Tikrit Journal of Dure Science
ISSN: 1813 - 1662 (Print) --- E-ISSN: 2415-1726 (Online)
Journal Homepage: http://tjps.tu.edu.iq/index.php/j

On Soft $\boldsymbol{S}_{\boldsymbol{p}}$-Closed and Soft $\boldsymbol{S}_{\boldsymbol{p}}$-Open Sets with Some Applications

Payman M. Mahmood ${ }^{1}$, Halgwrd M. Darwesh ${ }^{2}$, Hardi A. Shareef ${ }^{2}$
${ }^{1}$ Department of Mathematics, College of Education for Pure Sciences, University of Kirkuk, Iraq
${ }^{2}$ Department of Mathematics, College of Science, University of Sulaimani, Kurdistan-region, Iraq

ARTICLEINFO.

Article history:

-Received: 6/9/2023
-Received in revised form: 29 / 10 / 2023
-Accepted:
3/11/20 23
-Final Proofreading: $25 / 2$ / 2024
-Available online: 25/4/2024
Keywords: Soft S_{p}-open sets, soft S_{p}-closed sets, soft S_{p}-neighborhood, soft S_{p}-limit point, soft S_{p}-derived set, soft S_{p}-interior, soft $S_{p^{-}}$ closure, soft S_{p}-boundary.
Corresponding Author:
Name: Payman M. Mahmood

E-mail:

paymanmajeed@uokirkuk.edu.iq

Tel:

© 2024 THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE
http://creativecommons.org/licenses/by/4.0/

ABSTRACT

In this article, the concept of a soft S_{p}-closed set is introduced. Its relationships with some other types of soft sets are explored and discussed. In addition, via soft S_{p}-closed sets and soft S_{p}-open sets, the concepts soft S_{p}-neighborhood, soft S_{p}-limit point, soft S_{p}-derived, soft S_{p}-interior, soft $S_{p^{-}}$ closure, and soft S_{p}-boundary are introduced and investigated.

> حول المجموعات الناعمـة المـغلقة والمفتوحة من النمط ${ }^{\text {المط }}$ مع بعض تطبيقاتها پبيمان مجيد محمود¹ ، هلگورد محمـ درويش² ، هردي علي شريف²
> 1ق الرمياضيات ، كلية التربية للعلوم الصرفة ، جامعة كركوك ، كركوك ، العرقق 2ق قسم رياضيات ، كلية العلوم ، جامعة السليمانية ، السليمانية ، العراق

Abstract

الملخص في هذه المقالة، يتم تقديم مفهوم المجموعة المغلقة الناعمة من النمط ${ }^{\text {. }}$. ${ }^{\text {(}}$ ايجاد ومناقشة علاقاتها مع بعض الأنواع الأخرى من المجموعات نتطة الغاية، المشتقة، الداخلية، انغلاق، و الحدودية) الناعمة من النمط ${ }^{\text {التم تتديمها والتحقيق فيها. }}$

