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ABSTRACT 

In this paper, we applied and explain the stability to 

some linear and   non-linear stochastic differential 

equations by using the Lyapunov direct second 

method, after finding the  stochastic differential 

equation which obtained by applying the (Ito-

integrated formula) and the quadratic Lyapunov 

function be taken, we use the Lyapunov theorems to 

find and explain if the trivial (zero) solution are 

stochastically stabile (p-stable, mean square stable 

and stochastically asymptotically stable in the large ), 

then we explain the methods by some examples. 
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 تطبيق استقرارية ليابونوف على بعض المعادلات التفاضلية التصادفية غير الخطية 

 2عبد الغفور جاسم سالم، 1نبال صباح عبد الرحمن

 ، كلية التربية للعلوم الصرفة، جامعة الموصل قسم الرياضيات  1
 علوم الحاسوب والرياضيات، جامعة الموصل ، كلية قسم الرياضيات  2

 الملخص 

غهر الخيه  ضعسةرخاا  الير ا  الاعيه   الابعرةر   الخيه  طتم في هذا البحث دراسة  اسسةرارار   طتيبها ع ى    ض ا الا عدسا الرضعية ه  الرفةعدفه   

طضضرض   (Ito-integrated formula)  ل  علم لهعضويوف ،ض ا ا جعد الا عدل  الرضعية ه  الرفةعدفه  الري تم الحفةول ى ه ع ضريبهي ةةهي  ا رو الليع  ه 

سةةرخاا  يير عا لهعضهلوف س جعد طتويةةهت اسةةرارار   الحر الفةةضرس اط  ع لةةا  ضعلحر الرعفن ) لةةرار     ا  يع   تم الررضه ه   ان دال  لهعضويوف  

 .اس ا   لرويهت الير ا طاسسرارار    الاحعذ    في الحجم اليبهر (،طتم ىرض ض ا       رضع   ال اسسرارارطكذلك   𝑝  الرتب 

 .، دال  لهعضويوف)ال شوائه (، الا عدل  الرضعي ه  الرفعدفه       اسسرارار:  الكلمات المفتاحية

Introduction 

Studying and applied stochastic differential 

equations (SDE) is a nature field of 

research. Different types of SDEs (linear or 

non- linear) have been used to model 

different phenomena in various areas, such 

as non-stable stock prices in finance 

(Fischer, S., and R.C. Merton [1], the 

dynamics of some biological systems Jha, 

S.K., Langmead, C.J [2], filtering such as 

Kalman filter in navigation control. The 

stability means insensitivity of the state of 

the system to small changes in the initial 

state or the parameters of the system. For a 

stable system, the trajectories which are 

close to each other at a specific instant 

should therefore remain close to each other 

at all subsequent instants Lawrence C. E 

[3], the scientist Lyapunov in [4], 

introduced the new concept of stability in a 

dynamical system. Since this time, the 

concept of stability has been studied widely 

in different senses, Hu, L., Mao, X., & Yi, 

S. [5], investigated different types of 

stabilities for stochastic differential 

equation. Erkan Nane and Yinan Ni [6] are 

studying and extending the stability for the 

moments of SDES, Ayman M. Elbaz, 

William L. Roberts [7] studied the stability 

of turbulent (linear and non-linear) systems 

by Lyapunov method approach.  

In this paper we use the Ito-integral 

formula for linear and nonlinear stochastic 

differential equation after assuming the 

quadratic Lyapunov function be given in 

order to applied the stability theorems 

(Lyapunov second direct method). We 

explain the methods by introducing some 

examples. 

Suppose {𝑥(𝑡)} satisfies the solution of the 

following stochastic differential equation 

𝑑𝑥(𝑡) = 𝑁(𝑥(𝑡))𝑑𝑡 + 𝑀(𝑥(𝑡))𝑑𝑊(𝑡), 𝑡

≥ 0                                 (1) 

Where  𝑁(𝑥(𝑡), 𝑡)  ∈ R, 𝑁(𝑥(𝑡), 𝑡)∈ R is 

measurable functions, with 𝑋(0) = 𝑥0 and 

𝑊(𝑡) is the standard Brownian process. 

 The integrating form of eq. (1) which is 

their solution, is: 

𝑥(𝑡) = 𝑥(0) + ∫ 𝑁(𝑋(𝑠), 𝑠)𝑑𝑠
𝑡

0
+

∫ 𝑀(𝑋(𝑠), 𝑠)
𝑡

0
𝑑𝑊(𝑠)                                (2)                                 

suppose that at any initial value 𝑥𝑡(0) =
𝑥0 ∈ 𝑅𝑛, there correspond a unique global 

solution denoted by 𝑋(𝑡; 𝑡0; 𝑥0). 
Then equation (1) has the (zero (trivial) 

solution or equilibrium position) 𝑥𝑡(0)≡ 0 

corresponding to the given initial value 

𝑥𝑡(0) = 0. 

