Characterizations of Weakly Approximately Primary Submodules in Some Types of Modules

Khaled Y. Jhad , Bothaynah N. Shahab
Department of Mathematic Ibn- AL-Haitham College of Education, University of Baghdad, Baghdad, Iraq https://doi.org/10.25130/tjps.v26i4.167

ARTICLEINFO.

Article history:

-Received: 27/4/2021
-Accepted: 9/6/2021
-Available online: / / 2021
Keywords: Multiplication modules, non-singular modules, projective modules, regular modules finitely generated module, weakly approximately primary submodules.

Corresponding Author:

Name: Khaled Y. Jhad

E-mail:

khaledyounis1989@gmail.com
dr.buthyna@yahoo.com
Tel:

Abstract

Our aim in this note is to introduce several characterizations of weakly approximately primary submodules in class of multiplication modules. Furthermore, we characterized weakly approximately primary submodules by theirs resudule in the class of multiplication modules with the help of some types of modules as non-singular, projective, regular and faithful modules. Also, we characterized weakly approximately primary ideal with some kind of weakly approximately primary submodules in the same previous classes of modules with help of finitely generated modules.

1. Introduction

Let T be a commutative ring with identity and S be a unital left T-module. Weakly approximately primary submodule was introdued recently by [1], "where aproper submodule E of a T -module S is called weakly approximately primary if wherever $0 \neq \mathrm{ah} \in \mathrm{E}$, for $\mathrm{a} \in \mathrm{T}$, $\mathrm{h} \in \mathrm{S}$, implies that $\mathrm{h} \in \mathrm{E}+\operatorname{Soc}(\mathrm{S})$ or $\left.\mathrm{a} \in \sqrt{[E+\operatorname{Soc}(S)}:_{T} S\right]$, and an ideal A of a ring T is a weakly approximately primary if A is a weakly approximately primary T-submodule of a T-module T "[1], "where $\operatorname{Soc}(\mathrm{S})$ is the socal of modules, defined to be the interscetion of all essentail submodule of S"[2],
"where a non-zero submodule K of an T -module S is an essentail if $\mathrm{K} \cap \mathrm{L} \neq(0)$ for all non-zero submodule L of S"[5]. "An T-module S is a multiplication if every submodule K of S is of the form $K=I S$ for some ideal I of T , equivalent to S is multiplication if $\mathrm{K}=$
 any submodules of multiplication module S , then $\mathrm{K}=$ $\mathrm{IS}, \mathrm{L}=\mathrm{JS}$ for some ideals I, J of T such that $\mathrm{KL}=\mathrm{IJS}$ and $\mathrm{KL}=\mathrm{IL}$. Inparticular $\mathrm{KS}=\mathrm{Iww}=\mathrm{K}$, also for any $x \in S, K=I x$ " $[4]$. "If S is a multiplication T-module, then for every elements $m, m^{\prime} \in S$, by $m m^{\prime}$ means the
product of two submodules $T_{m}, T_{m \prime}$, that is $m m^{\prime}=$ $T_{m} \cdot T_{m}$ is a submodule of S "[5]. "In multiplication module S, the $\mathrm{S}-\mathrm{rad}(\mathrm{E})$ of submodule E denoted by S $\operatorname{rad}(\mathrm{E})=\sqrt{E}=\left\{\mathrm{m} \in \mathrm{S}: \mathrm{m}^{\mathrm{n}} \subseteq \mathrm{E}\right.$ for some positive integer $n\}$ "[6]. "A T-module S is regular if for each $x \in S$ there exists $\mathrm{f} \in \operatorname{Hom}_{T}(\mathrm{~S}, \mathrm{~T})$ such that $\mathrm{x}=\mathrm{f}(\mathrm{x}) \mathrm{x}$ " $[6]$. "Recall that an T-module S is faithful if $\operatorname{ann}_{T}(\mathrm{~S})=$ (0)"[7], "and a T-module S is non-singular if $\mathrm{Z}(\mathrm{S})=$ $\{x \in S: x I=(0)$ for some essential ideal I of $T\}=$ (0)" 22 . "If E is a submodule of a T-module, and I is an ideal of T, then $\left[\mathrm{E}_{\dot{S}} \mathrm{~T}\right]=\mathrm{E},[\mathrm{I} ; \mathrm{T}]=\mathrm{I} "[9]$.

2. Characterizations of weakly approximately primary submodules in class of multiplication modules.

In this section we introduce many characterization of weakly approoximately primary submodule in class of multiplication modules.
First we need to recall the following lemma which appear in [1, prop.2.6]

Lemma (2.1)

"A proper submodule E of a T -module S is a weakly approximately primary if and only if wherever $(0) \neq$ $\mathrm{IF} \subseteq \mathrm{E}$, where I is an ideal of T and F is a submodule
of S , implies that $\mathrm{F} \subseteq \mathrm{E}+\mathrm{Soc}(\mathrm{S})$ or $\mathrm{I} \subseteq \sqrt{\left[E+\operatorname{Soc}(S):_{T} S\right]}$ ".
Proposition (2.2)
Let S be a multiplication T-module, and E is a proper submodule of S. Then E is a weakly approximately primary if and only if wherever $(0) \neq$ $\mathrm{HD} \subseteq \mathrm{E}$, where H, D are submodules of S , implies that $\mathrm{D} \subseteq \mathrm{E}+\operatorname{Soc}(\mathrm{S})$ or $\mathrm{H}^{\mathrm{n}} \subseteq \mathrm{E}+\operatorname{Soc}(\mathrm{S})$ for some positive integer n .

Proof

(\Rightarrow) Let $\mathrm{HD} \subseteq \mathrm{E}$, where H, D are submodules of S . Since S is multiplication, then $\mathrm{H}=\mathrm{IS}, \mathrm{D}=\mathrm{JS}$ for some ideals I, J of T, it follows that $(0) \neq \mathrm{I}(\mathrm{JS}) \subseteq E$. But E is a weakly approximately primary, then by lemma (2.1) we have $\mathrm{JS} \subseteq E+\operatorname{Soc}(\mathrm{S})$ or $\mathrm{I}^{\mathrm{n}} S \subseteq E+\operatorname{Soc}(\mathrm{S})$ for some positive integer n, that is $\mathrm{D} \subseteq \mathrm{E}+\mathrm{Soc}(\mathrm{S})$ or $\mathrm{H}^{\mathrm{n}} \subseteq \mathrm{E}+\mathrm{Soc}(\mathrm{S})$.
(\Longleftarrow) Let $(0) \neq \mathrm{IK} \subseteq \mathrm{E}$ for I is an ideal of T and K is a submodule of S . But S is a multiplication, then $\mathrm{K}=$ JS for some ideal J of T . Thus $(0) \neq \mathrm{I}(\mathrm{JS}) \subseteq \mathrm{E}$, it follows that $(0) \neq \mathrm{LK} \subseteq E$ where $L=I S$, so by hypothesis we have $K \subseteq E+\operatorname{Soc}(S)$ or $L^{n} \subseteq E+\operatorname{Soc}(S)$, that is $\mathrm{I}^{\mathrm{n}} \mathrm{S} \subseteq \mathrm{E}+\operatorname{Soc}(\mathrm{S})$. Thus $\mathrm{K} \subseteq \mathrm{E}+\operatorname{Soc}(\mathrm{S})$ or $\mathrm{I}^{\mathrm{n}} \subseteq \sqrt{\left[\mathrm{E}+\operatorname{Soc}(S):_{T} S\right]}$. Hence by lemma (2.1) E is a weakly approximately primary submodule of S.
As direct application of proposition (2.2) we get the following corollaries.