https://doi.org/10.25130/tips.v29i2.1547

1- Introduction and Preliminaries

The concepts and information proposed in [1] are used in this article. Molodtsov defined soft sets [2] as follows: Assume X is a universe set, $\mathfrak{P}(X)$ is the power of X, and \mathcal{P} is a set of parameters. A pair $(\mathcal{E}, \mathcal{P})=\{(e, \mathcal{E}(e)): e \in \mathcal{P}, \mathcal{E}(e) \in \mathfrak{P}(X)\}$ is known as a soft set over X, where $\mathcal{E}: \mathcal{P} \rightarrow \mathfrak{P}(X)$ is a function. The family of all soft sets over the universal set X with the set of parameters \mathcal{P} is indicated by $\tilde{S} S(X, \mathcal{P})=\tilde{S} S(\tilde{X})$. In particular, (X, \mathcal{P}) is indicated by \tilde{X}. Maji et al. [3], was defined a null soft set, indicated by $\widetilde{\emptyset}$, if $\mathcal{E}(e)=\emptyset, \forall e \in \mathcal{P}$ and an absolute soft set, indicated by \tilde{X}, if $\mathcal{E}(e)=X, \forall e \in \mathcal{P}$ and the soft complement of a soft set $(\mathcal{E}, \mathcal{P})$ is indicated by $\tilde{X} \tilde{\lceil }(\mathcal{E}, \mathcal{P})=\left(\mathcal{E}^{c}, \mathcal{P}\right)$ where $\mathcal{E}^{c}: \mathcal{P} \rightarrow \mathfrak{P}(X)$ is a function defined as $\mathcal{E}^{c}(e)=X-\mathcal{E}(e), \forall e \in \mathcal{P}$. The soft union of $\left(\mathcal{E}_{\vartheta}, \mathcal{P}\right) \tilde{\in} \tilde{S} S(\tilde{X}), \forall \vartheta \in \mathcal{K}$ is a soft set $(\mathcal{E}, \mathcal{P}) \tilde{\in} \tilde{S} S(\tilde{X})$, where $\mathcal{E}(e)=\widetilde{U}_{\vartheta \in \mathbb{N}} \mathcal{E}_{\vartheta}(e), \forall e \in \mathcal{P}$, \mathcal{K} is a random collection of index and the soft intersection of $\left(\varepsilon_{\vartheta}, \mathcal{P}\right) \widetilde{\epsilon} \tilde{S} S(\tilde{X}), \forall \vartheta \in \mathcal{K}$ is a soft set $(\mathcal{E}, \mathcal{P}) \widetilde{\in} \tilde{S} S(\tilde{X})$, where $\mathcal{E}(e)=\widetilde{ก}_{\vartheta \in \mathbb{X}} \varepsilon_{\vartheta}(e), \forall e \in \mathcal{P}$, were defined in. A soft point [4] $(\mathcal{E}, \mathcal{P})$ is a soft set defined as $\mathcal{E}(e)=\{x\}$ and $\mathcal{E}(e ́)=\emptyset, \forall \dot{e} \in \mathcal{P} \backslash\{e\}$, we indicated by $\widetilde{e_{x}}$ such that $\widetilde{e_{x}}=(e,\{x\})$, where $x \in X$ and $e \in \mathcal{P} . \widetilde{e_{x}} \widetilde{\in}(B, \mathcal{P})$, if $e \in \mathcal{P}$ and $\{x\} \subseteq$ $B(e)$. The family of all soft points over X is indicated by $\tilde{S} P(\tilde{X})$. The idea of soft topological space $(\tilde{S} T S)$ over X was defined in [5] is ($\tilde{X}, \tilde{\tau}, \mathcal{P}$) (simply, \tilde{X}), where $\tilde{\tau} \subseteq \tilde{S} S(\tilde{X})$ is known as "soft topology" on \tilde{X}, if $\widetilde{\emptyset}, \tilde{X} \widetilde{\in} \tilde{\tau}$, and $\tilde{\tau}$ is closed under finite soft intersection and arbitrary soft union. The members of $\tilde{\tau}$ are referred to as soft open sets. The soft complements of every soft open or members of $\tilde{\tau}^{c}$ are known as soft closed sets [6]. A soft set $(\mathcal{E}, \mathcal{P})$ that is both soft open and soft closed is referred to as a soft clopen set. The family of all soft clopen sets in \tilde{X} is indicated by $\tilde{S} C O(\tilde{X})$. Let $(\mathcal{E}, \mathcal{P}) \subseteq(\tilde{X}, \tilde{\tau}, \mathcal{P})$. Then, the soft closure of $(\mathcal{E}, \mathcal{P})$ is $\tilde{s} c l(\mathcal{E}, \mathcal{P})=$ $\widetilde{\cap}\left\{(C, \mathcal{P}):(C, \mathcal{P}) \widetilde{\in} \tilde{\tau}^{c}\right.$ and $\left.(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq}(C, \mathcal{P})\right\}$. Clearly, $\tilde{s} c l(\mathcal{E}, \mathcal{P})$ is the smallest soft closed set contains $(\mathcal{E}, \mathcal{P})$ [5] and the soft interior of $(\mathcal{E}, \mathcal{P})$ is $\tilde{\operatorname{sint}}(\mathcal{E}, \mathcal{P})=\widetilde{\mathrm{U}}\{(M, \mathcal{P}):(M, \mathcal{P}) \widetilde{\in} \tilde{\tau}$ and $\quad(M, \mathcal{P}) \widetilde{\subseteq}$ $(\mathcal{E}, \mathcal{P})\}$. Clearly, $\tilde{\operatorname{sint}}(\mathcal{E}, \mathcal{P})$ is the largest soft open set contained in $(\mathcal{E}, \mathcal{P})[6]$. The triple $\left(\tilde{Z}, \tilde{\tau}_{\tilde{Z}}, \mathcal{P}\right)$ is a soft subspace of $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ where $Z \subseteq X, \quad \tilde{\tau}_{Z}=$ $\left\{\left(\mathcal{E}_{Z}, \mathcal{P}\right)=\tilde{Z} \widetilde{\cap}(\mathcal{E}, \mathcal{P}) ;(\mathcal{E}, \mathcal{P}) \widetilde{\in} \tilde{\tau}\right\}$ is known as "the soft relative topology" on \tilde{Z}, and $\varepsilon_{Z}(e)=\tilde{Z} \widetilde{\cap} \mathcal{E}(e)$, for all $e \widetilde{\in} \mathcal{P}$ [5].
In this paper, we define soft S_{p}-closed sets as the soft complements of soft S_{p}-open sets. Thus, soft $S_{p^{-}}$ closed sets can be defined via soft semi-closed sets and soft pre-open sets. We show that the class of soft S_{p}-closed sets strictly placed between the classes of soft S_{c}-closed sets and soft semi-closed sets. We introduce the basic properties of soft S_{p}-closed sets and their relationships with some other types of soft sets. Also, we establish the connections between a
soft topological space and its soft subspace topologies through the utilization of soft S_{p}-closed sets. In addition to these, we introduce and investigate the notions of soft S_{p}-neighborhood, soft S_{p}-limit point, soft S_{p}-derived, soft S_{p}-interior, soft S_{p}-closure, and soft S_{p}-boundary of soft sets. Finally, we provide some basic relationships between a soft topological space and its soft subspaces in terms of soft $S_{p^{-}}$ interior and soft S_{p}-closure notions.
Further important terms and results are pointed out in the coming sections.
Definition 1.1. A $\tilde{S} T S \quad(\tilde{X}, \tilde{\tau}, \mathcal{P})$ and $(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq}(\tilde{X}, \tilde{\tau}, \mathcal{P})$ is known as a soft semi-open [7] (resp., soft pre-open [8], soft α-open [9], soft b-open [10], soft β-open [11] and soft regular open [8]) set, if $(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq} \tilde{s} c l(\tilde{\sin } \operatorname{int}(\mathcal{E}, \mathcal{P}))$ (resp., $(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq} \operatorname{sint}(\tilde{s} c l$ $(\mathcal{E}, \mathcal{P})), \quad(\mathcal{E}, \mathcal{P}) \subseteq \tilde{\operatorname{sint}}(\tilde{\sin l}(\tilde{\sin }(\mathcal{E}, \mathcal{P}))), \quad(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq}$ $\tilde{s} \operatorname{cl}(\tilde{\operatorname{sinint}}(\mathcal{E}, \mathcal{P})) \widetilde{\cup} \tilde{\operatorname{sint}}(\tilde{s} c l(\mathcal{E}, \mathcal{P})), \quad(\mathcal{E}, \mathcal{P}) \widetilde{ } \simeq \operatorname{s} c l($ $\tilde{\operatorname{sint}}(\tilde{\operatorname{sicl}}(\mathcal{E}, \mathcal{P})))$, and $(\mathcal{E}, \mathcal{P})=\tilde{\operatorname{sint}}(\tilde{\operatorname{sicl}}(\mathcal{E}, \mathcal{P})))$.
The family of all soft semi (resp., pre, α, b, β, and regular) open sets in \tilde{X} is indicated by $\tilde{S} S O(\tilde{X})$ (resp., $\tilde{S} P O(\tilde{X}), \tilde{S} \alpha O(\tilde{X}), \tilde{S} b O(\tilde{X}), \tilde{S} \beta O(\tilde{X})$ and $\tilde{S} R O(\tilde{X}))$.
Definition 1.2. The soft complement of a soft semi (resp., pre, α, b, β, and regular) open set is known as soft semi-closed [7] (resp., pre [8], α [9], b [10], β [11], and regular [12]) closed. The family of all soft semi (resp., pre, α, b, β, and regular) closed sets in \tilde{X} is indicated by $\tilde{S} S C(\tilde{X})$ (resp., $\tilde{S} P C(\tilde{X}), \tilde{S} \alpha C(\tilde{X})$, $\tilde{S} b C(\tilde{X}), \tilde{S} \beta C(\tilde{X})$, and $\tilde{S} R C(\tilde{X}))$.
Definition 1.3. A $\tilde{S} T S(\tilde{X}, \tilde{\tau}, \mathcal{P})$ and $(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq}$ ($\tilde{X}, \tilde{\tau}, \mathcal{P}$) is known as soft S_{p} [1] (resp., $\tilde{S} S_{c}$ [13]) open set, if $(\mathcal{E}, \mathcal{P}) \widetilde{\in} \tilde{S} S O(\tilde{X})$ and $\forall \widetilde{e_{x}} \widetilde{\in}(\mathcal{E}, \mathcal{P})$, there is $(W, \mathcal{P}) \widetilde{\in} \tilde{S} P C(\tilde{X}) \quad$ (resp., $\quad \tilde{\tau}^{c}$) such that $\widetilde{e_{x}} \widetilde{\in}(W, \mathcal{P}) \widetilde{\subseteq}(\mathcal{E}, \mathcal{P})$. The family of all soft S_{p} (resp., $\tilde{S} S_{c}$) -open subsets of \tilde{X} is indicated by $\tilde{S} S_{p} O(\tilde{X})\left(\right.$ resp., $\left.\tilde{S} S_{c} O(\tilde{X})\right)$.
The soft complement of a $\tilde{S} S_{c}$-open set is known as $\tilde{S} S_{c}$-closed [13] and the family of all $\tilde{S} S_{c}$-closed sets in \tilde{X} is indicated by $\tilde{S} S_{C} C(\tilde{X})$.
Definition 1.4. ([14], [8], [9], [10], [15], [13]) Let $3 \in\left\{\right.$ semi, pre, $\left.\alpha, b, \beta, S_{c}\right\}, \mu \in\left\{S, P, \alpha, b, \beta, S_{c}\right\}$ and $\left(\mathcal{E}_{1}, \mathcal{P}\right) \widetilde{(\tilde{X}, \tilde{\tau}, \mathcal{P}) \text {. Then, }}$
(1) The soft $\mathcal{\mathcal { B }}$-closure of $\left(\varepsilon_{1}, \mathcal{P}\right)=\widetilde{\cap}\{(C, \mathcal{P})$: $\left.(C, \mathcal{P}) \widetilde{\in} \tilde{S} \mu C(\tilde{X}),\left(\varepsilon_{1}, \mathcal{P}\right) \widetilde{\subseteq}(C, \mathcal{P})\right\}$. They are indicated by $\tilde{\operatorname{sicl}}\left(\varepsilon_{1}, \mathcal{P}\right)$, $\tilde{\sin p l}\left(\mathcal{E}_{1}, \mathcal{P}\right)$, $\tilde{s} \alpha c l\left(\mathcal{E}_{1}, \mathcal{P}\right), \quad \tilde{s} b c l\left(\mathcal{E}_{1}, \mathcal{P}\right), \quad \tilde{s} \beta c l\left(\mathcal{E}_{1}, \mathcal{P}\right)$, $\tilde{s} S_{c} c l\left(\mathcal{E}_{1}, \mathcal{P}\right)$.
(2) The soft $\mathcal{3}$-interior of $\left(\varepsilon_{1}, \mathcal{P}\right)=\widetilde{\cup}\{(M, \mathcal{P})$: $\left.(M, \mathcal{P}) \widetilde{\in} \tilde{S} \mu O(\tilde{X}),(M, \mathcal{P}) \widetilde{\subseteq}\left(\varepsilon_{1}, \mathcal{P}\right)\right\}$. They are indicated by $\tilde{\sin } \operatorname{sint}\left(\mathcal{E}_{1}, \mathcal{P}\right)$, $\tilde{\operatorname{s} p i n t}\left(\mathcal{E}_{1}, \mathcal{P}\right)$, $\tilde{s} \alpha \operatorname{int}\left(\mathcal{E}_{1}, \mathcal{P}\right), \quad \tilde{\operatorname{s} b i n t}\left(\mathcal{E}_{1}, \mathcal{P}\right), \quad \tilde{s} \beta \operatorname{int}\left(\mathcal{E}_{1}, \mathcal{P}\right)$, $\tilde{s} S_{c} \operatorname{int}\left(\mathcal{E}_{1}, \mathcal{P}\right)$.
Definition 1.5. [16] Let ($\tilde{X}, \tilde{\tau}, \mathcal{P}$) be a $\tilde{S} T S$ and $(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq}(\tilde{X}, \tilde{\tau}, \mathcal{P})$. A soft point $\widetilde{e_{x}} \widetilde{\in} \tilde{S} P(\tilde{X})$ is known as a