Definition (1): [8]  

Assume that  K  denote the family of all 

continuous non-decreasing functions  μ   

where 𝜇: 𝑅+ → 𝑅+ such that if r and  h are  

positive numbers,  μ(0) = 0 and μ(r) > 0,  

let V(x, t) be continuous function define on 

𝑆ℎ × [𝑡0, ∞]  𝑤ℎ𝑒𝑟𝑒 𝑆ℎ = {𝑥 ∈ 𝑅𝑛: |𝑥| <
ℎ} , hence the function 𝑉(𝑥, 𝑡)  is said to be 

positive-definite if 𝑉(0, 𝑡) ≡ 0  and, for 

some μ ∈ K , 𝑉(𝑥, 𝑡) ≥ 𝜇(|𝑥|)  for all 

(𝑥, 𝑡) ∈ 𝑆ℎ × [𝑡0, ∞].  
Also, it is said to be negative-definite if (– V 

)is positive-definite. 

Definition (2): [9], [10] 

If for every pair of ( 휀, 𝑟)  where 휀 ∈ (0,1)  

and 𝑟 > 0  there exists 𝛿 = 𝛿(휀, 𝑟, 𝑡0) > 0 

such that                    

https://doi.org/10.25130/tjps.v28i5.1586
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   𝑃{|𝑥(𝑡; 𝑡0, 𝑥0)| < 𝑟 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 𝑡0} ≥
1 − 휀                                                           (3)                                  

whenever |𝑥0| < 𝛿0   , then the trivial 

solution of equation (1) is stochastically 

stable or stable in probability. Otherwise, it 

is said to be unstable stochastically.  

Definition (3): [9], [10] 

If the trivial solution is stochastically stable 

and, moreover, for every 휀 ∈ (0,1)  there 

exists 𝛿 = 𝛿(휀, 𝑟, 𝑡0) > 0 such that    

            𝑃 { lim
𝑛→∞

𝑥(𝑡; 𝑡0, 𝑥0) = 0} ≥ 1 − 휀     

whenever |𝑥0| < 𝛿0  , then the trivial 

solution of equation (1) is asymptotically 

stable stochastically. 

Also, if it is stochastically stable and for all 

𝑥0 ∈ 𝑅𝑑 

         𝑃 { lim
𝑛→∞

𝑥(𝑡; 𝑡0, 𝑥0) = 0} = 1                                                                  

Then the trivial (zero) solution of the 

equation (1) is asymptotically stable 

stochastically in the large.  

Definition (4): [9] 

The trivial solution of  

𝑑𝑥(𝑡) = 𝑁(𝑥(𝑡))𝑑𝑡 + 𝑀(𝑥(𝑡))𝑑𝑊(𝑡), 𝑡

≥ 0 

 for some 𝑝 > 0 is called p-stable if for each 

∈> 0  there exists 𝛿 > 0  such that 

𝐸ǀ𝑥(𝑡, ∅)ǀ𝑝 <∈, 𝑡 ≥ 0 provided that 

ǀǀ∅ǀǀ1
𝑝 < 𝛿 .      

Theorem (1): (Lyapunov theorem) [8], 

[10] 

(i) The trivial(zero) solution is said to be 

stable, if we find a positive-definite 

function  𝑉(𝑡, 𝑋𝑡) ∈ 𝐶1,1(𝑆ℎ × [𝑡0, ∞]; 𝑅+)  

such that  

 For all (x, t) ∈ Sh × [t0, ∞] .  
  �̇�(𝑥, 𝑡) = 𝑉𝑡(𝑡, 𝑋(𝑡)) +
𝑉𝑥(𝑡, 𝑋(𝑡))𝑓(𝑡, 𝑋(𝑡)) ≤ 0                      (4) 

(ii) The trivial(zero) solution is called 

asymptotically stable, if there exists a 

positive-definite decrescent function 

𝑉(𝑡, 𝑋𝑡) ∈ 𝐶1,1(𝑆ℎ × [𝑡0, ∞], , 𝑅+)  such 

that the derivative of 𝑉(𝑡, 𝑋𝑡) is negative-

definite.  

Definition 5: [11] 

The trivial solution of the following system  

𝑑𝑥(𝑡) = 𝑓(𝑥)𝑑𝑡 + ℎ(𝑥)𝑑𝑤(𝑡)               (5)                                         

is said to be asymptotically mean square 

stable on the interval 

[0,∞) if it is stable and moreover, 
lim
𝑡→∞

𝐸(1) [‖𝑋(𝑡)‖2] = 0                            (6)                                                                     

That is it satisfies the following limitations 

in the neighborhood of the point 0∈ 𝑅𝑚 : 

  lim
𝑡→∞

𝐸(2) [𝑥(𝑡)] = lim
𝑡→∞

𝐸(1) {𝑋(𝑡)𝑋𝑇} = 0          (7)  

Theorem (2): [8], [9]  

i): If we have a positive-definite function 

𝑉(𝑦, 𝑡)  ∈ 𝐶2,1 ( 𝑆ℎ × [𝑡0,∞), 𝑅+)  such 

that, 𝐿𝑉(𝑦, 𝑡 ) ≤ 0 𝑓𝑜𝑟  all  (𝑦, 𝑡) ∈
𝑆ℎ𝑥(𝑡0, ∞), then the (zero) trivial solution 

equation (1) is stochastically stable. 

ii)If there exists a decrescent function 

𝑉(𝑦, 𝑡) ∈ 𝐶1,2 ( 𝑆ℎ × [𝑡0,∞), 𝑅+ ), then the 

trivial(zero) solution of the given equation 

is asymptotically stable stochastically if 

𝐿𝑉(𝑦, 𝑡) is negative-definite. 

iii)If there exists a decrescent radially 

unbounded function 𝑉(𝑦, 𝑡) ∈ 𝐶1,2 ( 𝑅𝑛 ×
[𝑡0,∞), 𝑅+), then the simple zero solution of 

the equation (1) is asymptotically stable 

stochastically in the large if such that 

𝐿𝑉(𝑦, 𝑡) is negative-definite. 