Corollary (2.3)

Let S be a multiplication T-module, and E be a proper submodule of S . Then E is a weakly approximately primary if and only if wherever $(0) \neq m m^{\prime} \subseteq \mathrm{E}$, for m, $m^{\prime} \in \mathrm{S}$, implies that $m^{\prime} \subseteq \mathrm{E}+\operatorname{Soc}(\mathrm{S})$ or $m^{\mathrm{n}} \subseteq \mathrm{E}+\operatorname{Soc}(\mathrm{S})$ for some positive integer n .

Corollary (2.4)

Let S be a multiplication T-module, and E be a proper submodule of S . Then E is a weakly approximately primary if and only if wherever $(0) \neq m H \subseteq E$, for $m \in S, \quad \mathrm{H}$ is a submodule of S , implies that $\mathrm{H} \subseteq \mathrm{E}+\mathrm{Soc}(\mathrm{S})$ or $m^{\mathrm{n}} \subseteq \mathrm{E}+\mathrm{Soc}(\mathrm{S})$ for some positive integer n .
Corollary (2.5)
Let S be a multiplication T-module, and E be a proper submodule of S . Then E is a weakly approximately primary if and only if wherever $(0) \neq \mathrm{K} m \subseteq \mathrm{E}$, for K is a submodule of S, $m \in S$, implies that $m \subseteq \mathrm{E}+\operatorname{Soc}(\mathrm{S})$ or $\mathrm{K}^{\mathrm{n}} \subseteq \mathrm{E}+\operatorname{Soc}(\mathrm{S})$ for some positive integer n .
It is well known that cyclic T-module is multiplication[3], we get the following corollaries.

Corollary (2.6)

Let S be a cyclic T -module, and E is a proper submodule of S . Then E is a weakly approximately primary if and only if wherever $(0) \neq \mathrm{HD} \subseteq \mathrm{E}$, where H , D are submodules of S , implies that $\mathrm{D} \subseteq \mathrm{E}+\mathrm{Soc}(\mathrm{S})$ or $\mathrm{H}^{\mathrm{n}} \subseteq \mathrm{E}+\operatorname{Soc}(\mathrm{S})$ for some positive integer n .
Corollary (2.7)
Let S be a cyclic T -module, and E be a proper submodule of S . Then E is a weakly approximately primary if and only if wherever $(0) \neq m m^{\prime} \subseteq E$, for m,
$m^{\prime} \in S$, implies that $m^{\prime} \subseteq \mathrm{E}+\operatorname{Soc}(\mathrm{S})$ or $m^{\mathrm{n}} \subseteq \mathrm{E}+\operatorname{Soc}(\mathrm{S})$ for some positive integer n .
Corollary (2.8)
Let S be a cyclic T -module, and E be a proper submodule of S . Then E is a weakly approximately primary if and only if wherever $(0) \neq m \mathrm{H} \subseteq \mathrm{E}$, for $m \in S, H$ is a submodule of S, implies that $\mathrm{H} \subseteq \mathrm{E}+\mathrm{Soc}(\mathrm{S})$ or $m^{\mathrm{n}} \subseteq \mathrm{E}+\mathrm{Soc}(\mathrm{S})$ for some positive integer n .

Corollary (2.9)

Let S be a cyclic T -module, and E be a proper submodule of S . Then E is a weakly approximately primary if and only if wherever $(0) \neq \mathrm{K} m \subseteq \mathrm{E}$, for K is a submodule of $\mathrm{S}, m \in \mathrm{~S}$, implies that $m \subseteq \mathrm{E}+\operatorname{Soc}(\mathrm{S})$ or $\mathrm{K}^{\mathrm{n}} \subseteq \mathrm{E}+\operatorname{Soc}(\mathrm{S})$ for some positive integer n .
The following are another characterizations of a weakly approximately primary submodules in class of multiplication modules.

Corollary (2.10)

Let S be a multiplication T -module, and E be a proper submodule of S . Then E is a weakly approximately primary if and only if $m^{\prime} \subseteq E+\operatorname{Soc}(S)$ or $m \subseteq S-r a d(E$ $+\operatorname{Soc}(\mathrm{S})$) .

Corollary (2.11)

Let S be a multiplication T-module, and E be a proper submodule of S . Then E is a weakly approximately primary if and only if wherever $(0) \neq m \mathrm{H} \subseteq \mathrm{E}$, for $m \in S, H$ is a submodule of S, implies that $\mathrm{H} \subseteq \mathrm{E}+\mathrm{Soc}(\mathrm{S})$ or $m \subseteq \mathrm{~S}-\operatorname{rad}(\mathrm{E}+\operatorname{Soc}(\mathrm{S}))$.

3. Charactrized weakly approximately primary submodules by theirs resudules.

In this part of this paper we introdued many characterizations of weakly approximately primary submodules by their resudules.
First we need to discuse the following fact in this remark.

Remark (3.1)

The resudules of weakly approximately primary submodule of T-module S need not to be a weakly approximately primary ideals of T , so, the following example explained that.

Example (3.2)

The submodule $\langle\overline{10}\rangle$ of the Z -module Z_{60} is weakly approximately primary, since $\operatorname{Soc}\left(\mathrm{Z}_{60}\right)=\langle\overline{2}\rangle[1$, Example (2.3)]. That is wherever (0) $\neq \mathrm{r} \bar{h} \in\langle\overline{10}\rangle$ for $\mathrm{r} \in \mathrm{Z}, \bar{h} \in \mathrm{Z}_{60}$ implies that $\bar{h} \in\langle\overline{10}\rangle+\operatorname{Soc}\left(\mathrm{Z}_{60}\right)=$ $\langle\overline{10}\rangle+\langle\overline{2}\rangle=\langle\overline{2}\rangle$ or $\mathrm{r} \in \sqrt{\left[\langle\overline{10}\rangle+\operatorname{Soc}\left(Z_{60}\right):_{z} Z_{60}\right]}$ $=\sqrt{\left[<\overline{2}>:_{Z} Z_{60}\right]}=2 Z$. Thus, if $0 \neq 2 . \overline{5} \in<\overline{10}>$ for $2 \in Z, \quad \overline{5} \in \quad Z_{60} \quad$ implies that $2 \in \sqrt{\left[<\overline{10}>+\operatorname{Soc}\left(Z_{60}\right): Z_{Z} Z_{60}\right]}=$ Z. But the resudule $\left[<\overline{10}>:_{Z} Z_{60}\right]=10 Z$ is not weakly approximately primary ideal of Z since $0 \neq 2.5 \in 10 Z$ for $2,5 \in Z$ but $5 \notin 10 Z+\operatorname{Soc}(Z)=10 Z+(0)=10 Z$ and $2 \notin \sqrt{\left[<\overline{10}>+\operatorname{Soc}(\mathrm{Z}):_{Z} \mathrm{Z}\right]}=10 \mathrm{Z}$.
Befor we introduced the first characterization we need to recall the following lemma

