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ABSTRACT 

This paper introduces innovative basis functions derived 

from Müntz spaces, aimed at addressing the computational 

challenges of Fractional Differential Equations (FDEs). Our 

primary focus is the creation of these functions using 

singular indices linked to the solutions of FDEs. We 

thoroughly investigate the properties of these fundamental 

functions to understand their operational potential. These 

functions are particularly adept at capturing initial singular 

indices, making them highly suitable for solving FDEs. The 

proposed numerical method is distinguished by its rapid 

convergence rates, showcasing its efficiency in 

computational evaluations. We validate our approach by 

presenting numerical examples that highlight its accuracy 

and reliability. These examples confirm the effectiveness and 

efficiency of the new basis functions from Müntz spaces in 

accurately solving FDEs. This research advances numerical 

methods for FDEs and serves as a valuable resource for 

researchers seeking robust and reliable techniques. 
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 مهنتز فضاء من جديدة أساس دوال باستخدام الكدرية التفاضلية المعادلات حلهل تحدين
 

 3صالح هری سهران ن،  2 ، سالم سعيد محمهد 2 مران ج. حمدا، ك 1شيخ رمانسرين فا

 

 ، العراقسهران ،  ، أربيل ، جامعة أربيل التقشية ، كمية سهران التقشية تكشهلهجيا السعمهماتقدم  1

 سهران، العراق ،  قدم الرياضيات، كمية العمهم، جامعة سهران، أربيل 2
 ، العراق ، جسجسال ، الدميسانية ، ثانهية الذيخ رضا طالباني العمسية لتربية جسجسالا، السديرية العامة  وزارة التربية 3

 

 الملخص

 ىذه إنذاء عمى نركز. عدديا   (FDEs) الكدرية التفاضمية السعادلات لحل مهنتز فزاء من جديدة أساس دوال نقدم الدراسة، ىذه في
 الدوال ىذه خرائص بفحص نقهم. الكدرية التفاضمية السعادلات في السجيهلة بالحمهل الستعمقة الفردية السؤشرات باستخدام الدوال
 حل في فعالة يجعميا مسا فرديين، مؤشرين أول التقاط عمى الفائقة بقدرتيا الأساس الدوال ىذه تتسيز. عسميا كيفية لفيم بعشاية

 السشاىج كفاءة لتقييم ميم أمر وىه عالية، تقارب بسعدلات يتسيز نقترحو الذي الجديد العددي السشيج. الكدرية التفاضمية السعادلات
 يسكن مهنتز فزاء من الجديدة الأساس دوال أن الأمثمة ىذه تثبت. ومهثهقيتو دقتو تظير عددية بأمثمة مشيجشا فعالية ندعم. العددية

 التفاضمية السعادلات لحل العددية السشاىج تطهير في الدراسة ىذه تداعد. الكدرية التفاضمية لمسعادلات وفعالة دقيقة حمهلا   تهفر أن
 .ومهثهقة قهية تقشيات عن يبحثهن  الذين لمباحثين واعدة أداة  وتقدم الكدرية

1. Introduction 
Fractional Differential Equations (FDEs) play a 

crucial role in applied mathematics and are 

widely used in various scientific and engineering 

fields. The adaptability of fractional calculus is 

particularly notable in areas like engineering, 

physics, signal processing, and anomalous 

diffusion (see, e.g., [1, 2, 3, 4]). Recent studies 

suggest that fractional derivatives provide more 

accurate representations of numerous dynamic 

processes than traditional derivatives. In these 

models, different fractional operators, such as the 

Riemann-Liouville integral/derivative and the 

Caputo derivative, are utilized. These operators 

introduce nonlocality and weakly singular 

kernels, leading to non-smooth behavior in FDE 

solutions near domain boundaries. 

The wide use of FDEs has led to a surge of 

interest in developing numerical methods for 

solving them in recent decades. There has been 

significant focus on approximating fractional 

integrals and derivatives [5, 6, 7, 8]. Despite the 

challenges of the nonlocal and non-smooth nature 

of FDEs, recent years have seen many new 

numerical methods proposed for their solution. 

However, most of the existing literature focuses 

on error analysis for smooth solutions (see, e.g., 

[9, 10, 11, 12, 13, 14, 15]).  

This research aims to address the challenges of 

solving FDEs, especially those with non-smooth 

characteristics near domain boundaries. Inspired 

by the nonlocal nature of fractional operators, 

global methods like spectral methods have 

become popular for solving fractional problems. 