https://doi.org/10.25130/t.jps.v29i2.1547

(1) Soft semi-neighborhood of $\tilde{e_{x}}$, if there is $(W, \mathcal{P}) \widetilde{\in} \tilde{S} S O(\tilde{X})$ such that $\widetilde{e_{x}} \widetilde{\in}(W, \mathcal{P}) \widetilde{\subseteq}(\mathcal{E}, \mathcal{P})$. The soft semi-neighborhood system at $\widetilde{e_{x}}$, indicated by $\widetilde{\mathrm{N}}_{s}\left(\widetilde{e_{x}}\right)$, is the family of all its soft semineighborhood.
(2) Soft semi-limit point of $(\mathcal{E}, \mathcal{P})$, if $(W, \mathcal{P}) \widetilde{\cap}$ $\left((\mathcal{E}, \mathcal{P}) \widetilde{\backslash e_{x}}\right) \neq \widetilde{\emptyset}, \forall(W, \mathcal{P}) \widetilde{\in} \tilde{S} S O(\tilde{X})$ containing $\widetilde{e_{x}}$. The family of all soft semi-limit points of $(\mathcal{E}, \mathcal{P})$ is named soft semi-derived set of $(\mathcal{E}, \mathcal{P})$ and is indicated by $\tilde{s} s D(\mathcal{E}, \mathcal{P})$.
(3) Soft semi-boundary point of $(\mathcal{E}, \mathcal{P})$, if $\forall(W, \mathcal{P})$ $\widetilde{\in} \tilde{S} S O(\tilde{X})$ containing $\widetilde{e_{x}}$, we have $(W, \mathcal{P}) \widetilde{\cap}(\mathcal{E}, \mathcal{P}) \neq$ $\widetilde{\emptyset}$ and $(W, \mathcal{P}) \widetilde{\cap}(\tilde{X} \widetilde{\backslash}(\mathcal{E}, \mathcal{P})) \neq \widetilde{\emptyset}$. The family of all soft semi-boundary points of $(\mathcal{E}, \mathcal{P})$ is indicated by $\tilde{s} s B d(\mathcal{E}, \mathcal{P})$.
Definition 1.6. [17] Let $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ be a $\tilde{S} T S$ and $(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq}(\tilde{X}, \tilde{\tau}, \mathcal{P})$. The soft θ-interior of $(\mathcal{E}, \mathcal{P})$ is the soft set $\tilde{s} \theta \operatorname{int}(\mathcal{E}, \mathcal{P})=\widetilde{\mathrm{U}}\{(M, \mathcal{P}) ; \tilde{\operatorname{s}} c l(M, \mathcal{P}) \widetilde{\subseteq}(\mathcal{E}, \mathcal{P})$ and $(M, \mathcal{P}) \widetilde{\epsilon} \tilde{\tau}\}$. The soft set $(\mathcal{E}, \mathcal{P})$ is known as a soft θ-open if $\tilde{\operatorname{s}} \theta \operatorname{int}(\mathcal{E}, \mathcal{P})=(\mathcal{E}, \mathcal{P})$. The soft complement of a soft θ-open set is known as soft θ closed. The family of all soft θ-closed sets in \tilde{X} is indicated by $\tilde{S} \theta C(\tilde{X})$.
Definition 1.7. [18] A soft point $\widetilde{e_{x}}$ is known as a soft semi- θ-adherent point of $(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq}(\tilde{X}, \tilde{\tau}, \mathcal{P})$, if $\tilde{s} S c l(W, \mathcal{P}) \widetilde{\cap}(\mathcal{E}, \mathcal{P}) \neq \widetilde{\emptyset}$, for any $(W, \mathcal{P}) \widetilde{\in} \tilde{S} S O(\tilde{X})$. The set of all soft semi- θ-adherent points of $(\mathcal{E}, \mathcal{P})$ is called soft semi- θ-closure of (\mathcal{E}, \mathcal{P}) indicated by $\tilde{\sin } \operatorname{scl}(\mathcal{E}, \mathcal{P})$. The soft set $(\mathcal{E}, \mathcal{P})$ is called soft semi- θ closed, if $(\mathcal{E}, \mathcal{P})=\tilde{s} s \theta c l(\mathcal{E}, \mathcal{P})$.
The soft complement of a soft semi- θ-closed set is called soft semi- θ-open. The family of all soft semi-θ-closed (resp., soft semi- θ-open) sets in \tilde{X} is indicated by $\tilde{S} S \theta C(\tilde{X})$ (resp., $\tilde{S} S \theta O(\tilde{X})$).
Definition 1.8. A $\tilde{S} T S(\tilde{X}, \tilde{\tau}, \mathcal{P})$ is known as:
(1) Soft extremally disconnected ($\tilde{S} E D$) [19], if $\tilde{s} c l(\mathcal{E}, \mathcal{P}) \widetilde{\in} \tilde{\tau}, \quad \forall(\mathcal{E}, \mathcal{P}) \widetilde{\in} \tilde{\tau} . \quad$ Or $\quad \tilde{\operatorname{sint}}(\mathcal{E}, \mathcal{P}) \widetilde{\in} \tilde{\tau}^{c}$, $\forall(\mathcal{E}, \mathcal{P}) \widetilde{\epsilon} \tilde{\tau}^{c}$.
(2) Soft locally indiscrete $(\tilde{S} L I)$ [20], if $(\mathcal{E}, \mathcal{P}) \widetilde{\in} \tilde{\tau}^{c}$, $\forall(\mathcal{E}, \mathcal{P}) \widetilde{\epsilon} \tilde{\tau}$. Or $(\mathcal{E}, \mathcal{P}) \widetilde{\in} \tilde{\tau}, \forall(\mathcal{E}, \mathcal{P}) \widetilde{\epsilon} \tilde{\tau}^{c}$.
(3) Soft T_{1}-space [21], if $\widetilde{e_{x}}, \widetilde{e_{y}} \widetilde{\in} \tilde{S} P(\tilde{X})$ such that $\widetilde{e_{x}} \neq \widetilde{e_{y}}$, there are $\left(\varepsilon_{1}, \mathcal{P}\right),\left(\varepsilon_{2}, \mathcal{P}\right) \widetilde{\in} \tilde{\tau}$ such that $\widetilde{e_{x}} \widetilde{\in}\left(\varepsilon_{1}, \mathcal{P}\right), \widetilde{e_{y}} \widetilde{\not}\left(\varepsilon_{1}, \mathcal{P}\right)$ and $\widetilde{e_{y}} \widetilde{\in}\left(\varepsilon_{2}, \mathcal{P}\right), \widetilde{e_{x}} \widetilde{\nexists}$ $\left(\mathcal{E}_{2}, \mathcal{P}\right)$.
Proposition 1.9. A $\tilde{S} T S(\tilde{X}, \tilde{\tau}, \mathcal{P})$ is $\tilde{S} E D$ iff
(1) $\tilde{S} R O(\tilde{X})=\tilde{S} R C(\tilde{X})$ [22].
(2) $\tilde{S} S_{p} O(\tilde{X}) \simeq \tilde{S} P O(\tilde{X})[1]$.
(3) $\tilde{S} S_{p} O(\tilde{X}) \simeq \tilde{S} \alpha O(\tilde{X})[1]$.

Proposition 1.10. Let $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ be a $\tilde{S} T S$ and $\left(\varepsilon_{1}, \mathcal{P}\right),\left(\varepsilon_{2}, \mathcal{P}\right) \widetilde{\subseteq}(\tilde{X}, \tilde{\tau}, \mathcal{P})$. Then,:
(1) If $\left(\varepsilon_{1}, \mathcal{P}\right) \tilde{\in} \tilde{S} \alpha O(\tilde{X})$ and $\left(\varepsilon_{2}, \mathcal{P}\right) \widetilde{\in} \tilde{S} P O(\tilde{X})$, then $\left(\varepsilon_{1}, \mathcal{P}\right) \widetilde{\cap}\left(\varepsilon_{2}, \mathcal{P}\right) \widetilde{\in} \tilde{S} P O(\tilde{X})$ [13].
(2) If $\left(\varepsilon_{1}, \mathcal{P}\right) \widetilde{\in} \tilde{\tau}$ and $\left(\varepsilon_{2}, \mathcal{P}\right) \widetilde{\in} \tilde{S} P O(\tilde{X})$, then $\left(\varepsilon_{1}, \mathcal{P}\right) \widetilde{\cap}\left(\varepsilon_{2}, \mathcal{P}\right) \widetilde{\in} \tilde{S} P O(\tilde{X})$ [23].
Lemma 1.11. [23] For any $\left(\varepsilon_{1}, \mathcal{P}\right),\left(\varepsilon_{2}, \mathcal{P}\right) \widetilde{\subseteq}$ ($\tilde{X}, \tilde{\tau}, \mathcal{P}$), we have:
(1) $\left(\mathcal{E}_{1}, \mathcal{P}\right) \tilde{\in} \tilde{S} S O(\tilde{X}) \quad$ iff $\quad \tilde{s} c l\left(\mathcal{E}_{1}, \mathcal{P}\right)=\tilde{s} c l(\tilde{s} i n t$ $\left.\left(\varepsilon_{1}, \mathcal{P}\right)\right)$.
(2) If $\left(\varepsilon_{1}, \mathcal{P}\right) \widetilde{\in} \tilde{S} S O(\tilde{X})$ or $\left(\varepsilon_{2}, \mathcal{P}\right) \widetilde{\in} \tilde{S} S O(\tilde{X})$, then $\tilde{\operatorname{sinint}}\left(\tilde{\operatorname{s} c l}\left(\left(\varepsilon_{1}, \mathcal{P}\right) \widetilde{\cap}\left(\varepsilon_{2}, \mathcal{P}\right)\right)\right)=\tilde{\operatorname{sinint}}\left(\tilde{\operatorname{sicl}}\left(\mathcal{E}_{1}, \mathcal{P}\right)\right) \widetilde{\cap}$ $\tilde{\operatorname{sint}}\left(\tilde{s} c l\left(\mathcal{E}_{2}, \mathcal{P}\right)\right)$.
Proposition 1.12. For any $(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq}(\tilde{X}, \tilde{\tau}, \mathcal{P})$, the following statements hold:
(1) $(\mathcal{E}, \mathcal{P}) \widetilde{\epsilon} \tilde{S} \beta C(\tilde{X})$ iff $\tilde{\operatorname{sint}}(\mathcal{E}, \mathcal{P}) \tilde{\in} \tilde{S} R O(\tilde{X})$ [24].
(2) $(\mathcal{E}, \mathcal{P}) \widetilde{\in} \tilde{S} \beta C(\tilde{X})$ iff $\tilde{\operatorname{sint}}(\mathcal{E}, \mathcal{P})=\tilde{\sin } \sin (\tilde{s} l(\tilde{s} \operatorname{int}$ $(\mathcal{E}, \mathcal{P}))$) [22].
(3) $(\mathcal{E}, \mathcal{P}) \widetilde{\in} \tilde{S} P O(\tilde{X}) \quad$ iff $\quad \tilde{s} \operatorname{scl}(\mathcal{E}, \mathcal{P})=\tilde{s i n t}(\tilde{s} c l$ $(\mathcal{E}, \mathcal{P}))$ [22].
(4) $\tilde{s} \operatorname{secl}(\mathcal{E}, \mathcal{P})=\tilde{s} \operatorname{scl}(\mathcal{E}, \mathcal{P})$, if $(\mathcal{E}, \mathcal{P}) \tilde{\in} \tilde{S} S O(\tilde{X})$. [18].
Proposition 1.13. Let $\left(\tilde{Z}_{\tilde{Z}}, \tilde{\tau}_{\tilde{Z}}, \mathcal{P}\right)$ be a soft subspace of $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ and $(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq} \tilde{Z}$. Then,:
(1) $(\mathcal{E}, \mathcal{P}) \tilde{\in} \tilde{S} S_{p} O(\tilde{Z}), \quad$ if $(\mathcal{E}, \mathcal{P}) \tilde{\in} \tilde{S} S_{p} O(\tilde{X}) \quad$ and $\tilde{Z} \tilde{\in} \tilde{S} S O(\tilde{X})$ [1].
(2) $(\mathcal{E}, \mathcal{P}) \tilde{\in} \tilde{S} S_{p} O(\tilde{Z}), \quad$ if $(\mathcal{E}, \mathcal{P}) \tilde{\in} \tilde{S} S_{p} O(\tilde{X}) \quad$ and $\tilde{Z} \tilde{\in} \tilde{S} \alpha O(\tilde{X})$ (resp., $\tilde{\tau}$, and $\left.\tilde{S} S_{p} O(\tilde{X})\right)[1]$.
(3) $(\mathcal{E}, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} O(\tilde{X})$, if $(\mathcal{E}, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} O(\tilde{Z})$ and $\tilde{Z} \tilde{\in} \tilde{S} R C(\tilde{X})$ (resp., $\tilde{Z} \tilde{\in} \tilde{S} C O(\tilde{X}))$ [1].