Lemm(3.3) [6, prop.3.25]

"If S is a regular T-module, then $\operatorname{Soc}(\mathrm{S})=\operatorname{Soc}(\mathrm{T}) \mathrm{S}$ ".

Proposition (3.4)

Let S be a multiplication regular T-module, and E is a proper submodule of S . Then E is a weakly approximately primary if and only if $\left[\mathrm{E}:_{T} S\right]$ is a weakly approximately primary ideal of T.

Proof

(\Rightarrow) Let $(0) \neq \mathrm{IJ} \subseteq\left[\mathrm{E}_{{ }_{T}} S\right]$ where I, J are ideals of T, implies that $(0) \neq \mathrm{IJS} \subseteq \mathrm{E}$, it follows that $(0) \neq \mathrm{KL} \subseteq \mathrm{E}$, where $\mathrm{K}=\mathrm{IS}, \mathrm{L}=\mathrm{JS}$ (since S is a multiplication). Hence by proposition (2.2) L؟E+Soc(S) or $K^{\mathrm{n}} \subseteq \mathrm{E}+\operatorname{Soc}(\mathrm{S})$ for some positive integer n , that is JS \subseteq $\mathrm{E}+\operatorname{Soc}(\mathrm{S})$ or $\mathrm{I}^{\mathrm{n}} \mathrm{S} \subseteq \mathrm{E}+\operatorname{Soc}(\mathrm{S})$. But S is a regular, then by lemma (3.3) $\operatorname{Soc}(S)=\operatorname{Soc}(T) S$. Thus we have $\mathrm{JS} \subseteq\left[\mathrm{E}_{:_{T}} S\right] \mathrm{S}+\operatorname{Soc}(\mathrm{T}) \mathrm{S}$ or $\mathrm{I}^{\mathrm{n}} \mathrm{S} \subseteq\left[\mathrm{E}_{T} S\right] S+\operatorname{Soc}(\mathrm{T}) \mathrm{S}$, it follows that $\mathrm{J} \subseteq\left[\mathrm{E}_{:_{T}} S\right]+\operatorname{Soc}(\mathrm{T})$ or $\mathrm{I}^{\mathrm{n}} \subseteq\left[\left[\mathrm{E}:_{T} S\right]+\right.$ $\operatorname{Soc}(T): T]$, implies that $\mathrm{J} \subseteq\left[\mathrm{E}_{T} S\right]+\operatorname{Soc}(\mathrm{T})$ or $\mathrm{I} \subseteq \sqrt{\left[\left[\mathrm{E}:_{T} S\right]+\operatorname{Soc}(T) \dot{T}_{T} T\right]}$. Hence by lemma(2.1) [$\mathrm{E}:_{T} S$] is a weakly approximately primary ideal of T .
(\Longleftarrow) Let $(0) \neq \mathrm{IL} \subseteq \mathrm{E}$, for I is an ideal of Tand L is a submodule of S, since S is a multiplication then $L=$ JS for some ideal J of T. Thus, $(0) \neq \mathrm{IJS} \subseteq E$, that is $(0) \neq \quad \mathrm{IJ} \subseteq\left[\mathrm{E}:_{T} S\right]$. But $[\mathrm{E}: S]$ is a weakly approximately primary ideal of T , then by lemma (2.1) we have $\mathrm{J} \subseteq\left[\mathrm{E}_{{ }_{T}} S\right]+\operatorname{Soc}(\mathrm{T})$ or $\mathrm{I}^{\mathrm{n}} \subseteq\left[\mathrm{E}_{T} S\right]+$ $\operatorname{Soc}(\mathrm{T})$ for some positive integer n , it follows that $\mathrm{JS} \subseteq\left[\mathrm{E}_{T} S\right] S+\operatorname{Soc}(\mathrm{T}) \mathrm{S}$ or $\mathrm{I}^{\mathrm{n}} \mathrm{S} \subseteq\left[\mathrm{E}_{:_{T}} S\right] S+\operatorname{Soc}(\mathrm{T}) \mathrm{S}$. But S is a regular, then by lemma (3.3) $\operatorname{Soc}(T) S=$ $\operatorname{Soc}(\mathrm{S})$, so, $\mathrm{L} \subseteq \mathrm{E}+\operatorname{Soc}(\mathrm{S})$ or $\mathrm{I}^{\mathrm{n}} \subseteq\left[\mathrm{E}+\operatorname{Soc}(\mathrm{S}):_{T} S\right]$. Hence by lemma(2.1) E is a weakly approximately primary submodule of S .
The following corollary is a direct consequence of proposition (3.4)

Corollary (3.5)

Let S be a cyclic regular T-module, and E is a proper submodule of S . Then E is a weakly approximately primary if and only if $\left[\mathrm{E}:_{T} S\right]$ is a weakly approximately primary ideal of T .
Befor we introduced the next characterization we need to recall the following lemmas

Lemma (3.6) [1, coro.(2.7)]

"A proper submodule E of an T -module S is a weakly approximately primary if and only if wherever $(0) \neq \mathrm{aF} \subseteq E$ for $a \in S, F$ is a submodule of S, implies that $\mathrm{F} \subseteq \mathrm{E}+\mathrm{Soc}(\mathrm{S})$ or $\mathrm{a} \in \sqrt{\left[\mathrm{E}+\operatorname{Soc}(\mathrm{S}):_{T} S\right]},$.

Lemma (3.7) [6, coro.(2.1.4)(1)]

"If S is a faithful multiplication T-module then $\operatorname{Soc}(\mathrm{S})=\operatorname{Soc}(\mathrm{T}) \mathrm{S}^{\prime}$.

Proposition (3.8)

A proper submodule E of a faithful multiplication T module S is a weakly approximately primary if and only if $\left[\mathrm{E}:_{T} S\right]$ is a weakly approximately primary ideal of T .