However, singular terms in FDE solutions hinder 

exponential convergence with classical 

orthogonal polynomials. Recent methods aim to 

handle singularities in non-smooth FDE solutions 

[16, 17]. 

The domain of numerical solutions for FDEs is 

ever-evolving, and this research aims to make a 

substantial contribution to its development.  
Our primary objective is to present new basis 

functions originating from Müntz spaces, 

meticulously designed using the singular indices 

of the unknown solutions in Fractional 

Differential Equations (FDEs). We investigate 

the characteristics of these basis functions, 

focusing on their capability to capture the first 

two singular indices. This study introduces a 

numerical method founded on these innovative 

functions, showcasing its rapid convergence 

rates. To validate the accuracy and efficiency of 

our approach, we include numerical examples. 
This research aims to develop a robust and 

efficient framework for numerically solving 

Fractional Differential Equations (FDEs), with 

the potential to make significant contributions to 

the field of fractional calculus applications. We 

thoroughly analyze the properties of these basis 

functions, particularly their ability to capture the 

initial two singular indices. The primary 

objective of this new approach is to enhance the 

accuracy and efficiency of numerical solutions 

for FDEs. We introduce a numerical method 
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based on these innovative basis functions, 

characterized by its high convergence rates, and 

validate it through a series of numerical 

examples. These examples demonstrate the 

effectiveness and precision of the proposed 

method, underscoring its practical applications. 

By integrating theoretical foundations with 

numerical implementation, this study provides a 

solid framework for solving a broad spectrum of 

FDEs, thereby advancing the field of fractional 

calculus applications. 
The structure of the paper is as follows: The next 

section provides an overview and introduces 

some preliminary concepts. In Section 3, we 

introduce a novel basis function based on the 

singular index of the function and describe the 

implementation of the numerical methods used to 

solve linear FDEs. Section 4 presents numerical 

examples and applications, demonstrating the 

effectiveness, accuracy, and convergence rates of 

the proposed methods. The final section includes 

our conclusions and a discussion of the 

approaches used in this study. 

2.  Preliminaries 
In this section, we present essential definitions 

and properties pertaining to fractional integrals 

and derivatives, along with Müntz-Legendre 

polynomials, which will be used extensively 

throughout this paper. [12, 13]. 

Definition 2.1: For a function   ,   -    and 

a real number    , the Riemann-Liouville 

fractional integrals are defined as: 

  
 
 
  ( )  

 

 ( )
∫ (   )    ( )         ( )

 

 
  

and the Caputo fractional derivative of order   is 

defined as: 

  
 

 
  ( )  
 

 (   )
∫ (   )      ( )( )   

 

 
         

        ( )  

here,   is the smallest integer greater than or 

equal to  ,  ( ) is the gamma function. 

In the realm of fractional calculus, a noteworthy 

connection exists between the Riemann-Liouville 

fractional integral and the Caputo fractional 

derivative. For a given function ( ), this 

relationship can be expressed as follows: 

  
 
 
   

 
 
  ( )   ( )  ∑

 ( )( )

  
(     
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  ( )   ( )   ( )   

This relationship underscores the interplay 

between fractional integral and fractional 

derivative operators, offering insights into their 

combined effects on functions. This 

understanding is crucial for a comprehensive 

grasp of fractional calculus. Below, it is evident 

that fractional Integral and derivative operators 

applied to power functions result in power 

functions of the same form. Consider the 

following: 

  
 
 
 (   )  

 (   )

 (     )
(   )                 ( )  

and 

  
 

 
 (   )  

 (   )

 (     )
(   )           

        ( )  

Definition 2.2: We define a Müntz sequence as a 

monotonically increasing sequence of distinct 

real numbers 

  *          +                    ( )  

and we refer to a system of the form 

*             + as a Müntz system, with the 

corresponding Müntz space associated with the 

parameter  .   