II. PREREQUISITES AND RESULTS: 

Suppose we have the quadratic Lyapunov 

function 𝑉(𝑋𝑡) is given  

           𝑉(𝑋𝑡) = 𝑋𝑡
𝑇𝑄𝑋𝑡                                                         

Where Q  is an m × m  symmetric positive 

definite matrix.  

To applied and use the Lyapunov stability 

for stochastic differential equation:  

let 𝐹(𝑡, 𝑋(𝑡))  be a smooth function and set   

𝐹(𝑡, 𝑋(𝑡)) = V(t, Xt)  and suppose that it 

satisfies the existence of solution of 

equation (1), then we can write it by using 

Ito - formula as:                                                                      

  𝑑𝑉(𝑡, 𝑥𝑡) = (
𝜕𝑉

𝜕𝑡
+

𝜕𝑉

𝜕𝑋
𝑁(, 𝑡, 𝑥𝑡) +

1

2
 

𝜕2𝑉

𝜕𝑋2
𝑀(𝑡, 𝑥𝑡)2) 𝑑𝑡 +

𝜕𝑉

𝜕𝑥
𝑀(𝑡, 𝑥𝑡)𝑑𝑊𝑡   (8) 

or we can write it as:       

      𝑑𝑉(𝑡, 𝑥𝑡) = 𝐿𝑉(𝑡, 𝑥𝑡)𝑑𝑡 +
𝜕𝑉

𝜕𝑋
𝑀(𝑡, 𝑥𝑡)𝑑𝑊𝑡                                             (9)                                            

The function 𝐿𝑉 ( 𝑋𝑡) ≤ 0   for stochastic 

differential equation is equivalence with 

�̈�(𝑋𝑡) ≤ 0 for deterministic equation.  

1: Nonlinear case: suppose we have the 

following equation  

https://doi.org/10.25130/tjps.v28i5.1586
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      𝑑𝑉(𝑡, 𝑋𝑡) = 𝐿𝑉(𝑡, 𝑥𝑡)𝑑𝑡 +
𝜕𝑉

𝜕𝑋
𝑀(𝑡, 𝑥𝑡)𝑑𝑊𝑡   where     𝑉(𝑋𝑡) = 𝑋𝑡

𝑇𝑄𝑋𝑡 

 

where  𝐿𝑉(𝑡, 𝑥𝑡) =  (
𝜕𝑉

𝜕𝑡
+

𝜕𝑉

𝜕𝑋
𝑁(, 𝑡, 𝑥𝑡) +

1

2
 

𝜕2𝑉

𝜕𝑋2
𝑀(𝑡, 𝑥𝑡)2)  

since, 
𝜕𝑉

𝜕𝑡
= 𝑉𝑡(𝑡, 𝑋(𝑡)) = 0 

, 
𝜕𝑉

𝜕𝑋
= 𝑉𝑥(𝑡, 𝑋(𝑡)) = 2𝑄𝑋𝑡

𝑇 

 and 

𝜕2𝑉

𝜕𝑋2
= 𝑉𝑥𝑥(𝑡, 𝑋(𝑡)) = 2𝑄 

  

then   

𝑑𝑉(𝑡, 𝑥𝑡) = [2𝑋𝑡
𝑇𝑄𝑁(𝑡, 𝑋)

+ 𝑀(𝑡, 𝑥𝑡)𝑇𝑄𝑀(𝑡, 𝑥𝑡)]𝑑𝑡
+ [2𝑋𝑡

𝑇𝑄 ]𝑀(𝑡, 𝑥𝑡)]𝑑𝑊𝑡 

 

That is:  

 𝐿𝑉(𝑥𝑡) = [(2Xt
T𝑄N(t, X) +

𝑀(𝑡, 𝑥𝑡)𝑇𝑄𝑀(𝑡, x𝑡) ]                        (10)                          

  since 𝑄 is symmetric matrix and N(t, X) is 

smooth function, we can write equation (10) 

as: 

𝐿𝑉(𝑥𝑡) = Xt
T𝑄N(t, X) + 𝑁(𝑡, 𝑥𝑡)𝑇𝑄Xt  +

𝑀(𝑡, 𝑥𝑡)𝑇𝑄𝑀(𝑡, x𝑡)           (11) 

 which is equivalence with  

𝐿𝑉(𝑡, 𝑥𝑡) = 𝑉𝑡(𝑡, 𝑋(𝑡)) +
𝑉𝑥(𝑡, 𝑋(𝑡))𝑁(𝑡, 𝑋) +
1

2
𝑡𝑟𝑎𝑐𝑒𝑀(𝑡, 𝑥𝑡)𝑇𝑉𝑥𝑥(𝑡, 𝑋(𝑡))𝑀(𝑡, 𝑥𝑡)   

Stochastically asymptotically stable in 

the large: 

 From the theorem we need to prove that 

𝐿𝑉(𝑥𝑡) is negative-definite in 

neighborhood of 𝑥𝑡 = 0 for 𝑡 ≥  𝑡0 . 

