}(A), \mu_{\mathfrak{K}}(A))$ then \mathbb{Z} ic. $\mathfrak{s}Cl.(\mathfrak{K}) \subseteq \mathcal{U}$ for $\mathfrak{K} \subseteq \mathcal{U}$ for each θ is θ icro θ - open. Since 'every θ icro open is 2icro s - open' and $2ic. s - Cl. (B) \subseteq U$ for $\mathfrak{K} \subseteq \mathfrak{U}$ for each \mathfrak{U} is \mathbb{Z} icro open, So $\mathfrak{K} \in \mathbb{Z}$ gs $\mathfrak{C}(X)$.

Remarks3.15: From the above result:

- 1) Not all \mathbb{Z} . qs. closed be \mathbb{Z} . q. α closed like in the previous example the set $\mathfrak{L} = \{2\} \in \mathbb{Z} \mathfrak{gsC}(X)$ but ß \notin \mathbb{Z} gαC(X).
- 2) Also, not all ②. gs. closed must be ②. αg. closed as in the same example. The set $N = \{2,3\} \in \mathbb{Z}gsC(X)$ but not belong to $2\alpha gC(X)$.
- 3) Also, not all 2. gs. closed must be 2. sg. closed as in the same example. The set $N = \{1,2,4\} \in \mathbb{Z}gsC(X)$ but not belong to $\mathbb{Z}sgC(X)$.
- 4) Both $\mathbb{Z}sgC(X)$ and $\mathbb{Z}\alpha gC(X)$ are independent as : The set $\mathcal{H} = \{2\} \in \mathbb{Z} \mathfrak{sgC}(X)$ but not in $\mathbb{Z} \alpha \mathfrak{gC}(X)$ and $\mathcal{C} = \{1,4\} \in \mathbb{Z} \alpha \mathfrak{g} \mathcal{C}(X)$ but not in $\mathbb{Z} \mathfrak{s} \mathfrak{g} \mathcal{C}(X)$.

Finally, we obtain the following diagram from the previous results

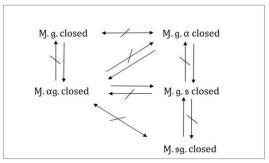


Diagram 1

- [1] N. Levine, Generalized closed sets in topological spaces, Rend. Circ. Mat. Palermo 19 (1970) 89-96.
- [2] P. Bhattacharya, B.K. Lahiri, Semi-generalized closed sets in topology, Indian J. Math. 29 (1987) 375-382.
- [3] J. Dontchev, On generating semi-preopen sets, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 16 (1995)
- [4] J.Cao, M. Ganster and I. Reilly. On generalized closed sets. J. Cao et al. Topology and its Applications 123 (2002) 37-46.
- [5] M. L. Thivagar and C. Richard. On Nano forms of weakly open sets. International Journal of Mathematics and Statistics Invention, 1(1), (2013), 31-37.
- [6] Bhuvaneswari K, Ezhilarasi A. On Nano semigeneralized and nano genaeralized semi closed sets in

حول مايكرو ألفا المعممة المغلقة وشبه المعممة المغلقة في الفضاءات التبولوجية الدقيقة

 2 سجی سعد محسن 1 ، طه حمید جاسم

المديرية العامة لتربية صلاح الدين ، وزارة التربية ، تكريت ، العراق 1

 2 قسم الرباضيات ، كلية علوم الحاسوب والرباضيات ، جامعة تكريت ، تكريت ، العراق

الملخص

سنقوم بعمل تعريفات جديدة في هذه الورقة وهي مايكرو ألفا معممة مغلقة ، مايكرو معممة ألفا مغلقة ، مايكرو معممة شبه مغلقة و مايكرو شبه معممة مغلقة. كما نعرض العلاقات بينهما في مخطط توضيحي ونعطي بعض النتائج والأمثلة.