Proof

(\Rightarrow) Let $(0) \neq \mathrm{aI} \subseteq\left[\mathrm{E}_{{ }_{T}} S\right]$, for $\mathrm{a} \in \mathrm{T}$, I is an ideal of T , implies that $(0) \neq$ aIS $\subseteq E$. Since E is a weakly approximately primary, then by lemma (3.6) we have $\mathrm{IS} \subseteq \mathrm{E}+\operatorname{Soc}(\mathrm{S})$ or $\mathrm{a} \in \sqrt{\left[\mathrm{E}+\operatorname{Soc}(\mathrm{S}):_{T} S\right]}$, it follows
that $\operatorname{IS\subseteq E+} \operatorname{Soc}(S)$ or $a^{n} S \subseteq E+\operatorname{Soc}(S)$ for some positive integer n. Since S is faithful multiplication, then by lemma (3.7) $\operatorname{Soc}(S)=\operatorname{Soc}(T) S$. Thus, we have $\mathrm{IS} \subseteq\left[\mathrm{E}_{:_{T}} S\right] S+\operatorname{Soc}(\mathrm{T}) \mathrm{S}$ or $\mathrm{a}^{\mathrm{n}} \mathrm{S} \subseteq\left[\mathrm{E}_{:_{T}} S\right] S+$ $\operatorname{Soc}(\mathrm{T}) \mathrm{S}$, it follows that $\mathrm{I} \subseteq\left[\mathrm{E}_{{ }_{T}} S\right]+\operatorname{Soc}(\mathrm{T})$ or $\mathrm{a}^{\mathrm{n}} \subseteq\left[\mathrm{E}:_{T} S\right]+\operatorname{Soc}(\mathrm{T})=\left[\left[\mathrm{E}:_{T} S\right]+\operatorname{Soc}(T): T\right]$, that is $\quad \mathrm{I} \subseteq \quad\left[\mathrm{E}:_{T} S\right] \quad+\quad \operatorname{Soc}(\mathrm{T}) \quad$ or $\mathrm{a} \in \sqrt{\left[\left[\mathrm{E}:_{T} S\right]+\operatorname{Soc}(T): T\right]}$. Hence by lemma (3.6) [$\mathrm{E}_{:_{T}} S$] is a weakly approximately primary ideal of T .
(\Longleftarrow) Let $(0) \neq \mathrm{mH} \subseteq \mathrm{E}$, for $\mathrm{m} \in \mathrm{S}, \mathrm{H}$ is a submodule of S. Since S is a multiplication then $\mathrm{m}=\mathrm{Tm}=\mathrm{JS}, \mathrm{H}=$ IS for some ideals I, J of T, that is $(0) \neq \mathrm{JIS} \subseteq E$, so $(0) \neq \mathrm{JI} \subseteq\left[\mathrm{E}:_{T} S\right]$. Since $\left[\mathrm{E}:_{T} S\right]$ is a weakly approximately primary ideal of T , then by lemma(2.1) we have $\mathrm{I} \subseteq\left[\mathrm{E}_{{ }_{T}} S\right]+\operatorname{Soc}(\mathrm{T})$ or $\mathrm{J}^{\mathrm{n}} \subseteq\left[\left[\mathrm{E}_{T} S\right]+\operatorname{Soc}(\mathrm{T}): T\right]=\left[\mathrm{E}_{T} S\right]+\operatorname{Soc}(\mathrm{T})$, it follows that IS $\subseteq\left[\mathrm{E}_{T} S\right] S+\operatorname{Soc}(\mathrm{T}) \mathrm{S}$ or $\mathrm{J}^{\mathrm{n}} \mathrm{S} \subseteq\left[\mathrm{E}:_{T} S\right] S$ $+\operatorname{Soc}(\mathrm{T}) \mathrm{S}$. But S is faithful multiplication, $\operatorname{Soc}(\mathrm{T}) \mathrm{S}=$ $\operatorname{Soc}(\mathrm{S})$, that is $\mathrm{H} \subseteq \mathrm{E}+\operatorname{Soc}(\mathrm{S})$ or $\mathrm{I}^{\mathrm{n}} \mathrm{S} \subseteq \mathrm{E}+\operatorname{Soc}(\mathrm{S})$, it follows that $\mathrm{H} \subseteq \mathrm{E}+\mathrm{Soc}(\mathrm{S})$ or $\mathrm{m}^{\mathrm{n}} \subseteq \mathrm{E}+\mathrm{Soc}(\mathrm{S})$. Hence by corollary (2.4) E is a weakly approximately primary submodule of S.
The following corollary is direct applecation of proposition (3.8)

Corollary (3.9)

A proper submodule E of cyclic faithful T -module S is a weakly approximately primary if and only if [$\mathrm{E}:_{T} S$] is a weakly approximately primary ideal of T . To introduced next characterization we need to recall the following lemma

Lemma (3.10) [2, coro.1.26]

"If S is a non-singular T -module, then $\operatorname{Soc}(\mathrm{T}) \mathrm{S}=$ Soc(S)".
Proposition (3.11)
A proper submodule E of a non-singular multiplication T-module S is a weakly approximately primary if and only if $\left[\mathrm{E}:_{T} S\right]$ is a weakly approximately primary ideal of T .