Proposition 1.14. Let $\left(\tilde{Z}, \tilde{\tau}_{Z}, \mathcal{P}\right)$ be a soft subspace of $(\tilde{X}, \tilde{\tau}, \mathcal{P})$:
(1) If $\tilde{Z} \tilde{\epsilon} \tilde{\tau}$ (resp., $\tilde{S} C O(\tilde{X}))$ and $(\mathcal{E}, \mathcal{P}) \tilde{\in} \tilde{S} S_{p} O(\tilde{X})$, then $(\mathcal{E}, \mathcal{P}) \widetilde{\cap} \tilde{Z} \tilde{\in} \tilde{S} S_{p} O(\tilde{Z})$ [1].
(2) $(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq} \tilde{Z}$ and $\tilde{Z} \widetilde{\in} \tilde{S} R C(\tilde{X})($ resp. $\tilde{Z} \tilde{\in} \tilde{S} C O(\tilde{X})$). Then $(\mathcal{E}, \mathcal{P}) \tilde{\in} \tilde{S} S_{p} O(\tilde{X})$ iff $(\mathcal{E}, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} O(\tilde{Z})$ [1].
(3) If $\tilde{Z} \tilde{\in} \tilde{S} S O(\tilde{X})$ and $(\mathcal{E}, \mathcal{P}) \tilde{\in} \tilde{S} P O(\tilde{X})$, then $\tilde{Z} \widetilde{\cap}$ $(\mathcal{E}, \mathcal{P}) \tilde{\in} \tilde{S} P O(\tilde{Z})[26]$.
Theorem 1.15. For any $(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq}(\tilde{X}, \tilde{\tau}, \mathcal{P})$, we have:
(1) (a) $\tilde{\sin } \operatorname{cl}(\mathcal{E}, \mathcal{P})=(\mathcal{E}, \mathcal{P}) \widetilde{\cup} \tilde{\operatorname{s}} c l(\tilde{\operatorname{sint}}(\mathcal{E}, \mathcal{P}))$,
(b) $\tilde{\operatorname{spint}}(\mathcal{E}, \mathcal{P})=(\mathcal{E}, \mathcal{P}) \tilde{\cap} \tilde{\operatorname{sint}}(\tilde{\sin } \operatorname{cl}(\mathcal{E}, \mathcal{P}))$ [8].
(2) (a) $\tilde{\operatorname{s} \alpha c l}(\mathcal{E}, \mathcal{P})=(\mathcal{P}, \mathcal{P}) \widetilde{\cup} \tilde{\operatorname{s}} \operatorname{cl}(\tilde{\operatorname{sint}}(\tilde{\sin }(\mathcal{E}, \mathcal{P})))$
(b) $\tilde{\operatorname{sinint}}(\mathcal{E}, \mathcal{P})=(\mathcal{E}, \mathcal{P}) \tilde{\cap} \tilde{\operatorname{sint}}(\tilde{\operatorname{s} c l}(\operatorname{sint}(\mathcal{E}, \mathcal{P})))$ [9].
(3) (a) $\tilde{\operatorname{sicl}}(\mathcal{E}, \mathcal{P})=(\mathcal{E}, \mathcal{P}) \tilde{\cup} \tilde{\operatorname{sint}}(\tilde{\operatorname{sicl}}(\mathcal{E}, \mathcal{P}))$,
(b) $\tilde{s} \operatorname{sint}(\mathcal{E}, \mathcal{P})=(\mathcal{E}, \mathcal{P}) \tilde{\cap} \tilde{\operatorname{s}} \operatorname{cl}(\tilde{\sin } \operatorname{sint}(\mathcal{E}, \mathcal{P}))$ [10].
(4) (a) $\tilde{s} b c l(\mathcal{E}, \mathcal{P})=\tilde{s} p c l(\mathcal{E}, \mathcal{P}) \widetilde{\sim} \tilde{s} \operatorname{scl}(\mathcal{E}, \mathcal{P})$,
(b) $\tilde{\sin } \operatorname{bint}(\mathcal{E}, \mathcal{P})=\tilde{\sin } \operatorname{pint}(\mathcal{E}, \mathcal{P}) \widetilde{\cup} \tilde{\sin } \sin (\mathcal{E}, \mathcal{P})$ [10].
(5) (a) $\tilde{\operatorname{s} \beta} \operatorname{cl}(\mathcal{E}, \mathcal{P})=(\mathcal{E}, \mathcal{P}) \widetilde{\cup} \tilde{\operatorname{sint}}(\tilde{\operatorname{sincl}(\tilde{\operatorname{sint}}(\mathcal{E}, \mathcal{P})))}$
(b) $\tilde{s} \beta \operatorname{int}(\mathcal{E}, \mathcal{P})=(\mathcal{E}, \mathcal{P}) \tilde{\cap} \tilde{\sin } l(\tilde{\operatorname{sint}}(\tilde{\sin } l(\mathcal{E}, \mathcal{P})))$ [24].
Proposition 1.16. [1] If $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ is $\tilde{S} L I$ (resp., a soft T_{1}-space), then $\tilde{S} S O(\tilde{X})=\tilde{S} S_{c} O(\tilde{X})=\tilde{S} S_{p} O(\tilde{X})$.
Corollary 1.17. [1] If $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ is $\tilde{S} L I$, then:
(1) $\tilde{\tau}=\tilde{S} S_{p} O(\tilde{X})$.
(2) $\tilde{S} \alpha O(\tilde{X})=\tilde{S} S_{p} O(\tilde{X})$.
(3) $\tilde{S} S_{p} O(\tilde{X}) \widetilde{\subseteq} \tilde{S} P O(\tilde{X})$.

Lemma 1.18. [1] Let $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ be a $\tilde{S} T S$. Then,
(1) $\tilde{s} c l(\mathcal{E}, \mathcal{P})=\tilde{s} c l(\tilde{s i n t}(\mathcal{E}, \mathcal{P}))$, if $(\mathcal{E}, \mathcal{P}) \tilde{\in} \tilde{S} S_{p} O(\tilde{X})$.
(2) $\tilde{S} c l(\mathcal{E}, \mathcal{P}) \tilde{\epsilon} \tilde{S} S_{p} O(\tilde{X})$, if $(\mathcal{E}, \mathcal{P}) \tilde{\in} \tilde{S} S O(\tilde{X})$.
(3) $(\mathcal{E}, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} O(\tilde{X})$, if $(\mathcal{E}, \mathcal{P}) \widetilde{\in} \tilde{S} R C(\tilde{X})$.