Since dV( 𝑋𝑡 )= V( 𝑋𝑡 + 𝑑𝑥𝑡) − 𝑉(𝑋𝑡) =
(𝑋𝑡 + 𝑑𝑋𝑡 )𝑇𝑄(𝑋𝑡+d𝑋𝑡) − 𝑋𝑡

𝑇𝑄𝑋𝑡 

 then  

     dV( 𝑋𝑡 ) =[ 𝑋 𝑡
𝑇 + N (𝑡, 𝑥𝑡)𝑇𝑑𝑡 +

𝑀(𝑡, 𝑥𝑡)𝑇𝑑𝑤𝑡 ]𝑄[𝑋𝑡 + 𝑁(𝑡, 𝑥𝑡) +
𝑀(𝑡, 𝑥𝑡)𝑑𝑤𝑡] − 𝑋𝑡

𝑇𝑄𝑋𝑡 

 = 𝑋𝑡
𝑇𝑄𝑋𝑡 +

𝑋𝑡
𝑇𝑄𝑁(𝑡, 𝑋𝑡) dt+ 𝑥𝑡

𝑇 QM (𝑡, 𝑋𝑡) d 𝑤𝑡 +N

(𝑡, 𝑥𝑡)𝑇𝑑𝑡𝑄𝑋𝑡 +
𝑁(𝑡, 𝑋𝑡)𝑇 dtQN (𝑡, 𝑋𝑡)𝑑𝑡 +

𝑁(𝑡, 𝑋𝑡)𝑇𝑑𝑡𝑄𝑁(𝑡, 𝑥𝑡)𝑑𝑡 +
𝑁(𝑡, 𝑥𝑡)𝑇𝑑𝑡𝑄𝑀(𝑡, 𝑥𝑡)𝑑𝑤𝑡 +
𝑀(𝑡, 𝑥𝑡)𝑇𝑑𝑤𝑡𝑄𝑥𝑡 +
𝑀(𝑡, 𝑥𝑡)𝑇𝑑𝑤𝑡𝑄𝑀(𝑡, 𝑥𝑡)𝑑𝑤𝑡 − 𝑥𝑡

𝑇𝑄𝑥𝑡 

By using the rules 𝑑𝑡. 𝑑𝑡 = 𝑑𝑡. 𝑑𝑊𝑡 =
𝑑𝑤𝑡. 𝑑𝑡 = 0, 𝑑𝑤𝑡. 𝑑𝑤𝑡 = 𝑑𝑡   
Then We get: 

𝑑𝑉(𝑥𝑡) = 𝑥𝑡
𝑇𝑄𝑁(𝑡, 𝑥𝑡)𝑑𝑡

+ 𝑥𝑡
𝑇𝑄𝑀(𝑡, 𝑥𝑡)𝑑𝑤𝑡

+ 𝑁(𝑡, 𝑥𝑡)𝑇𝑑𝑡𝑄𝑥𝑡

+ 𝑀(𝑡, 𝑥𝑡)𝑇𝑑𝑤𝑡𝑄𝑥𝑡

+ 𝑀(𝑡, 𝑥𝑡)𝑇𝑄𝑀(𝑡, 𝑥𝑡)𝑑𝑡 

By taking the expectation for both sides, 

and since {𝑊𝑡}  is wiener process which 

have the property 𝐸(𝑊𝑡) = 0 , then we get 

𝐸{𝑑𝑉(𝑥𝑡)} = 𝑥𝑡
𝑇𝑄𝑁(𝑡, 𝑥𝑡)𝑑𝑡

+ 𝑁(𝑡, 𝑥𝑡)𝑇𝑄𝑋𝑡𝑑𝑡

+ 𝑀(𝑡, 𝑥𝑡)𝑇𝑄𝑀(𝑡, 𝑥𝑡)𝑑𝑡
= 𝐿𝑉(𝑥𝑡)𝑑𝑡 . 

−𝐿𝑉(𝑥𝑡) ≥ 𝐾𝑉(𝑋𝑡)  ;       𝐾 = 𝑐𝑜𝑛𝑠𝑡 . 
𝑑

𝑑𝑡
𝐸{𝑉(𝑋𝑡)} ≤ −𝐾𝐸{𝑉(𝑋𝑡)},  or 

𝑑𝐸{𝑉(𝑋𝑡}

𝐸{𝑉(𝑋𝑡}
≤

−𝐾𝑑𝑡 

Then 𝑙𝑛𝐸{𝑉(𝑋𝑡)} ≤ −𝐾𝑡 

𝐸{𝑉(𝑋𝑡)} ≤ exp(−𝐾𝑡). 
and since    

lim
t→∞

E2{Xt} = lim
t→∞

E{XtXt
T} 

lim
𝑡→∞

𝐸2{𝑋𝑡} = lim exp(−2𝐾𝑡)
𝑡→∞

= lim
𝑡→∞

exp( −∞) = 0 

Therefore equation (12) is asymptotically 

stable in large, and the trivial solution is 

unstable if 𝐿𝑉(𝑥𝑡)  is positive-definite in 

some neighborhood of 𝑋𝑡 = 0. 