Proof

(\Rightarrow) Let $(0) \neq \mathrm{rt} \in\left[\mathrm{E}_{\mathrm{T}} S\right]$, for $\mathrm{r}, \mathrm{t} \in \mathrm{T}$, implies that $(0) \neq$ $r(t S) \subseteq E$. Since E is a weakly approximately primary submodule, then by lemma (3.6) we have tS¢E + $\operatorname{Soc}(S)$ or $r^{\mathrm{n}} S \subseteq E+\operatorname{Soc}(S)$. But S is a non-singular, then by lemma (3.10) $\operatorname{Soc}(\mathrm{S})=\operatorname{Soc}(\mathrm{T}) \mathrm{S}$. Thus $\mathrm{tS} \subseteq\left[\mathrm{E}:_{T} S\right] S+\operatorname{Soc}(\mathrm{T}) \mathrm{S}$ or $\mathrm{r}^{\mathrm{n}} S \subseteq\left[\mathrm{E}:_{T} S\right] S+\operatorname{Soc}(\mathrm{T}) \mathrm{S}$, it follows that $\mathrm{t} \in\left[\mathrm{E}:_{T} S\right]+\operatorname{Soc}(\mathrm{T})$ or $\mathrm{r}^{\mathrm{n}} \in\left[\mathrm{E}:_{T} S\right]+$ $\operatorname{Soc}(\mathrm{T})=\left[\left[\mathrm{E}:_{T} S\right]+\operatorname{Soc}(\mathrm{T}) \underset{T}{: T}\right]$. Hence $\left[\mathrm{E}:_{T} S\right]$ is a weakly approximately primary ideal of T.
(\Longleftarrow) Let $(0) \neq \mathrm{Km} \subseteq \mathrm{E}$, for K is a submodule of S , $\mathrm{m} \in \mathrm{S}$. Since S is a multiplication then $\mathrm{K}=\mathrm{JS}, \mathrm{m}=\mathrm{Tm}$ $=$ IS, for some ideals I, J of T, it follows that (0) \neq $\mathrm{JIS} \subseteq \mathrm{E}$, implies that $(0) \neq \mathrm{JI} \subseteq\left[\mathrm{E}:_{T} S\right]$. But $\left[\mathrm{E}:_{T} S\right]$ is a weakly approximately primary ideal of T , then by lemma (2.1) we have $\mathrm{I} \subseteq\left[\mathrm{E}_{T} S\right]+\operatorname{Soc}(\mathrm{T})$ or $\mathrm{J}^{\mathrm{n}} \subseteq\left[\left[\mathrm{E}::_{T} S\right]+\operatorname{Soc}(\mathrm{T}) \underset{T}{T} T\right]=\left[\mathrm{E}:_{T} S\right]+\operatorname{Soc}(\mathrm{T})$, for some positive integer n. That is $\mathrm{IS} \subseteq\left[\mathrm{E}_{T} S\right] S+$ $\operatorname{Soc}(\mathrm{T}) \mathrm{S}$ or $\mathrm{J}^{\mathrm{n}} \mathrm{S} \subseteq\left[\mathrm{E}_{T} S\right] S+\operatorname{Soc}(\mathrm{T}) \mathrm{S}$. But S is a non-
singular, then $\operatorname{Soc}(\mathrm{T}) S=\operatorname{Soc}(\mathrm{S})$. Thus, we have $\mathrm{m} \subseteq \mathrm{E}$ $+\operatorname{Soc}(\mathrm{S})$ or $\mathrm{K}^{\mathrm{n}} \subseteq \mathrm{E}+\operatorname{Soc}(\mathrm{S})$. Hence by corollary (2.5) E is a weakly approximately primary submodule of S.

The following corollary is a direct consequence of proposition (3.11).
Corollary (3.12)
A proper submodule E of a cyclic non-singular T module S is a weakly approximately primary if and only if $\left[\mathrm{E}:_{T} S\right.$] is a weakly approximately primary ideal of T .
We recall the following lemmas befor we introduced the next characterization

Lemma (3.13) [6, prop (3.24)]

"If S is a projective T -module, then $\operatorname{Soc}(\mathrm{S})=$ Soc(T)S".
Lemma (3.14) [1, coro (2.8)]
"A proper submodule E of a T -module S is a weakly approximately primary if and only if wherever $(0) \neq$ $I x \subseteq E$ for I is an ideal of $T, x \in S$, implies that $\mathrm{x} \in \mathrm{E}+\operatorname{Soc}(\mathrm{S})$ or $\mathrm{I} \subseteq \sqrt{\left[\mathrm{E}+\operatorname{Soc}(\mathrm{S}):_{T} S\right]}$ "

Proposition (3.15)

A proper submodule E of a projective multiplication T-module S is a weakly approximately primary if and only if $\left[\mathrm{E}:_{T} S\right.$] is a weakly approximately primary ideal of T .

Proof

(\Rightarrow) Let $(0) \neq \operatorname{Ir} \subseteq\left[E:_{T} S\right]$ for I is an ideal of T and $r \in T$, so $(0) \neq \mathrm{I}(\mathrm{rS}) \subseteq \mathrm{E}$. But E is a weakly approximately primary, then by lemma (2.1) we have $\mathrm{rS} \subseteq \mathrm{E}+\operatorname{Soc}(\mathrm{S})$ or $\mathrm{I}^{\mathrm{n}} \subseteq\left[\mathrm{E}+\operatorname{Soc}(\mathrm{S}):_{T} S\right]$ for some positive integer n, that is $r S \subseteq E+S o c(S)$ or $I^{n} S \subseteq E+$ $\operatorname{Soc}(\mathrm{S})$. But S is a projective then by lemma (3.13) $\operatorname{Soc}(\mathrm{S})=\operatorname{Soc}(\mathrm{T}) \mathrm{S}$. Thus $\mathrm{rS} \subseteq\left[\mathrm{E}_{{ }_{T}} S\right] S+\operatorname{Soc}(\mathrm{T}) \mathrm{S}$ or $\mathrm{I}^{\mathrm{n}} \mathrm{S} \subseteq\left[\mathrm{E}_{:_{T}} S\right] S+\operatorname{Soc}(\mathrm{T}) \mathrm{S}$, implies that $\mathrm{r} \in\left[\mathrm{E}_{:_{T}} S\right]+$ $\operatorname{Soc}(\mathrm{T})$ or $\mathrm{I}^{\mathrm{n}} \subseteq\left[\mathrm{E}:_{T} S\right]+\operatorname{Soc}(\mathrm{T})=\left[\left[\mathrm{E}_{\cdot} S\right]+\operatorname{Soc}(\mathrm{T}): T\right]$ Hence by lemma (3.14) $\left[E:_{T} S\right]$ is a weakly approximately primary ideal of T.
(\Longleftarrow) Let $(0) \neq m m^{\prime} \subseteq E$ for $m, m^{\prime} \in S$. Since S is a multiplication, then $m=T m=\mathrm{IS}, m^{\prime}=T m^{\prime}=\mathrm{JS}$ for some ideals I, J of T. That is $(0) \neq \mathrm{IJS} \subseteq \mathrm{E}$, so $(0) \neq$ $\mathrm{IJ} \subseteq\left[\mathrm{E}:_{T} S\right]$. But $\left[\mathrm{E}:_{T} S\right]$ is a weakly approximately primary ideal of T , then by lemma (2.1) we have $\mathrm{J} \subseteq\left[\mathrm{E}_{T} S\right]+\operatorname{Soc}(\mathrm{T})$ or $\mathrm{I}^{\mathrm{n}} \subseteq\left[\mathrm{E}:_{T} S\right]+\operatorname{Soc}(\mathrm{T})$, implies that $\mathrm{JS} \subseteq\left[\mathrm{E}:_{T} S\right] S+\operatorname{Soc}(\mathrm{T}) \mathrm{S}$ or $\mathrm{I}^{\mathrm{n}} \mathrm{S} \subseteq\left[\mathrm{E}:_{T} S\right] S+$ $\operatorname{Soc}(\mathrm{T}) \mathrm{S}$ for some positive integer n . But S is a projective, then by lemma (3.13) $\operatorname{Soc}(\mathrm{T}) \mathrm{S}=\operatorname{Soc}(\mathrm{S})$, that is $m^{\prime} \subseteq \mathrm{E}+\operatorname{Soc}(\mathrm{S})$ or $m^{\mathrm{n}} \subseteq \mathrm{E}+\operatorname{Soc}(\mathrm{S})$. So by corollary (2.3) E is a weakly approximately primary submodule of S.
The proof of the following corollary is direct from proposition (3.15).