Lemma 1.19. [1] If $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ is $\tilde{S} E D$ and $\forall\left(\varepsilon_{1}, \mathcal{P}\right) \tilde{\epsilon} \tilde{S} S_{p} O(\tilde{X})$, then:
(1) $\tilde{\sin }\left(\mathcal{E}_{1}, \mathcal{P}\right)=\tilde{\operatorname{sscl}}\left(\varepsilon_{1}, \mathcal{P}\right)$.
(2) $\tilde{\operatorname{sich}}\left(\varepsilon_{1}, \mathcal{P}\right)=\tilde{\operatorname{sicl}}\left(\varepsilon_{1}, \mathcal{P}\right)=\tilde{\operatorname{s} \alpha c l}\left(\varepsilon_{1}, \mathcal{P}\right)=$ $\tilde{s} p c l\left(\varepsilon_{1}, \mathcal{P}\right)=\tilde{s} b c l\left(\varepsilon_{1}, \mathcal{P}\right)=\tilde{s} \beta c l\left(\varepsilon_{1}, \mathcal{P}\right)$.
Proposition 1.20. [1] Let $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ be a $\tilde{S} T S$ and $(\mathcal{E}, \mathcal{P}),(Q, \mathcal{P}) \widetilde{\subseteq} \tilde{X} . \quad$ If $\quad(\mathcal{E}, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} O(\tilde{X}) \quad$ and $(Q, \mathcal{P}) \widetilde{\in} \tilde{S} C O(\tilde{X})$, then $(\mathcal{E}, \mathcal{P}) \widetilde{\cap}(Q, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} O(\tilde{X})$.
Proposition 1.21. Let $\left(\tilde{Z}, \tilde{\tau}_{\tilde{Z}}, \mathcal{P}\right)$ be a soft subspace of $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ and $\tilde{Z} \tilde{\epsilon} \tilde{\tau}$. If $(C, \mathcal{P}) \tilde{\epsilon} \tilde{S} S C(\tilde{X})$, then $(C, \mathcal{P}) \widetilde{\cap} \tilde{Z} \tilde{\in} \tilde{S} S C(\tilde{Z})$.
Proof. Since $\tilde{Z} \tilde{\in} \tilde{\tau}$, then by Proposition 1.13(4),
$\tilde{\operatorname{sint}} \tilde{\mathcal{Z}}(\mathcal{E}, \mathcal{P})=\tilde{\operatorname{sint}}(\mathcal{E}, \mathcal{P}), \forall(\mathcal{E}, \mathcal{P}) \subseteq \tilde{Z}$. Hence, we obtain $\tilde{\operatorname{sint}} \tilde{\tilde{Z}}\left(\tilde{s}^{c} l_{\tilde{Z}}((C, \mathcal{P}) \widetilde{\cap} \tilde{Z})\right)$
$=\tilde{\operatorname{sint} t}(\tilde{s} c l((C, \mathcal{P}) \widetilde{\cap} \tilde{Z}) \widetilde{\cap} \tilde{Z})$
$=\tilde{\sin } t(\tilde{s} c l((C, \mathcal{P}) \tilde{\cap} \tilde{Z})) \tilde{\cap} \operatorname{sint} \tilde{Z} \simeq \tilde{\sin } \operatorname{in}(\tilde{\sin } l(C, \mathcal{P})$
$\widetilde{\cap} \tilde{s} c l(\tilde{Z})) \tilde{\cap} \tilde{Z}$
$=\tilde{\operatorname{sint}}(\tilde{\sin } c l(C, \mathcal{P})) \tilde{\cap} \operatorname{sint}(\tilde{s} c l(\tilde{Z})) \tilde{\cap} \tilde{Z}=$
$\tilde{\operatorname{sint}}(\tilde{s} c l(C, \mathcal{P})) \widetilde{\cap} \tilde{Z}$. Since $(C, \mathcal{P}) \widetilde{\operatorname{E}} \tilde{S} S C(\tilde{X})$, then $\operatorname{sint}(\tilde{s} \operatorname{cl}(C, \mathcal{P})) \widetilde{(C, \mathcal{P}) \text {. Thus, }}$
$\operatorname{sint}_{\tilde{Z}}\left(\tilde{s} c l_{\tilde{\tilde{Z}}}((C, \mathcal{P}) \tilde{\cap} \tilde{Z})\right) \widetilde{\subseteq}(C, \mathcal{P}) \widetilde{\cap} \tilde{Z}$. Therefore, $(C, \mathcal{P}) \widetilde{\cap} \tilde{Z} \tilde{\operatorname{S}} \tilde{S C}(\tilde{Z})$.

2- Soft S_{p}-Closed Sets

Definition 2.1. A $\tilde{S} T S \quad(\tilde{X}, \tilde{\tau}, \mathcal{P})$ and $(C, \mathcal{P}) \widetilde{\subseteq}(\tilde{X}, \tilde{\tau}, \mathcal{P})$ is known as a soft S_{p}-closed set, if $\tilde{X} \tilde{\backslash}(C, \mathcal{P})$ is soft S_{p}-open. The family of all soft $S_{p^{-}}$ closed subsets of $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ is indicated by $\tilde{S} S_{p} C(\tilde{X})$.
Remark 2.2. The definition indicates that $\tilde{S} S_{p} C(\tilde{X}) \widetilde{\subseteq} \tilde{S} S C(\tilde{X})$. But, the converse is not true in general. The following examples illustrate the previous remark:
Example 2.3. Let $X=\left\{x_{1}, x_{2}\right\}$ and $\mathcal{P}=\left\{e_{1}, e_{2}\right\}$ with the soft topology $\tilde{\tau}=\left\{\widetilde{\emptyset}, \tilde{X},\left(\varepsilon_{1}, \mathcal{P}\right),\left(\varepsilon_{2}, \mathcal{P}\right),\left(\mathcal{E}_{3}, \mathcal{P}\right)\right.$, $\left.\left(\varepsilon_{4}, \mathcal{P}\right),\left(\mathcal{E}_{5}, \mathcal{P}\right),\left(\varepsilon_{6}, \mathcal{P}\right),\left(\mathcal{E}_{7}, \mathcal{P}\right)\right\}$ where $\widetilde{\emptyset}=\left\{\left(e_{1}, \emptyset\right)\right.$, $\left.\left(e_{2}, \emptyset\right)\right\}, \tilde{X}=\left\{\left(e_{1}, X\right),\left(e_{2}, X\right)\right\},\left(\varepsilon_{1}, \mathcal{P}\right)=\left\{\left(e_{1},\left\{x_{1}\right\}\right)\right.$, $\left.\left(e_{2}, \emptyset\right)\right\}, \quad\left(\mathcal{E}_{2}, \mathcal{P}\right)=\left\{\left(e_{1},\left\{x_{2}\right\}\right),\left(e_{2}, \emptyset\right)\right\}, \quad\left(\varepsilon_{3}, \mathcal{P}\right)=$ $\left\{\left(e_{1}, X\right),\left(e_{2}, \emptyset\right)\right\}, \quad\left(\mathcal{E}_{4}, \mathcal{P}\right)=\left\{\left(e_{1}, \emptyset\right),\left(e_{2},\left\{x_{2}\right\}\right)\right\}$, $\left(\varepsilon_{5}, \mathcal{P}\right)=\left\{\left(e_{1},\left\{x_{1}\right\}\right),\left(e_{2},\left\{x_{2}\right\}\right)\right\}, \quad\left(\varepsilon_{6}, \mathcal{P}\right)=$ $\left\{\left(e_{1},\left\{x_{2}\right\}\right),\left(e_{2},\left\{x_{2}\right\}\right)\right\} \quad$ and $\quad\left(\mathcal{E}_{7}, \mathcal{P}\right)=\left\{\left(e_{1}, X\right)\right.$, $\left.\left(e_{2},\left\{x_{2}\right\}\right)\right\}$. Thus, $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ is a $\tilde{S} T S$ over X. The soft set $\left(\mathcal{E}_{8}, \mathcal{P}\right)=\left\{\left(e_{1},\left\{x_{2}\right\}\right),\left(e_{2}, X\right)\right\}$ is soft semi-closed which is not soft S_{p}-closed.
Proposition 2.4. Let $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ be a $\tilde{S} T S$ and $(C, \mathcal{P}) \widetilde{\subseteq}(\tilde{X}, \tilde{\tau}, \mathcal{P})$. Then, $(C, \mathcal{P}) \tilde{\in} \tilde{S} S_{p} C(\tilde{X})$ iff $(C, \mathcal{P})=\widetilde{n}_{\vartheta \in \mathbb{K}}\left(D_{\vartheta}, \mathcal{P}\right)$, where $(C, \mathcal{P}) \widetilde{\in} \tilde{S} S C(\tilde{X})$ and $\left(D_{\vartheta}, \mathcal{P}\right) \tilde{\in} \tilde{S} P O(\tilde{X}), \forall \vartheta \in \mathbb{\aleph}$.
Proof. Obvious.
Proposition 2.5. Let $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ be a $\tilde{S} T S$. Then,
(1) $\tilde{S} \theta C(\tilde{X}) \widetilde{\subseteq} \tilde{S} S_{p} C(\tilde{X})$.
(2) $\tilde{S} S_{c} C(\tilde{X}) \simeq \tilde{S} S_{p} C(\tilde{X})$.
(3) $\tilde{S} R O(\tilde{X}) \simeq \tilde{S} S_{p} C(\tilde{X})$.
(4) $\tilde{S} C O(\tilde{X}) \widetilde{\subseteq} S_{p} C(\tilde{X})$.

Proof. Obvious.

Proposition 2.6. If $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ is $\tilde{S} L I$ (resp., soft $T_{1}-$ space), then $\tilde{S} S C(\tilde{X})=\tilde{S} S_{c} C(\tilde{X})=\tilde{S} S_{p} C(\tilde{X})$.
Proof. Applying Proposition 1.16 and Definition 2.1.
Corollary 2.7. If $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ is $\tilde{S} L I$, then:
(1) $\tilde{S} S_{p} C(\tilde{X})=\tilde{S} C(\tilde{X})$.
(2) $\tilde{S} S_{p} C(\tilde{X})=\tilde{S} \alpha C(\tilde{X})$.
(3) $\tilde{S} S_{p} C(\tilde{X}) \widetilde{\subseteq} \tilde{S} C(\tilde{X})$.