2: linear stochastic system differential 

equation:  
Suppose we have the following linear 

system stochastic differential equation  

𝑑𝑥𝑡 =∝ 𝑥𝑡𝑑𝑡 + 𝑏𝑥𝑡𝑑𝑤𝑡     𝑡 ≥ 0   (12)      
where ∝, b are m×m constant matrices, her 

𝑁(𝑥(𝑡), 𝑡) =∝ 𝑥𝑡  𝑎𝑛𝑑  𝑀(𝑥(𝑡), 𝑡) = 𝑏𝑥𝑡 

applying equation (11), we get         

𝐿𝑉(𝑥𝑡) = 𝑥𝑡
𝑇 ∝𝑇 𝑄𝑥𝑡 + 𝑥𝑡

𝑇𝑄
∝ 𝑥𝑡 + 𝑥𝑡

𝑇𝑏𝑇𝑄𝑏𝑥𝑡 

In the same method for nonlinear stochastic 

differential equation, we compute the 

Lyapunov function:  
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𝑑𝑉(𝑥𝑡) = 𝑉(𝑥𝑡 + 𝑑𝑥𝑡) − 𝑉(𝑥𝑡)
= (𝑥𝑡 + 𝑑𝑥𝑡)𝑇𝑄(𝑥𝑡 + 𝑑𝑥𝑡)
− 𝑥𝑡

𝑇𝑄𝑥𝑡 

 = [𝑥𝑡
𝑇 + (𝑑𝑥𝑡)𝑇]𝑄(𝑥𝑡 + 𝑑𝑥𝑡) − 𝑥𝑡

𝑇𝑄𝑥𝑡 
 = [𝑥𝑡

𝑇 + (∝ 𝑥𝑡)𝑇𝑑𝑡+(𝛽𝑥𝑡)𝑇𝑑𝛽𝑡]𝑄[𝑥𝑡 +
{(∝ 𝑥𝑡)𝑑𝑡 + 𝛽𝑥𝑡𝑑𝛽𝑡}]  − [𝑥𝑡

𝑇𝑄𝑥𝑡] 
 = 𝑥𝑡

𝑇𝑄𝑥𝑡 + 𝑥𝑡
𝑇𝑄(∝ 𝑥𝑡)𝑑𝑡 +

𝑥𝑡
𝑇𝛽𝑥𝑡𝑑𝛽𝑡 + (∝ 𝑥𝑡)𝑇𝑑𝑡𝑄𝑥𝑡  + (∝

𝑥𝑡)𝑇𝑑𝑡𝑄(∝ 𝑥𝑡)𝑑𝑡 
 +(∝ 𝑥𝑡)𝑇𝑑𝑡𝑄𝛽𝑥𝑡𝑑𝛽𝑡 + (𝛽𝑥𝑡)𝑇𝑑𝛽𝑡𝑄𝑥𝑡 +
+(𝛽𝑥𝑡)𝑇𝑑𝛽𝑡𝑄(∝ 𝑥𝑡)𝑑𝑡- 𝑥𝑡

𝑇𝑄𝑥𝑡 

By applying the rules 𝑑𝑡. 𝑑𝑡 = 𝑑𝑡. 𝑑𝛽𝑡 =
𝑑𝛽𝑡. 𝑑𝑡 = 0, 𝑑𝛽𝑡. 𝑑𝛽𝑡 = 𝑑𝑡    .And taking 

expectation With ( E (𝛽𝑡) = 0) 

𝐸{𝑑𝑉(𝑥𝑡)} = 𝑥𝑡
𝑇𝑄(∝ 𝑥𝑡)𝑑𝑡 + (

∝ 𝑥𝑡)𝑇𝑄𝑥𝑡𝑑𝑡
+ (𝛽𝑥𝑡)𝑇𝑄𝛽𝑥𝑡𝑑𝑡
= 𝐿𝑉(𝑥𝑡)𝑑𝑡  

Then  𝐿𝑉(𝑥𝑡) ≤ 0    if and only if  

[𝑥𝑡
𝑇 ∝𝑇 𝑄𝑥𝑡 + 𝑥𝑡

𝑇𝑄 ∝ 𝑥𝑡 +
𝑥𝑡

𝑇𝑏𝑇𝑄𝑏𝑥𝑡] ≤ 0                       (13) 

After we find the values that satisfies the 

above equation (13), this explains how to 

find the stability of the given equation.  

For asymptotically stability we must have   

lim
𝑡→∞

𝐸2{𝑋𝑡} = 0 

Examples: we give some examples in order 

to apply and explain the methods. 