Corollary (3.16)

A proper submodule E of a cyclic projective T module S is a weakly approximately primary if and only if $\left[\mathrm{E}:_{T} S\right.$] is a weakly approximaitly primary ideal of T .
Characterized weakly approximately ideals with some kind of weakly approximately submodules.

In this section we characterized a weakly approximately ideal A with submodule AS. Befor we introduced the first characterization we recall the following lemma.
Lemma (4.1) [8, coro. of Theo (9)]
"Let S be a finitely generated multiplication T module, and I,J are ideals of T. Then IS $\subseteq \mathrm{JS}$ if and only if $\mathrm{I} \subseteq \mathrm{J}+a n n_{T}(\mathrm{~S})$ ".

Proposition (4.2)

Let S be a finitely generated multiplication regular Tmodule and A be an ideal of Twith $a n n_{T}(\mathrm{~S}) \subseteq \mathrm{A}$. Then A is a weakly approximately primary if and only if AS is a weakly approximately primary submodule of S.

Proof

(\Rightarrow) Let $(0) \neq \mathrm{IK} \subseteq \mathrm{AS}$, for I is an ideal of T, K is a submodule of S . Since S is a multiplication, then $\mathrm{K}=$ JS for some ideal J of T, so $(0) \neq \mathrm{IJS} \subseteq A S$. But S is a finitely generated multiplication then by lemma (4.1) we have $(0) \neq \mathrm{IJ} \subseteq \mathrm{A}+\operatorname{ann}_{T}(\mathrm{~S})$. Since $\operatorname{ann}_{T}(\mathrm{~S}) \subseteq \mathrm{A}$, then $\mathrm{A}+a n n_{T}(\mathrm{~S})=\mathrm{A}$, so $(0) \neq \mathrm{IJ} \subseteq \mathrm{A}$. It is given that A is a weakly approximately primary ideal, implies that by lemma (2.1) $\mathrm{J} \subseteq \mathrm{A}+\operatorname{Soc}(\mathrm{T})$ or $\mathrm{I}^{\mathrm{n}} \subseteq[\mathrm{A}+$ $\operatorname{Soc}(\mathrm{T}): T]=\mathrm{A}+\operatorname{Soc}(\mathrm{T})$, for some positive integer n . Hence $\mathrm{JS} \subseteq A S+\operatorname{Soc}(\mathrm{T}) \mathrm{S}$ or $\mathrm{I}^{\mathrm{n}} S \subseteq A S+\operatorname{Soc}(T) \mathrm{S}$. But S is a regular, then by lemma (3.3) we have $\operatorname{Soc}(\mathrm{T}) \mathrm{S}$ $=\operatorname{Soc}(S)$. Thus $K \subseteq A S+\operatorname{Soc}(S)$ or $I^{\mathrm{n}} S \subseteq A S+\operatorname{Soc}(S)$, it follows that $K \subseteq A S+\operatorname{Soc}(S)$ or $I^{n} \subseteq[A S+$ $\operatorname{Soc}(S): S]$. Hence by lemma (2.1) AS is a weakly approximately primary submodule of S.
(\Longleftarrow) Let $(0) \neq \mathrm{rt} \subseteq \mathrm{A}$, for $\mathrm{r}, \mathrm{t} \in \mathrm{T}$, implies that $(0) \neq$ $\mathrm{rtS} \subseteq \mathrm{AS}$. But AS is a weakly approximately primary submodule of S, then by lemma (3.6) we have $t S \subseteq$ $\mathrm{AS}+\operatorname{Soc}(\mathrm{S})$ or $\mathrm{r}^{\mathrm{n}} \mathrm{S} \subseteq \mathrm{AS}+\mathrm{Soc}(\mathrm{S})$ for some positive integer n. Since S is a regular then by lemma (3.3) $\operatorname{Soc}(\mathrm{S})=\operatorname{Soc}(\mathrm{T}) \mathrm{S}$, so $\mathrm{t} \in \mathrm{A}+\operatorname{Soc}(\mathrm{T})$ or $\mathrm{r}^{\mathrm{n}} \in \mathrm{A}+\operatorname{Soc}(\mathrm{T})$ $=[\mathrm{A}+\operatorname{Soc}(\mathrm{T}): T]$. Hence A is a weakly approximately primary ideal of T .
It is well-known that cyclic T-module is a finitely generated we get the following corollary

Corollary (4.3)

Let S be a cyclic regular T-module and A be an ideal of Twith $a n n_{T}(S) \subseteq A$. Then A is a weakly approximately primary ideal if and only if AS is a weakly approximately primary submodule of S.

Proposition (4.4)

Let S be a finitely generated multiplication prolective T-module and A be an ideal of Twith $\operatorname{ann}_{T}(\mathrm{~S}) \subseteq \mathrm{A}$. Then A is a weakly approximately primary ideal if and only if AS is a weakly approximately primary submodule of S .

Proof

(\Rightarrow) Let $(0) \neq \mathrm{KL} \subseteq A S$, where K, L are a submodules of S. Since S is a multiplication, then $L=I S, K=J S$ for some ideals I, J of T, it follows that $(0) \neq \mathrm{JIS} \subseteq$ AS. But S is a finitely generated, then by lemma (4.1) we have $(0) \neq \mathrm{JI} \subseteq \mathrm{A}+\operatorname{ann}_{T}(\mathrm{~S})$. Since $a n n_{T}(\mathrm{~S}) \subseteq \mathrm{A}$, implies that $\mathrm{A}+\operatorname{ann}_{T}(\mathrm{~S})=\mathrm{A}$, so $(0) \neq \mathrm{JI} \subseteq \mathrm{A}$. But A is a weakly approximately primary ideal of T , then by
lemma (2.1) we have $\mathrm{I} \subseteq \mathrm{A}+\operatorname{Soc}(\mathrm{T})$ or $\mathrm{J}^{\mathrm{n}} \subseteq[\mathrm{A}+$ $\operatorname{Soc}(\mathrm{T}): T]=\mathrm{A}+\operatorname{Soc}(\mathrm{T})$, for some positive integer n , it follows that $\mathrm{IS} \mathrm{\subseteq AS}+\operatorname{Soc}(\mathrm{T}) \mathrm{S}$ or $\mathrm{J}^{\mathrm{n}} \mathrm{S} \subseteq \mathrm{AS}+$ $\operatorname{Soc}(\mathrm{T}) \mathrm{S}$. Since S is a projective, then by lemma (3.13) we have $\operatorname{Soc}(\mathrm{T}) \mathrm{S}=\operatorname{Soc}(\mathrm{S})$. Thus $\mathrm{L} \subseteq \mathrm{AS}+$ $\operatorname{Soc}(\mathrm{S})$ or $\mathrm{K}^{\mathrm{n}} \subseteq \mathrm{AS}+\mathrm{Soc}(\mathrm{S})$. Hence by proposition (2.2) AS is a weakly approximately primary submodule of S .
(\Longleftarrow) Let $(0) \neq \mathrm{Ir} \subseteq \mathrm{A}$, for I is an ideal of $\mathrm{T}, \mathrm{r} \in \mathrm{T}$, implies that $(0) \neq \operatorname{IrS} \subseteq A S$. Since AS is a weakly approximately primary submodule of S, then by lemma (3.14) we have $\mathrm{rS} \subseteq \mathrm{AS}+\mathrm{Soc}(\mathrm{S})$ or $\mathrm{I}^{\mathrm{n}} \mathrm{S} \subseteq \mathrm{AS}+$ $\operatorname{Soc}(\mathrm{S})$, for some positive integer n . Since S is a projective, then by lemma (3.13) we have $\operatorname{Soc}(\mathrm{T}) \mathrm{S}=$ $\operatorname{Soc}(\mathrm{S})$. Hence $\mathrm{rS} \subseteq \mathrm{AS}+\operatorname{Soc}(\mathrm{T}) \mathrm{S}$ or $\mathrm{I}^{\mathrm{n}} \mathrm{S} \subseteq \mathrm{AS}+$ $\operatorname{Soc}(\mathrm{T}) \mathrm{S}$, it follows that $\mathrm{r} \in \mathrm{A}+\operatorname{Soc}(\mathrm{T})$ or $\mathrm{I}^{\mathrm{n}} \in \mathrm{A}+$ $\operatorname{Soc}(\mathrm{T})=[\mathrm{A}+\operatorname{Soc}(\mathrm{T}): T]$. So by lemma (3.14) A is a weakly approximately primary ideal of T .