From [12], the space associated with    
*         + is a dense subset of  (,   -) if and 

only if 
 

  
  

 

  
      The Müntz-Legendre 

is defined as polynomials that satisfy the 

condition of being a linear combination of 

powers of a given base function over a specified 

interval. More formally, a sequence of 

polynomials *  ( )+ is considered a Müntz-
Legendre sequence on the interval [a, b] if it can 

be expressed as: 

  ( )  ∑         
             

∏ (       )   
   

∏ (     )
 
       

       ( )    

The orthogonality of Müntz-Legendre 

polynomials in   ,   - concerning the Legendre 

weight is demonstrated (see [12]), 

∫   ( )  ( )
 

 
   

   

     
     ( )  

Moreover, there are several recurrence relations, 

such as: 

 (  
 ( )    

   ( ))      ( )  (  

    )    ( )    ( )  

  ( )  
    ( )  

(         )   ∫        

 
    ( )      (  )  

3. Main Results 
In this section, we introduce a numerical method 

to solve the following linear FDEs of order 

     , 

  
 

 
  ( )   ( ) ( )   ( )      (   -     (  )  

with initial condition  ( )   . 
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To construct the new Müntz polynomials, it is 

essential to understand the regularity behavior of 

the exact solution of an FDE. To determine this 

behavior, we need to identify the singular indexes 

of the exact solution at the initial time. For 

finding these indexes, we can use the following 

Algorithm. 

Algorithm 

Step 1: Take     and    ,  

Step 2: Compute      
   

  
  for           , 

Step 3: Compute          
 ( )

 
   for           , 

Step 4: If      for     and     , put        and     , 

Step 5: Do Steps 2-4 until         , 

Step 6: Put           and      , 

Step 7: Do Steps 2-5 for  ( )   ( )     
    , 

Step 8: Put put           and      . 
 

Now, we assume that the parameters    and    

are the smallest singular index of the function 

 ( ) obtained the above Algorithm. Due to the 

presence of singular indexes, we consider a 

Müntz sequence as 

  *                          
    +                  (  )  

It should be noted that such a sequence holds 

under condition ∑
 

    
 ∑

 

    
   

   
 
   , 

making it a dense subspace of  (,   -). Based on 

this sequence, we define the following Müntz -

Legendre polynomials  

  ( )          ∑         
 

0
   

 
1

   
 

   ∑        
0
 

 
  1

   
            ( )  

      ( )    (  )  

Also, using (3), we have 

∫   ( )  ( )
 

 
   

{
 

 
   

     
                                     

   

       
                                      (  )

                            

  

where     is Kronecker delta function. Now, we 

approximate the unknown solution of (11) using 

truncated Müntz -Legendre polynomials of 

degree   (  is even number), i.e., 

 ( )  ∑   
 
     ( )  ∑   

 
        

   ∑   
 
      ( )  

   ∑   
 
      ( )       (  )   

Using the following notations 

 ̂  ,          -
   ̂  ,                -

   ̂ 

 ,   ( )    ( )      ( )-   

      
we can write 

  ( )  ( ̂      ̂      ̂ ) ̂        (  )  

On the other hand, we have  ̂ 
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From  (16), we can obtain  

  ( )  ( ̂       ( )  
        ( )  

  ) ̂  

 ( ) ̂       (  )  

To have high efficiency and accuracy of the 

considered Müntz sequence   for approximating 

functions, we consider the following function 

 ( )              (    )   



  

 

  

Tikrit Journal of Pure Science Vol. 29 (4) 2024 

 https://doi.org/10.25130/tjps.v29i4.1629 
  

 

 65 

 
Fig. 1: The errors   ( )    ( )  using present basis functions. 

 
Fig. 2: The errors   ( )    ( )  using the classical orthogonal polynomials. 

 

Using the presented algorithm, the values of 

         and          have been obtained 

and we have approximated this function with the 

introduced bases. The error values for several   

values are depicted in Figure 1. We have also 

approximated this function with classical 

polynomials and shown its error in Figure 2. It 

can be clearly seen that the current bases are 

suitable for approximating non-smooth functions 

at the endpoints. 

For solving FDE defined in (11), we need to 

evaluate the Caputo fractional derivative of 

     ( ) and      ( ), using (1), we get 

  
 

 
      ( )         ( )  

                  (  )  

where   
  is a diagonal matrix with entries 

(  
 )    

 (    )

 (      )
 for          . Similarly, 

we have  
  

 
 
      ( )         ( )  

  (  
 )    

 (    )

 (      )
                        (  )  

Taking the Caputo fractional derivative of both 

sides (18) and substituting (19)-(20) in it, we 

have 
  

 
 
   ( )  

( ̂         ( )  
   

          ( )  
   

  ) ̂  

 ( ) ̂       (  )  

From (11), we can define the following residual 

function 

 (   ̂)  ( ( )   ( ) ( )) ̂   ( )    (  )  

To evaluate an unknown vector  ̂, we can use the 

initial condition  ( )   ( ) ̂     and the 

following   algebraic equations 

∫  (   ̂) ( )             (  )
 

 
  

Another method to find unknown coefficients  ̂, 

we can use the collocation method. For this 

purpose, we consider the Chebyshev-Gauss-

Lobatto points as follows 

   
 

 
.     .