Example (1): let { 𝑋𝑡}    satisfies the 

solution of the following non-linear 

stochastic differential equation 

               𝑑𝑋𝑡 = (𝑎𝑋𝑡
𝑛 + 𝑏𝑋𝑡)𝑑𝑡 +

 𝑐𝑋𝑡𝑑𝒲𝑡           (14)  

Where 𝑎, 𝑏, 𝑐 are constants,  𝒲𝑡  

𝑖𝑠 𝑡ℎ𝑒 𝑤𝑖𝑒𝑛𝑒𝑟 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 . 

Determine the Lyapunov function and the 

stability. 

Solution:   Here    𝑁(𝑡, 𝑋𝑡) = (𝑎𝑋𝑡
𝑛 +

𝑏𝑋𝑡) ; M(t,𝑋𝑡) = 𝑐𝑋𝑡  
Then from equation (8), we have 

 𝐿𝑉(𝑋𝑡) = 𝑋𝑡
𝑇𝑄𝑁(𝑡, 𝑋𝑡) +

𝑁(𝑡, 𝑋𝑡)𝑇𝑄𝑋𝑡 + 𝑀(𝑡, 𝑋𝑡)𝑇QM(t,𝑋𝑡) 

Or  

 LV( 𝑋𝑡) = 𝑋𝑡
𝑇𝑄(𝑎𝑋𝑡

𝑛 + 𝑏𝑋𝑡)  + (𝑎𝑋𝑡
𝑛 +

𝑏𝑋𝑡) 𝑇 𝑄𝑋𝑡 + (𝑐𝑋𝑡)𝑇Q (c𝑋𝑡) 

Since Q=1, then  

𝐿𝑉(𝑡, 𝑥𝑡) = 2𝑎𝑥𝑛+1 + 2𝑏𝑥𝑡
2 + 𝑐2𝑥𝑡

2 

To find the Lyapunov function, let  

V(𝑡, Xt) = V(Xt) = Xt
TQXt , then  

dV( 𝑋𝑡 )=V( 𝑋𝑡 + 𝑑𝑥𝑡) − 𝑉(𝑋𝑡) = (𝑋𝑡 +
𝑑𝑋𝑡 )𝑇𝑄(𝑋𝑡+d𝑋𝑡) − 𝑋𝑡

𝑇𝑄𝑋𝑡 

dV( 𝑋𝑡 )=  𝑥𝑡
𝑇𝑄(𝑎𝑥𝑡

𝑛 + 𝑏𝑥𝑡)𝑑𝑡 +
𝑥𝑡

𝑇𝑄𝑐𝑥𝑡𝑑𝑤𝑡 + (𝑎𝑥𝑡
𝑛 + 𝑏𝑥𝑡)𝑇𝑑𝑡𝑄𝑥𝑡 +

(𝑐𝑥𝑡)𝑇𝑑𝑤𝑡𝑄𝑥𝑡 + (𝑐𝑥𝑡)𝑇𝑄𝑐𝑥𝑡𝑑𝑡 =
(𝑎𝑥𝑛+1 + 𝑏𝑥𝑡

2)𝑑𝑡 + 𝑐𝑥𝑡
2𝑑𝑤𝑡 + (𝑎𝑥𝑡

𝑛+1 +
𝑏𝑥𝑡

2)𝑑𝑡 + 𝑐𝑥𝑡
2𝑑𝑤 + 𝑐2𝑥𝑡

2𝑑𝑡] = (𝑎𝑥𝑛+1 +
𝑏𝑥𝑡

2 + 𝑎𝑥𝑡
𝑛+1 + 𝑏𝑥𝑡

2 + 𝑐2𝑥2)𝑑𝑡 +
2𝑐𝑥𝑡

2𝑑𝑤 = (2𝑎𝑥𝑛+1 + 2𝑏𝑥𝑡
2 + 𝑐2𝑥𝑡

2)𝑑𝑡 +
2𝑐𝑥𝑡

2𝑑𝑤  
Then 𝑑𝐸(𝑉( 𝑋𝑡 )) = (2𝑎𝑥𝑡

𝑛+1 + 2𝑏𝑥𝑡
2 +

𝑐2𝑥𝑡
2)𝑑𝑡 = 𝐿𝑉(𝑡, 𝑥𝑡)𝑑𝑡 

To apply Theorem (2), we need to show that 

there exists a neighborhood of the zero 

point for the equation: 

 2𝑎𝑥𝑡
𝑛+1 + 2𝑏𝑥𝑡

2 + 𝑐2𝑥𝑡
2 ≤ 0.  

This holds if and only if the following 

inequality is satisfied 𝑥𝑡 ≤ (
−(2𝑏+𝑐2)

2𝑎
)

1

𝑛−1 , 

n≠1. Thus, to obtain  LV(𝑡, Xt) < 0  , 𝑥𝑡  

must satisfies the inequality ≤

(
−(2𝑏+𝑐2)

2𝑎
)

1

𝑛−1  ; n≠1, at each point also if 

𝑥𝑡 = 0  𝑤𝑒, 𝑔𝑒𝑡 LV(0) = 0 . Therefore, we 

conclude that there exists a neighborhood in 

which the function LV(Xt) = 2𝑎𝑥𝑛+1 +
2𝑏𝑥𝑡

2 + 𝑐2𝑥𝑡
2  is negative definite. So, the 

trivial(zero) solution xt = 0  of considered 

equation is asymptotically mean square 

stable on the interval [0, ∞)  since 

lim
𝑘→∞

𝐸2{𝑋𝑡} 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑧𝑒𝑟𝑜, i.e. 