Proof. Applying Corollary 1.17 and Definition 2.1.
Proposition 2.8. A $\tilde{S} T S(\tilde{X}, \tilde{\tau}, \mathcal{P})$ is $\tilde{S} E D$ iff $\tilde{S} S_{p} C(\tilde{X}) \widetilde{\subseteq} \tilde{S} P C(\tilde{X})($ resp., $\tilde{S} \alpha C(\tilde{X}))$.
Proof. Let $(C, \mathcal{P}) \tilde{\in} \tilde{S} S_{p} C(\tilde{X})$. Then, $\tilde{X} \widetilde{ }(C, \mathcal{P}) \tilde{\in}$ $\tilde{S} S_{p} O(\tilde{X})$. Since \tilde{X} is $\tilde{S} E D$, then by Proposition 1.9(2) (resp., Proposition $1.9(3)$), $\tilde{X} \tilde{\}(C, \mathcal{P}) \tilde{\epsilon} \tilde{S} P O(\tilde{X})$ (resp., $\tilde{S} \alpha O(\tilde{X}))$. Thus, $(C, \mathcal{P}) \tilde{\in} \tilde{S} P C(\tilde{X}) \quad$ (resp., $\tilde{S} \alpha C(\tilde{X}))$.
Conversely, let $(C, \mathcal{P}) \widetilde{\in} \tilde{\tau}^{c}$. Then, $\tilde{\operatorname{sint}}(C, \mathcal{P})=$ $\tilde{\operatorname{sint}}(\tilde{s} c l(C, \mathcal{P}))$. That is, $\tilde{\operatorname{sint}}(\mathcal{E}, \mathcal{P}) \tilde{\in} \tilde{S} R O(\tilde{X})$, so by Proposition $2.5(3)$, $\tilde{\sin } \mathrm{int}(C, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} C(\tilde{X})$. By hypothesis, $\tilde{\sin }(\mathrm{i}, \mathcal{P}) \widetilde{\in} \tilde{S} P C(\tilde{X})$ (resp., $\tilde{S} \alpha C(\tilde{X})$). That is, $\tilde{\operatorname{s} c l}(\tilde{\sin } \operatorname{int}(\tilde{\sin }(C, \mathcal{P}))) \simeq \tilde{\operatorname{sint}}(C, \mathcal{P})$ (resp.,
 $\tilde{\sin }(C, \mathcal{P})) \simeq \tilde{\sin }(C, \mathcal{P}), \quad$ but $\tilde{\sin } \operatorname{int}(C, \mathcal{P}) \widetilde{\subseteq} \tilde{\operatorname{s}} c l($ $\tilde{\operatorname{sinint}}(C, \mathcal{P}))$. Hence, $\tilde{\sin }(C, \mathcal{P})=\tilde{s} c l(\tilde{\sin }(\tilde{\mathcal{R}}(C, \mathcal{P}))$. This means that, $\tilde{\sin }(C, \mathcal{P}) \widetilde{\epsilon} \tilde{\tau}^{c}$. Thus, $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ is $\tilde{S} E D$.
Corollary 2.9. Let $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ be a $\tilde{S} T S$ and $(C, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} C(\tilde{X}) . \quad$ Then, $\quad \tilde{\sin }$ int $(C, \mathcal{P})=$ $\tilde{\operatorname{sint}}(\tilde{s} c l(C, \mathcal{P}))$.
Proof. Since $(C, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} C(\tilde{X})$, then $\tilde{X} \tilde{\}(C, \mathcal{P}) \widetilde{\epsilon}$ $\tilde{S} S_{p} O(\tilde{X})$. So, by Lemma 1.18(1), $\tilde{s} c l(\tilde{X} \tilde{\}(C, \mathcal{P}))$ $=\tilde{\sin } l(\tilde{\sin } \operatorname{int}(\tilde{X} \tilde{\Gamma}(C, \mathcal{P}))) \quad \leftrightarrow \quad \tilde{X} \tilde{\Gamma}(\tilde{\operatorname{sint}}(C, \mathcal{P}))=$ $\tilde{\sin } \tilde{\sim}(\tilde{X} \tilde{\lceil }(\tilde{s} c l(C, \mathcal{P}))) \quad \leftrightarrow \quad \tilde{X} \tilde{\lceil }(\operatorname{sint}(C, \mathcal{P}))=$ $\tilde{X} \tilde{} \tilde{(\tilde{s} \operatorname{int}(\tilde{s} c l}(C, \mathcal{P}))) . \quad$ Therefore, $\quad \tilde{\sin }(\mathrm{in}(C, \mathcal{P})=$ $\tilde{\operatorname{sint}}(\tilde{s} c l(C, \mathcal{P}))$.
Lemma 2.10. Let $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ be a $\tilde{S} T S$ and $\left(C_{1}, \mathcal{P}\right) \tilde{\in} \tilde{S} S_{p} C(\tilde{X})$. Then, :
(1) $\tilde{\operatorname{sint}}\left(C_{1}, \mathcal{P}\right)=\tilde{\sin } \operatorname{int}\left(C_{1}, \mathcal{P}\right)$.
(2) $\tilde{\operatorname{sint}}\left(C_{1}, \mathcal{P}\right)=\tilde{\operatorname{s} \alpha i n t}\left(C_{1}, \mathcal{P}\right)$.
(3) $\tilde{s} \operatorname{sint}\left(C_{1}, \mathcal{P}\right)=\tilde{s} \operatorname{bint}\left(C_{1}, \mathcal{P}\right)=\tilde{s} \beta \operatorname{int}\left(C_{1}, \mathcal{P}\right)$.

Proof. (1) By of Theorem 1.15(1b) and Corollary 2.9, we have:
$\tilde{\operatorname{spint}}\left(C_{1}, \mathcal{P}\right)=\left(C_{1}, \mathcal{P}\right) \widetilde{\sim} \tilde{\operatorname{sint}}\left(\tilde{\operatorname{sicl}}\left(C_{1}, \mathcal{P}\right)\right)=$ $\left(C_{1}, \mathcal{P}\right) \widetilde{\sim} \operatorname{sint}\left(C_{1}, \mathcal{P}\right)=\tilde{\operatorname{sint}}\left(C_{1}, \mathcal{P}\right)$.
(2) By of Theorem 1.15(2b) and Corollary 2.9, we have:
$\left.\tilde{\sin } \operatorname{int}^{(} C_{1}, \mathcal{P}\right)=\left(C_{1}, \mathcal{P}\right) \tilde{\cap} \tilde{\operatorname{sint}}\left(\tilde{\sin } \operatorname{cl}\left(\tilde{\operatorname{sint}}\left(C_{1}, \mathcal{P}\right)\right)\right)=$ $\left(C_{1}, \mathcal{P}\right) \widetilde{\mathrm{N}} \tilde{\operatorname{sint}}\left(\tilde{\sin }\left(\left(\tilde{\sin } \operatorname{in}\left(\tilde{\operatorname{sicl}}\left(C_{1}, \mathcal{P}\right)\right)\right)\right)=\right.$
$\left(C_{1}, \mathcal{P}\right) \tilde{\cap} \operatorname{sint}\left(\tilde{s} \operatorname{cl}\left(C_{1}, \mathcal{P}\right)\right)=$
$\left(C_{1}, \mathcal{P}\right) \tilde{\cap} \tilde{\operatorname{sint}}\left(C_{1}, \mathcal{P}\right)=\tilde{\operatorname{sint}}\left(C_{1}, \mathcal{P}\right)$
(3) By Theorem 1.15(4b) and (1), we have:
$\tilde{\sin } \operatorname{int}\left(C_{1}, \mathcal{P}\right)=\tilde{\sin } \operatorname{pint}\left(C_{1}, \mathcal{P}\right) \widetilde{\mathrm{U}} \tilde{\operatorname{sint}}\left(C_{1}, \mathcal{P}\right)=$ $\tilde{\sin }\left(C_{1}, \mathcal{P}\right) \widetilde{\cup} \tilde{s} \operatorname{sint}\left(C_{1}, \mathcal{P}\right)=\tilde{\sin } \operatorname{sint}\left(C_{1}, \mathcal{P}\right)$.
On the other hand, by Theorem $1.15(5 b)(3 b)$ and Corollary 2.9, we have:
$\tilde{\operatorname{sinint}}\left(C_{1}, \mathcal{P}\right)=\left(C_{1}, \mathcal{P}\right) \tilde{\sim} \tilde{\sin }\left(\operatorname{sint}\left(\tilde{\sin }\left(C_{1}, \mathcal{P}\right)\right)\right)$ $=\left(C_{1}, \mathcal{P}\right) \widetilde{\cap} \tilde{\operatorname{s}} \operatorname{cl}\left(\tilde{\operatorname{sinint}}\left(C_{1}, \mathcal{P}\right)\right)=\tilde{\sin } \operatorname{sint}\left(C_{1}, \mathcal{P}\right)$.