  

 
//                      (  )  

Taking these collocation points in (22), we can 

obtain the linear system 

( (  )   (  ) (  )) ̂   (  )   

              (  )  

    ( )   ( ) ̂      
The linear system under consideration can be 

effectively solved by employing various 

numerical algebraic methods. 

Remark 1: It should be noted that the presented 

method can be easily extended to fractional 

differential equations of various forms, including 

both linear and non-linear ones, over arbitrary 

intervals. 

4.  Results and Discussion 
In this section, we present several examples to 

demonstrate the effectiveness and applicability of 

the proposed method. The first example aims to 

illustrate the theoretical convergence rates 
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discussed in this paper. Here, we explore FDEs 

where the solutions may exhibit singularities at 

the endpoints. 

Example 1: Consider the following linear FDE 

[10] 

  
 

 
  ( )   ( )     ( )      

with the exact solution  ( )              
    and 

 ( )  ∑
 (    )

 (      )
       

     
The presented method has been employed to 

solve the equation for various values of   and   . 

For the new method, we compute the matrices   
  

and   
  for      . Then, by solving the linear 

system (), we obtain the unknown coefficients    

and the results are depicted in Figures 3-5. In 

Figures 3-4, the   -errors 

‖    ‖  .∫ ( ( )    ( )) 
 

 
/

 

 
   

are illustrated under different values of  , while 

the   ( )    ( )  is portrayed in Figure 5. It is 

evident from the plots that the proposed method 

exhibits exceptional efficiency and accuracy. For 

comparison, one can refer to [10], where they 

obtained similar results for significantly larger 

values of  , while we have achieved comparable 

errors for much smaller values of  .

 
Fig. 3:   -error analysis for various case         ,                      . 

 

 
Fig. 4:   -error analysis for various case              ,                      . 

 

 
Fig. 5: Graph of   ( )    ( )  for various the case         ,                 

   . 
 

Example 2: Consider the following linear 

fractional oscillation equation, which can be 

formulated as [7, 11]: 

  
 

 
  ( )   ( )        ( )      (   -   

The exact solution to this problem is  ( )  
    (   ), where     ( ) is the Mittag-Leffler 

function defined as 
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    ( )  ∑
  

 (    )
 
      

The fractional differential equation was solved 

for various values of the parameter   using the 

proposed method. By introducing the variable 

transformation   
 

 
, the FDE was reformulated, 

and the proposed method was extended to an 

arbitrary interval (   ). In Figure 6, the 

comparison between the exact solution and the 

numerically obtained solution is depicted for 

    . It is observed that the numerical solution 

rapidly converges to the exact solution. 

Additionally, in Figure 7, the   -errors are 

presented for different values of   and  . The 

error significantly diminishes with increasing 

values of  . Furthermore, Table 1 compares the 

error obtained from our method with several 

methods presented in [10, 14, 15]. The results 

indicate that our approach yields substantially 

more accurate results compared to the methods 

proposed in previous works. It is crucial to note 

that our method achieves lower errors, especially 

for very small values of  . 

 

 

 
Fig. 6: Comparison between Exact and Numerical solutions for different values of   and  . 

 

 
Fig. 7:   -errors of the presented method for various values of   and    . 

 

Table 1: Comparison errors using the present method and methods in [11,14-15]. 