Proposition (4.5)

Let S be a finitely generated multiplication nonsingular T-module and A be an ideal of Twith $a n n_{T}(\mathrm{~S}) \subseteq \mathrm{A}$. Then A is a weakly approximately primary ideal if and only if AS is a weakly approximately primary submodule of S.

Proof

(\Longrightarrow) Follows by proposition (2.2) lemma (4.1) and lemma (3.10)
(\Longleftarrow) Follows by lemma (3.6), lemma (4.1) and lemma (3.10).

Proposition (4.6)

Let S be a faithful finitely generated multiplication T module and A be an ideal of T. Then A is a weakly approximately primary ideal if and only if AS is a weakly approximately primary submodule of S.
Proof
(\Rightarrow) Let $(0) \neq \mathrm{mH} \subseteq \mathrm{AS}$, for $\mathrm{m} \in \mathrm{S}, \mathrm{H}$ is a submodules of S. Since S is a multiplication, then $\mathrm{H}=\mathrm{JS}, m=\mathrm{Tm}$ $=$ IS, for some ideals I, J of T, so $(0) \neq \mathrm{IJS} \subseteq A S$. It follows by lemma (4.1), $(0) \neq \mathrm{IJ} \subseteq \mathrm{A}+a n n_{T}(\mathrm{~S})$. Since S is a faithful then $a n n_{T}(\mathrm{~S})=(0)$, so, $(0) \neq \mathrm{IJ} \subseteq \mathrm{A}$. But A is a weakly approximately primary ideal of T, then by lemma (2.1) we have $\mathrm{J} \subseteq \mathrm{A}+\operatorname{Soc}(\mathrm{T})$ or $\mathrm{I}^{\mathrm{n}} \subseteq[\mathrm{A}+$ $\operatorname{Soc}(\mathrm{T}): T]=\mathrm{A}+\operatorname{Soc}(\mathrm{T})$, it follows that $\mathrm{JS} \subseteq \mathrm{AS}+$ $\operatorname{Soc}(\mathrm{T}) \mathrm{S}$ or $\mathrm{I}^{\mathrm{n}} \mathrm{S} \subseteq \mathrm{AS}+\operatorname{Soc}(\mathrm{T}) \mathrm{S}$. But S is afaithful multiplication, then by lemma (3.7) we have $\operatorname{Soc}(\mathrm{T}) \mathrm{S}$ $=\operatorname{Soc}(\mathrm{S})$. Hence $\mathrm{H} \subseteq \mathrm{AS}+\mathrm{Soc}(\mathrm{S})$ or $m^{\mathrm{n}} \subseteq \mathrm{AS}+$ $\operatorname{Soc}(\mathrm{S})$. Thus by corollary (2.4) AS is a weakly approximately primary submodule of S.
(\Longleftarrow) Let $(0) \neq \mathrm{ab} \in \mathrm{A}$, for $\mathrm{a}, \mathrm{b} \in \mathrm{S}$, it follows that $(0) \neq$ abS $\subseteq A S$. But AS is a weakly approximately primary submodule, then by lemma (3.6) we have $\mathrm{bS} \subseteq \mathrm{AS}+$ $\operatorname{Soc}(S)$ or $a^{n} S \subseteq A S+\operatorname{Soc}(S)$. Since S is faithful multiplication then $\operatorname{Soc}(S)=\operatorname{Soc}(T) S$, so we have $\mathrm{bS} \subseteq \mathrm{AS}+\operatorname{Soc}(\mathrm{T}) \mathrm{S}$ or $\mathrm{a}^{\mathrm{n}} \mathrm{S} \subseteq \mathrm{AS}+\operatorname{Soc}(\mathrm{T}) \mathrm{S}$, it follows that $\mathrm{b} \in \mathrm{A}+\operatorname{Soc}(\mathrm{T})$ or $\mathrm{a}^{\mathrm{n}} \in \mathrm{A}+\operatorname{Soc}(\mathrm{T})=[\mathrm{A}+$ $\operatorname{Soc}(\mathrm{T}) \underset{\underset{T}{T}}{ } T]$. Hence A is a weakly approximately primary ideal of T

The following corollary is direct application of proposition (4.4), proposition (4.5) and proposition (4.6).

Corollary (4.7)
Let S be a cyclic (prolective, non-singular, faithful) T-module and A be an ideal of Twith $\operatorname{ann}_{T}(\mathrm{~S}) \subseteq \mathrm{A}$. Then A is a weakly approximately primary ideal if and only if AS is a weakly approximately primary submodule of S .
"Recall that a T-module S is weak cancellation if AS
$=\mathrm{BS}$, implies that $\mathrm{A}+\mathrm{ann}_{T}(\mathrm{~S})=\mathrm{B}+a n n_{T}(\mathrm{~S})$ for A, B are ideals of T"[8].
The following fact appear in [8,prop (3.9)] we needed before we introduce the next propositions.

Lemma (4.8)

"Let S be a multiplication T-module. Then S is a finitely generated if and only if S is a cancellation".