Therefore, $\quad \tilde{s} \operatorname{sint}\left(C_{1}, \mathcal{P}\right)=\tilde{s} \operatorname{bint}\left(C_{1}, \mathcal{P}\right)=\tilde{s} \beta$ int $\left(C_{1}, \mathcal{P}\right)$.
Proposition 2.11. Let $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ be a $\tilde{S} T S$ and $(C, \mathcal{P}) \widetilde{\subseteq}(\tilde{X}, \tilde{\tau}, \mathcal{P})$. Then $(C, \mathcal{P}) \widetilde{\in} \tilde{S} \beta C(\tilde{X}) \quad$ iff $\tilde{\operatorname{sint}}(C, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} C(\tilde{X})$.
Proof. Since $(C, \mathcal{P}) \widetilde{\in} \tilde{S} \beta C(\tilde{X})$, then by Proposition 1.12(1), $\tilde{\operatorname{sint}}(C, \mathcal{P}) \tilde{\in} \tilde{S} R O(\tilde{X})$. But by Proposition 2.5(3), we have $\tilde{S} R O(\tilde{X}) \widetilde{\subseteq} \tilde{S} S_{p} C(\tilde{X})$, so $\tilde{\operatorname{sint}}(C, \mathcal{P})$ $\tilde{\epsilon} \tilde{S} S_{p} C(\tilde{X})$.
Conversely, let $\tilde{\operatorname{sint}}(C, \mathcal{P}) \tilde{\in} \tilde{S} S_{p} C(\tilde{X})$. Then Corollary $2.9, \quad \tilde{\sin } \mathrm{int}(\tilde{\operatorname{sinint}}(C, \mathcal{P}))=\tilde{\operatorname{sint}}(\tilde{\operatorname{sicl}}(\tilde{\sin } \mathrm{int}$ $(C, \mathcal{P})), \quad$ so $\quad \tilde{\sin }(\mathrm{C}, \mathcal{P})=\tilde{\sin } \sin (\tilde{\sin }(\tilde{\sin }(\mathrm{C}, \mathcal{P}))$. Hence by Proposition 1.12(2), $(C, \mathcal{P}) \widetilde{\in} \tilde{S} \beta C(\tilde{X})$.
Lemma 2.12. If $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ is $\tilde{S} E D$ and $\left(C_{1}, \mathcal{P}\right) \tilde{\epsilon} \tilde{S} S_{p} C(\tilde{X})$, then:
(1) $\tilde{\operatorname{sint}}\left(C_{1}, \mathcal{P}\right)=\tilde{\sin } \operatorname{sint}\left(C_{1}, \mathcal{P}\right)$.
(2) $\tilde{\sin } \operatorname{sint}\left(C_{1}, \mathcal{P}\right)=\tilde{\operatorname{sint}}\left(C_{1}, \mathcal{P}\right)=\tilde{\operatorname{sinint}}\left(C_{1}, \mathcal{P}\right)=$ $\tilde{\operatorname{s} p i n t}\left(C_{1}, \mathcal{P}\right)=\tilde{\operatorname{sinint}}\left(C_{1}, \mathcal{P}\right)=\tilde{\operatorname{s} \beta} \operatorname{int}\left(C_{1}, \mathcal{P}\right)$.
Proof. Applying Lemma 1.19 and Definition 2.1.
Proposition 2.13. For any $(C, \mathcal{P}) \widetilde{\subseteq}(\tilde{X}, \tilde{\tau}, \mathcal{P})$, we have:
(1) If $(C, \mathcal{P}) \tilde{\in} \tilde{S} S O(\tilde{X})$, then $\tilde{s} p c l(C, \mathcal{P}) \tilde{\in} \tilde{S} S_{p} O(\tilde{X})$.
(2) If $(C, \mathcal{P}) \tilde{\in} \tilde{S} S C(\tilde{X})$, then $\tilde{s} \operatorname{pint}(C, \mathcal{P}) \widetilde{\epsilon}$ $\tilde{S} S_{p} C(\tilde{X})$.
(3) If $(C, \mathcal{P}) \tilde{\in} \tilde{S} P O(\tilde{X})$, then $\tilde{s} \operatorname{scl}(C, \mathcal{P}) \tilde{\in} \tilde{S} S_{p} C(\tilde{X})$.
(4) If $(C, \mathcal{P}) \tilde{\in} \tilde{S} P C(\tilde{X})$, then $\tilde{\sin } \operatorname{sint}(C, \mathcal{P}) \tilde{\in}$ $\tilde{S} S_{p} O(\tilde{X})$.
(5) If $(C, \mathcal{P}) \widetilde{\in} \tilde{S} \alpha O(\tilde{X})$, then $\tilde{s} \beta \operatorname{cl}(C, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} C(\tilde{X})$.
(6) If $(C, \mathcal{P}) \tilde{\in} \tilde{S} \alpha C(\tilde{X})$, then $\tilde{s} \beta \operatorname{int}(C, \mathcal{P}) \tilde{\in}$ $\tilde{S} S_{p} O(\tilde{X})$.
(7) If $(C, \mathcal{P}) \widetilde{\in} \tilde{S} \beta O(\tilde{X})$, then $\tilde{s} \alpha \operatorname{cl}(C, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} O(\tilde{X})$.
(8) If $(C, \mathcal{P}) \widetilde{\in} \tilde{S} \beta C(\tilde{X})$, then $\tilde{\sin } \operatorname{int}(C, \mathcal{P}) \widetilde{\in}$ $\tilde{S} S_{p} C(\tilde{X})$.
Proof. (1) By Theorem 1.15(1a), $\tilde{s} p c l(C, \mathcal{P})=$ $(C, \mathcal{P}) \tilde{\cup} \tilde{s} c l(\tilde{s i n t}(C, \mathcal{P}))$. Since $(C, \mathcal{P}) \tilde{\in} \tilde{S} S O(\tilde{X})$,
 $\tilde{S} R C(\tilde{X})$. By Lemma 1.18(3), thus $\tilde{s} p c l(C, \mathcal{P}) \widetilde{\epsilon}$ $\tilde{S} S_{p} O(\tilde{X})$.
(3) By Theorem 1.15(3a), $\tilde{\operatorname{sich}}(C, \mathcal{P})=(C, \mathcal{P}) \widetilde{\mathrm{U}}$ $\tilde{\operatorname{sint}}(\tilde{s} c l(C, \mathcal{P}))$. Since $(C, \mathcal{P}) \tilde{\in} \tilde{S} P O(\tilde{X})$, then $\tilde{\operatorname{sicl}}(C, \mathcal{P})=\tilde{\operatorname{sint}}(\tilde{\operatorname{sicl}}(C, \mathcal{P})) . \quad$ So, $\quad \tilde{\operatorname{sicl}}(C, \mathcal{P}) \tilde{\epsilon}$ $\tilde{S} R O(\tilde{X})$. By Proposition 2.5(3), thus $\tilde{s} \operatorname{scl}(C, \mathcal{P}) \widetilde{\epsilon}$ $\tilde{S} S_{p} C(\tilde{X})$.
(5) By Theorem $1.15(5 \mathrm{a}), \quad \tilde{s} \beta c l(C, \mathcal{P})=$ $(C, \mathcal{P}) \widetilde{\mathrm{U}} \operatorname{sint}(\tilde{\sin } l(\tilde{\operatorname{sinint}}(C, \mathcal{P})))$. Since $\quad(C, \mathcal{P}) \tilde{\epsilon}$ $\tilde{S} \alpha O(\tilde{X})$, then $\tilde{s} \beta \operatorname{cl}(C, \mathcal{P})=\tilde{\operatorname{sint}}(\tilde{\sin } \operatorname{cl}(\tilde{\operatorname{sint}}(C, \mathcal{P})))$. So, $\tilde{s} \beta c l(C, \mathcal{P}) \widetilde{\in} \tilde{S} R O(\tilde{X})$. By Proposition $2.5(3)$, thus $\tilde{s} \beta c l(C, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} C(\tilde{X})$.
(7) By Theorem $1.15(2 \mathrm{a}), \tilde{\sin } \alpha \mathrm{l}(C, \mathcal{P})=(C, \mathcal{P}) \widetilde{\mathrm{U}}$ $\tilde{s} c l(\tilde{s i n t}(\tilde{s} c l(C, \mathcal{P})))$. Since $(C, \mathcal{P}) \tilde{\in} \tilde{S} \beta O(\tilde{X})$, then $\tilde{s} \alpha c l(C, \mathcal{P})=\tilde{s} \operatorname{cl}(\tilde{\operatorname{sinint}}(\tilde{s} \operatorname{cl}(C, \mathcal{P})))$. So, $\tilde{\operatorname{s} \alpha c l(C, \mathcal{P})}$ $\tilde{\epsilon} \tilde{S} R C(\tilde{X})$. By Lemma 1.18(3), thus $\tilde{\operatorname{s} \alpha c l(C, \mathcal{P}) \tilde{\epsilon}}$ $\tilde{S} S_{p} O(\tilde{X})$.
The remaining of this Proposition can be proven in the same way.