            

N In [10] In [14] n Present 

Method 

N In [10] In [14] In [15] n Present 

Method 

80 4.67e-

05 

4.87e-

04 

5 5.31e-04 80 4.77e-

06 

1.35e-

05 

3.36e-

05 

5 1.41e-04 

160 1.45e-

05 

2.64e-

04 

10 6.08e-05 160 1.20e-

06 

4.37e-

05 

8.49e-

06 

10 3.14e-06 

320 4.40e-

06 

1.31e-

04 

20 8.09e-06 320 3.03e-

07 

1.42e-

05 

2.13e-

06 

20 9.12e-08 

640 1.31e-

06 

6.16e-

04 

34 2.18e-07 640 7.60e-

08 
4.66e-

06 

5.35e-

07 

30 1.51e-08 
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Example 3: Consider the following FDE of order 

     , [7] 

  
 

 
    ( )            (   )  ( )      

(   -   
This problem is solved using the presented 

methods with        and     . We show the 

  -errors for some values of   in Figure 8. We 

observe that the exponential convergence rate is 

obtained. Also in Table 2, we compare the error 

results derived from the present methods and 

presented in [7]. The superiority of the present 

work compared to the previous methods can be 

seen in this Table. 

 

Table 2: Comparison errors using the present method and method in [8]. 
                  

n In [7] Present 

Method 

In [7] Present 

Method 

In [7] Present 

Method 

5 1.17e-01 5.02e-04 2.51e-01 1.21e-03 4.64e-01 1.42e-03 

10 4.06e-04 6.37e-07 1.29e-03 5.69e-06 3.14e-03 9.40e-05 

15 43.01e-07 2.17e-12 1.08e-07 4.18e-10 3.32e-07 1.88e-08 

20 1.02e-11 1.71e-13 8.76e-11 6.82e-13 3.49e-11 1.32e-11 
 

Remark 2: In this section, three numerical 

examples are considered to evaluate the 

efficiency and accuracy of the proposed method. 

In the first example, the solution of the equation 

contains four singular terms. The results 

demonstrated that the method presented in this 

paper is fully compatible with such singular 

solutions and can accurately capture at least two 

of these singular terms. Classical polynomial-

based methods exhibit limited accuracy when 

dealing with such problems. 

The numerical results of the second example 

indicated that the spectral method proposed in 

this work yields superior results compared to 

finite difference methods and piecewise 

polynomial-based methods. With significantly 

fewer basis functions, a suitable level of accuracy 

can be achieved. 

Furthermore, the third example was designed to 

compare the proposed method with generalized 

Jacobi polynomials. Such bases are only capable 

of capturing a single term from the irregular 

solution. Overall, it can be concluded that the 

method presented in this study is considerably 

more effective than piecewise methods or 

classical polynomial-based methods, including 

Jacobi and Chebyshev polynomials. 

5. Discussions and Conclusions 
In this study, we developed novel basis functions 

from Müntz spaces to tackle numerical solutions 

of FDEs. 
These functions, developed using singular indices 

related to the unknown solutions in Fractional 

Differential Equations (FDEs), excel at capturing 

the first two singular indices. Our method has 

shown impressive convergence rates and 

efficiency, as validated by three numerical 

examples. In the first example, our method 

accurately identified at least two out of four 

singular terms, outperforming traditional 

polynomial-based methods. The second example 

demonstrated that our spectral method achieved 

superior results with fewer basis functions 

compared to finite difference and piecewise 

polynomial methods. In the third example, our 

method proved superior to generalized Jacobi 

polynomials, which were only able to capture a 

single term from the irregular solution. 
In conclusion, the proposed method delivers a 

precise and efficient solution for Fractional 

Differential Equations (FDEs), offering 

substantial enhancements over traditional 

techniques in terms of accuracy and 

computational efficiency. This research makes a 

significant contribution to the field of numerical 

solutions for FDEs by introducing a dependable 

and effective technique, thus serving as a 

valuable resource for future research and 

practical applications in solving differential 

equations with singularities. 

Future work can enhance the proposed method 

for solving FDEs in several directions. One 

potential area is the extension to higher-

dimensional problems, utilizing Müntz space 

basis functions to expand the method's 

applicability. Another avenue is the development 

of adaptive algorithms that dynamically select the 

most effective basis functions from Müntz 

spaces, thereby improving both efficiency and 

accuracy. Integrating this approach with other 

numerical techniques, such as finite element 

methods, could result in hybrid methods that 

combine the strengths of multiple approaches. 

Additionally, applying the method to real-world 

problems in fields such as physics, engineering, 

and finance would demonstrate its practical 
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utility and robustness in solving complex 

differential equations. Conducting thorough error 

analysis and establishing theoretical error bounds 

would also provide deeper insights into the 

method's reliability and performance. These 

suggestions aim to extend the capabilities and 

applications of the proposed method, making it a 

valuable tool for addressing a wide range of 

FDEs in both theoretical and practical contexts. 
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