Proposition (4.9)

Let S be a finitely generated multiplication regular Tmodule, and E be aproper submodule of S . Then the following statements are equivalents:

1. E is a weakly approximately primary submodule of S.
2. [$\mathrm{E}:_{T} S$] is a weakly approximately primary ideal of T.
3. $\mathrm{E}=\mathrm{AS}$ for some weakly approximately primary ideal A of T with $\operatorname{ann}_{T}(\mathrm{~S}) \subseteq$ A.

Proof

$(1) \Longrightarrow(2)$ Follows from proposition (3.4)
$(2) \Longrightarrow(3)$ Since $\left[E:_{T} S\right]$ is a weakly approximately primary ideal and $\operatorname{ann}_{T}(\mathrm{~S})=\left[0:_{T} S\right] \subseteq\left[\mathrm{E}:_{T} S\right]$ then by proposition (4.2) $\left[\mathrm{E}:_{T} S\right] S$ is a weakly approximately primary submodule of S, since S is a multiplication, then $\mathrm{E}=\left[\mathrm{E}:_{T} S\right] \mathrm{S}=\mathrm{AS}$, where $\mathrm{A}=\left[\mathrm{E}:_{T} S\right]$ is a weakly approximately primary ideal of T .
$(3) \Rightarrow(2)$ Since $E=A S$ with A is a weakly approximately primary ideal of T such that $a n n_{T}(S) \subseteq A$. From other hand we have S is a multiplication, then $\mathrm{E}=\left[\mathrm{E}:_{T} S\right] \mathrm{S}$. But S is a finitely generated, it follows by lemma (4.8) that S is a weak cancellation. That is $\mathrm{A}+a n n_{T}(\mathrm{~S})=\left[\mathrm{E}:_{T} S\right]+$ $a n n_{T}(\mathrm{~S})$. But $a n n_{T}(\mathrm{~S}) \subseteq \mathrm{A}$ and $a n n_{T}(\mathrm{~S}) \subseteq\left[\mathrm{E}:_{T} S\right]$, it follows that $\mathrm{A}+\operatorname{ann}_{T}(\mathrm{~S})=\mathrm{A}$ and $\left[\mathrm{E}:_{T} S\right]+a n n_{T}(\mathrm{~S})$ $=\left[\mathrm{E}:_{T} S\right]$. But A is a weakly approximately primary ideal, it follows that $\left[\mathrm{E}:_{T} S\right]$ is a weakly approximately primary ideal of T.
Form proposition (3.11), proposition (4.5) and lemma (4.8) we get the following result.

Proposition (4.10)

Let S be a finitely generated multiplication nonsingular T-module, and E be aproper submodule of S. Then the following statements are equivalents:

1. E is a weakly approximately primary submodule of S.
2. $\left[\mathrm{E}:{ }_{T} S\right]$ is a weakly approximately primary ideal of T.
3. $\mathrm{E}=\mathrm{AS}$ for some weakly approximately primary ideal A of T with $\operatorname{ann}_{T}(\mathrm{~S}) \subseteq$ A.
Form proposition (3.15), proposition (4.4) and lemma (4.8) we get the following result.

Proposition (4.11)

Let S be a finitely generated multiplication projective T-module, and E be aproper submodule of S. Then the following statements are equivalents:

1. E is a weakly approximately primary submodule of S.
2. $\left[\mathrm{E}:_{T} S\right]$ is a weakly approximately primary ideal of T.
3. $\mathrm{E}=\mathrm{AS}$ for some weakly approximately primary ideal A of T with $\operatorname{ann}_{T}(\mathrm{~S}) \subseteq \mathrm{A}$.
Form proposition (3.8), proposition (4.6) and lemma (4.8) we get the following result.

Proposition (4.12)

Let S be a faithful finitely generated multiplication Tmodule, and E be aproper submodule of S . Then the following statements are equivalents:

References

[1] Khaled Y.J. and Bothaynah N.S. (2021), "Weakly Approximately Primary Submodule and Related concepts", Tikrit Journal of Pure Sci to appear.
[2] Goodearl K.(1976), "Ring Theory", Marcel Dekker, Inc. New york and Basel.
[3] Barnard A., (1981). "Multiplication Modules" Journal of Algebra, vol.(71), pp.(174-178).
[4] Darani A.Y. and Soheilnia F.(2011), "2Absorbing and Weakly 2-Absorbing Submodules", Tahi Journal of Math. , vol.(9), No.(3), pp.(577-584). [5] Naderi M. and Raza J.(2009), "Weakly Primary Submodules of Multiplication Modules and

1. E is a weakly approximately primary submodule of S.
2. $\left[\mathrm{E}:_{T} S\right]$ is a weakly approximately primary ideal of T.
3. $\mathrm{E}=\mathrm{AS}$ for some weakly approximately primary ideal T .
We end this section by the following corollary.
Corollary (4.13)
Let S be a cyclic (projective, non-singular and faithful) T-module, and E be aproper submodule of S. Then the following statements are equivalents:
4. E is a weakly approximately primary submodule of S .
5. [$\mathrm{E}:_{T} S$] is a weakly approximately primary ideal of T.
6. $\mathrm{E}=\mathrm{AS}$ for some weakly approximately primary ideal A of T with $\operatorname{ann}_{T}(\mathrm{~S}) \subseteq \mathrm{A}$.

Intersection Theorem", Int. Journal contemp, Math. Sci. vol.(4), No.(33), pp.(1645-1652).
[6] Nuha H.H.(1996), "The Radicals of Modules", M.s.c Thesis. University of Baghdad.
[7] Kash F. (1982) "Modules and Rings", London Math. Soc. Morogrophs, New york Academic press.
[8] Mijbass A.S.(1993), "On Cancellation Modules" M.s.c Thesis. University of Baghdad.
[9] Sharp D. and Vamos P.(1972), "Injective Modules"Cambridge University press.

تشخيصات المقاسات الجزئية المتقاربة الابتتائية الضيفة في بعض انواع المقاسات

$$
\begin{aligned}
& \text { خالد يونس جهاد ، بشينـه نجاد شـهاب } \\
& \text { قسم الرياضيات ، كلية التربية /بن الكيثّم ، جامعة بغد/د ، بغد/د ، العر/ق }
\end{aligned}
$$

الملخص
هدفنا في هذا البحث هو تقديم العديد من تشخيصـات المقاسـات الجزئية المتقاربـة الابتدائية الضـيفة في صنف المقاسات الضـربية. بالاضـافة الى ذلك تشخص المقاسـات الجزئية المتقاربـة الابتدائية الضـعيفة بواسطة بواقيها في صنف المقاسـات الضـربيه بمسـاعده بعض انواع المقاسـات الاخرى مثل المقاسات الغير احادية والاسقاطية و المنتظمة والمخلصة. كذلك تشخص المثاليات المتقاربة الابتدائية الضعيفة مع بعض انواع المقاسـات الجزئية المتقاربـة الابتدائية الضـعيفة في نفس صنف المقاسات اعـلاه بمساعده المقاسات المنتهيه التولدز