Since  −𝐿𝑉(𝑥𝑡) ≥
𝐾𝑉(𝑋𝑡)  ;      𝑤ℎ𝑒𝑟𝑒   𝐾  𝑖𝑠 𝑐𝑜𝑛𝑠𝑡 . 
𝑑

𝑑𝑡
𝐸{𝑉(𝑋𝑡)} ≤ −𝐾𝐸{𝑉(𝑋𝑡)},  or 

𝑑𝐸{𝑉(𝑋𝑡}

𝐸{𝑉(𝑋𝑡}
≤

−𝐾𝑑𝑡 

Then by integration, 𝑙𝑛𝐸{𝑉(𝑋𝑡)} ≤ −𝐾𝑡  

therefore    𝐸{𝑉(𝑋𝑡)} ≤ exp(−𝐾𝑡)        .and 

since  

lim
t→∞

𝐸{𝑋𝑡
2} = lim

t→∞
E{XtXt

T} , we get 

lim
t→∞

𝐸{𝑋𝑡
2} =  lim

𝑡→∞
(−2𝐾𝑡) = 0. 

Example (2): suppose we have the 

following stochastic differential equation: 

  𝑑𝑋𝑡 = 3𝑋𝑡𝑑𝑡 + exp(𝑡)2𝑑𝑤𝑡                                                          

(15) 

Then  𝐿𝑉(𝑋𝑡) == (6𝑋𝑡
2 + 𝑒𝑥𝑝2𝑡2) 

To find the Lyapunov function, let  V(Xt) =
Xt

TQXt  ,  since 
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dV( 𝑋𝑡 )=V( 𝑋𝑡 + 𝑑𝑥𝑡) − 𝑉(𝑋𝑡) = (𝑋𝑡 +
𝑑𝑋𝑡 )𝑇𝑄(𝑋𝑡+d𝑋𝑡) − 𝑋𝑡

𝑇𝑄𝑋𝑡 

or,  

𝑑𝑉(𝑋𝑡) = 𝑋𝑡
𝑇(3𝑋𝑡)𝑑𝑡 + 𝑋𝑡

𝑇𝑒𝑥𝑝 𝑡2𝑑𝑤𝑡

+ (3𝑋𝑡)𝑇𝑋𝑡𝑑𝑡
+ exp(𝑡2)𝑋𝑡𝑑𝑤
+ (exp 𝑡2)𝑇 exp(𝑡2)𝑑𝑡 

By taking the expectation, we get 

𝐸(𝑑𝑉(𝑋𝑡)) = 3𝑋𝑡
2𝑑𝑡 + 3𝑋𝑡

2𝑑𝑡 +

𝑒𝑥𝑝2𝑡2𝑑𝑡 = (6𝑋𝑡
2 + 𝑒𝑥𝑝2𝑡2)𝑑𝑡   

That is 𝐸(𝑑𝑉(𝑋𝑡)) =  𝐿𝑉(𝑋𝑡)𝑑𝑡  

Then the stability condition is  (6𝑋𝑡
2 +

𝑒𝑥𝑝2𝑡2) ≤ 0   which is hold if and only if  

𝑋𝑡 ≤ (
−(𝑒2𝑡2

)

6
)1/2 

For asymptotically stochastically stable we 

need to show that if the following condition 

satisfied     

lim
𝑡→∞

𝐸2{𝑋𝑡} = 0 

 

since  
(𝑑𝐸𝑉(𝑋𝑡))

𝐸(𝑉(𝑋𝑡))
= (6𝑋𝑡

2 + 𝑒𝑥𝑝2𝑡2)𝑑𝑡  

Ln 𝐸(𝑉(𝑋𝑡)) = ∫ (6𝑋𝑠
2 + 𝑒𝑥𝑝2𝑠2)𝑑𝑠

𝑡

0
 

  𝐸(𝑉(𝑋𝑡)) = exp (∫ (6𝑋𝑠
2 +

𝑡

0

𝑒𝑥𝑝2𝑠2)𝑑𝑠), then  

lim
𝑡→∞

𝐸2{𝑋𝑡} = lim
𝑡→∞

exp (2(∫ (6𝑋𝑠
2 +

𝑡

0

𝑒𝑥𝑝2𝑠2)𝑑𝑠)) ≠ 0 , then the stochastic 

differential equation is not asymptotically 

stochastically   stable. 
Ex: (3): (linear model ), Let we have the 

following linear stochastic differential 

equation: 

𝑑𝑋𝑡 = 2𝑋𝑡𝑑𝑡 + 3𝑋𝑡 𝑑𝑊𝑡                                                          

(16) 

Then 𝐿𝑉(𝑥𝑡) = 13𝑥𝑡
2  . (Where Q=1), the 

quadratic function  V(Xt) = Xt
TQXt  , with 

Q=1 

Then,  

𝑑𝑉(𝑥𝑡) = 𝑉(𝑥𝑡 + 𝑑𝑥𝑡) − 𝑉(𝑥𝑡)
= (𝑥𝑡 + 𝑑𝑥𝑡)𝑇𝑄(𝑥𝑡 + 𝑑𝑥𝑡)
− 𝑥𝑡

𝑇𝑄𝑥𝑡 

𝑑𝑉(𝑥𝑡) = 𝑥𝑡
𝑇𝑄(2𝑥𝑡)𝑑𝑡 + 𝑥𝑡

𝑇𝑄(3𝑥)𝑑𝑤𝑡

+ (2𝑥𝑡)𝑇𝑑𝑡𝑄𝑥𝑡

+ 3𝑥𝑑𝑤𝑡𝑄𝑥𝑡

+ (3𝑥)𝑇𝑄(3𝑥)𝑑𝑡 

= 4𝑥𝑡
2𝑑𝑡 + 9𝑥2𝑑𝑡 + 6𝑥2𝑑𝑤 

= 13𝑥𝑡
2𝑑𝑡 + 6𝑥2𝑑𝑤 

∴ 𝐿𝑉(𝑥𝑡) = 13𝑥𝑡
2 ≥ 0   for all values of  𝑥𝑡 

, then the trivial(zero) solution of equation 

(16) is non-stable and also not 

asymptotically stable. 

 

Ex: (4): suppose we have the following non-

linear (Square root S.D.E) 

 𝑑𝑥𝑡 =∝ (𝜃 − 𝑋(𝑡))𝑑𝑡 + 𝛾√𝑋(𝑡)𝑑𝑤(𝑡)                                                   

(17) 

Hence 𝐿𝑉(𝑋𝑡) = [( 2𝛼𝜃 + 𝛾2)𝑋(𝑡) −
2𝑋(𝑡)2]. 
 To find Lyapunov function, let V(Xt) =
Xt

TQXt, then  

dV( 𝑋𝑡 )=V( 𝑋𝑡 + 𝑑𝑥𝑡) − 𝑉(𝑋𝑡) = (𝑋𝑡 +
𝑑𝑋𝑡 )𝑇𝑄(𝑋𝑡+d𝑋𝑡) − 𝑋𝑡

𝑇𝑄𝑋𝑡 

Then    
𝑑𝑉(𝑥𝑡) = 𝑋𝑡

𝑇𝑄(𝛼(𝜃 − 𝑋(𝑡))𝑑𝑡

+ 𝑋𝑡
𝑇𝑄𝛾√𝑋(𝑡)𝑑𝑤 + (𝛼(𝜃

− 𝑋(𝑡))𝑇𝑑𝑡𝑄𝑥𝑡

+ (𝛾√𝑋(𝑡))𝑇𝑑𝑤𝑡𝑄𝑋𝑡

+ (𝛾√𝑋(𝑡))𝑇𝑄𝛾√𝑋(𝑡)𝑑𝑡 

𝐸(𝑑𝑉(𝑋𝑡)) = 𝑋𝑡
𝑇(𝛼(𝜃 − 𝑋(𝑡))𝑑𝑡

+ (𝛼(𝜃 − 𝑋(𝑡))
𝑇

𝑋𝑡𝑑𝑡

+ (𝛾√𝑋(𝑡))𝑇𝛾√𝑋(𝑡) 𝑑𝑡 

= 2𝑋𝑡(𝛼(𝜃 − 𝑋(𝑡))𝑑𝑡 + 𝛾2𝑋(𝑡)𝑑𝑡 

= [( 2𝛼𝜃 + 𝛾2)𝑋(𝑡) − 2𝑋(𝑡)2]𝑑𝑡   
Then the trivial solution of equation (20) is 

stable for all 𝑋(𝑡) >
 2𝛼𝜃−𝛾2

2
 and unstable if  

𝑋(𝑡) <
 2𝛼𝜃−𝛾2

2
. 

III.  CONCLUSION AND FUTURE 

WORKS: 

We know that the trivial solution is said to 

be stable if the derivative of Lyapunov 

function is less than or equal to zero, while 

if it is only negative-definite then it is 

asymptotically stable. To find  the stability 

of stochastic differential equation we use 

the function LV( 𝑋𝑡) ≤ 0   which  is 

equivalence with the inequality 𝑉˙̇ (𝑋𝑡) ≤ 0 

for deterministic equation ,we explain the 

stability condition for some nonlinear 

stochastic differential equation by using the 

direct method (lyapunov direct method), 

also we  explain asymptotically stable in the 
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large not almost this condition is satisfies, 

that is if the trivial solution is 

asymptotically stable but not 

asymptotically stable in large by the fact if 

the limit is not equal to zero. we explain the 

methods by several examples.  

 

As a future studies one can study the 

stability (direct method) for some nonlinear 

(harmonic or exponential) stochastic 

differential equation by using stratonovich 

formula for their solution compare it with 

Ito formula 
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