Theorem 2.14. Let $\left(\tilde{Z}, \tilde{\tau}_{\tilde{Z}}, \mathcal{P}\right)$ be a soft subspace of $(\tilde{X}, \tilde{\tau}, \mathcal{P})$. If $(C, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} C(\tilde{X}), \quad(C, \mathcal{P}) \widetilde{\subseteq} \tilde{Z}$ and $\tilde{Z} \tilde{\in} \tilde{\tau}$, then $(C, \mathcal{P}) \tilde{\in} \tilde{S} S_{p} C(\tilde{Z})$.
Proof. Since $(C, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} C(\tilde{X})$, then $(C, \mathcal{P}) \widetilde{\in} \tilde{S} S C(\tilde{X})$ and $(C, \mathcal{P})=\widetilde{ก}_{\vartheta \in \mathbb{N}}\left(D_{\vartheta}, \mathcal{P}\right)$ where $\left(D_{\vartheta}, \mathcal{P}\right) \widetilde{\epsilon} \tilde{S} P O(\tilde{X}), \quad \forall \vartheta \in \mathbb{K}$. Since $\tilde{Z} \widetilde{\in} \tilde{\tau}$, then $\tilde{Z} \widetilde{\in} \tilde{S} S O(\tilde{X})$ and so by Proposition 1.14(3), $\left(D_{\vartheta}, \mathcal{P}\right) \tilde{\cap} \tilde{Z} \tilde{\in} \tilde{S} P O(\tilde{Z}), \quad \forall \vartheta \in \kappa$. Hence, $\quad(C, \mathcal{P})=$ $(C, \mathcal{P}) \widetilde{\cap} \tilde{Z}=\widetilde{ก}_{\vartheta \in \mathbb{N}}\left(D_{\vartheta}, \mathcal{P}\right) \widetilde{\cap} \tilde{Z}=$
$\tilde{\mathrm{n}}_{\vartheta \in \aleph}\left(\left(D_{\vartheta}, \mathcal{P}\right) \widetilde{\sim} \tilde{Z}\right)$. Therefore, by Proposition 2.4, $(C, \mathcal{P}) \widetilde{\epsilon} \tilde{S} S_{p} C(\tilde{Z})$.
Corollary 2.15. Let $\left(\tilde{Z}_{\tilde{Z}}, \tilde{\tau}_{\tilde{Z}}, \mathcal{P}\right)$ be a soft subspace of $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ and $(C, \mathcal{P}) \widetilde{\subseteq} \tilde{Z}$. If $(C, \mathcal{P}) \tilde{\epsilon} \tilde{S} S_{p} C(\tilde{X})$ and $\tilde{Z} \tilde{\in} \tilde{S} C O(\tilde{X})$, then $(C, \mathcal{P}) \tilde{\in} \tilde{S} S_{p} C(\tilde{Z})$.
Proof. Since $\tilde{S} C O(\tilde{X}) \widetilde{\subseteq} \tilde{\tau}$ and by Theorem 2.14, then $(C, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} C(\tilde{Z})$.
Proposition 2.16. Let $\left(\tilde{Z}, \tilde{\tau}_{\tilde{Z}}, \mathcal{P}\right)$ be a soft subspace of $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ and $\tilde{Z} \tilde{\in} \tilde{\tau}$ (resp., $\tilde{S} C O(\tilde{X})$). If $(C, \mathcal{P}) \widetilde{\epsilon}$ $\tilde{S} S_{p} C(\tilde{X})$, then $(C, \mathcal{P}) \widetilde{\cap} \tilde{Z} \widetilde{\in} \tilde{S} S_{p} C(\tilde{Z})$.
Proof. Since $(C, \mathcal{P}) \tilde{\in} \tilde{S} S_{p} C(\tilde{X})$, then $(C, \mathcal{P}) \widetilde{\epsilon}$ $\tilde{S} S C(\tilde{X})$ and $(C, \mathcal{P})=\widetilde{\cap}_{\vartheta \in \mathbb{N}}\left(D_{\vartheta}, \mathcal{P}\right) \quad$ where $\left(D_{\vartheta}, \mathcal{P}\right) \widetilde{\in} \tilde{S} P O(\tilde{X}), \quad \forall \vartheta \in \kappa$. Then, $(C, \mathcal{P}) \widetilde{\cap} \tilde{Z}=$ $\left(\widetilde{ก}_{\vartheta \in \mathbb{K}}\left(D_{\vartheta}, \mathcal{P}\right)\right) \widetilde{\cap} \tilde{Z}=\widetilde{\cap}_{\vartheta \in \mathbb{N}}\left(\left(D_{\vartheta}, \mathcal{P}\right) \widetilde{\cap} \tilde{Z}\right)$. Since $\tilde{Z} \widetilde{\in} \tilde{\tau}$, by Proposition 1.21, $(C, \mathcal{P}) \widetilde{\cap} \tilde{Z} \widetilde{\in} \tilde{S} S C(\tilde{Z})$. Again, since $\tilde{Z} \widetilde{\in} \tilde{\tau}$, then $\tilde{Z} \widetilde{\in} \tilde{S} S O(\tilde{X})$, by Proposition 1.14(3), $\left(D_{\vartheta}, \mathcal{P}\right) \tilde{\cap} \tilde{Z} \tilde{\in} \tilde{S} P O(\tilde{Z}), \forall \vartheta \in \kappa$. Then by Proposition 2.4, $(C, \mathcal{P}) \widetilde{\cap} \tilde{Z} \tilde{\in} \tilde{S} S_{p} C(\tilde{Z})$.

3- On Soft $\boldsymbol{S}_{\boldsymbol{p}}$-Operators

In this section, the idea of soft S_{p}-open and soft $S_{p^{-}}$ closed sets is used to introduce and define several operators on soft topological spaces, such as soft $S_{p^{-}}$ neighborhood, soft S_{p}-derived, soft S_{p}-interior, soft S_{p}-closure, and soft S_{p}-boundary.
Definition 3.1. A $\tilde{S} T S \quad(\tilde{X}, \tilde{\tau}, \mathcal{P})$ and $(N, \mathcal{P}) \widetilde{\subseteq}(\tilde{X}, \tilde{\tau}, \mathcal{P})$ is known as a soft $S_{p^{-}}$ neighborhood of a soft subset $(\mathcal{E}, \mathcal{P})$ of \tilde{X}, if there is $(W, \mathcal{P}) \tilde{\in} \tilde{S} S_{p} O(\tilde{X})$ such that $(\mathcal{E}, \mathcal{P}) \widetilde{(} W, \mathcal{P}) \widetilde{\subseteq}(N, \mathcal{P})$. If $\quad(\mathcal{E}, \mathcal{P})=\widetilde{e_{x}}$, then (N, \mathcal{P}) is known as a soft S_{p}-neighborhood of a soft point $\widetilde{e_{x}} \tilde{\in} \tilde{S} P(\tilde{X})$.
The soft S_{p}-neighborhood system at $\widetilde{e_{x}} \tilde{\in} \tilde{S} P(\tilde{X})$, indicated by $\widetilde{\mathrm{N}}_{S_{p}}\left(\widetilde{e_{x}}\right)$, is the family of all its soft $S_{p^{-}}$ neighborhood.
Proposition 3.2. Let $(\tilde{X}, \tilde{c}, \mathcal{P})$ be a $\tilde{S} T S$ and $\left(\varepsilon_{1}, \mathcal{P}\right),\left(\varepsilon_{2}, \mathcal{P}\right) \widetilde{\subseteq}(\tilde{X}, \tilde{\tau}, \mathcal{P})$. Then,
(1) If $\left(\varepsilon_{1}, \mathcal{P}\right) \widetilde{\subseteq}\left(\varepsilon_{2}, \mathcal{P}\right)$, and $\left(\varepsilon_{1}, \mathcal{P}\right) \widetilde{\in} \widetilde{\mathcal{N}}_{S_{p}}\left(\widetilde{e_{x}}\right)$, then $\left(\varepsilon_{2}, \mathcal{P}\right) \widetilde{\in} \widetilde{\mathrm{N}}_{S_{p}}\left(\widetilde{e_{x}}\right)$.
(2) $\left(\varepsilon_{1}, \mathcal{P}\right) \widetilde{\in} \tilde{S} S_{p} O(\tilde{X})$ iff $\left(\varepsilon_{1}, \mathcal{P}\right) \widetilde{\in} \widetilde{\mathcal{N}}_{S_{p}}\left(\widetilde{e_{x}}\right), \forall \widetilde{e_{x}}$ $\widetilde{\epsilon}\left(\varepsilon_{1}, \mathcal{P}\right)$.
(3) If $\left\{\left(\varepsilon_{\lambda}, \mathcal{P}\right): \lambda \in \Lambda\right\} \widetilde{\in} \widetilde{N}_{S_{p}}\left(\widetilde{e_{x}}\right)$, then $\widetilde{\mathrm{U}}\left\{\left(\varepsilon_{\lambda}, \mathcal{P}\right): \lambda \in \Lambda\right\} \widetilde{\epsilon}_{\widehat{N}_{p}}\left(\widetilde{e_{x}}\right)$.
(4) If $\left(\varepsilon_{1}, \mathcal{P}\right) \widetilde{\in} \widetilde{\mathrm{N}}_{S_{p}}\left(\widetilde{e_{x}}\right)$, then $\left(\mathcal{E}_{1}, \mathcal{P}\right) \widetilde{\mathbb{E}} \widetilde{\mathrm{N}}_{s}\left(\widetilde{e_{x}}\right)$.

Proof. (2) Let $\left(\varepsilon_{1}, \mathcal{P}\right) \widetilde{\in} \tilde{S} S_{p} O(\tilde{X})$ and $\widetilde{e_{x}} \widetilde{\in}\left(\varepsilon_{1}, \mathcal{P}\right)$. Then, $\widetilde{e_{x}} \widetilde{\in}\left(\varepsilon_{1}, \mathcal{P}\right) \widetilde{\subseteq}\left(\varepsilon_{1}, \mathcal{P}\right)$. Therefore, $\left(\varepsilon_{1}, \mathcal{P}\right) \widetilde{\in}$ $\widetilde{N}_{S_{p}}\left(\widetilde{e_{x}}\right)$.
Conversely, suppose that $\left(\varepsilon_{1}, \mathcal{P}\right) \widetilde{\in} \widetilde{\mathrm{N}}_{S_{p}}\left(\widetilde{e_{x}}\right)$, $\forall \widetilde{e_{x}} \widetilde{\in}\left(\varepsilon_{1}, \mathcal{P}\right)$. Then, $\forall \widetilde{e_{x}} \widetilde{\in}\left(\varepsilon_{1}, \mathcal{P}\right)$, there is $(W, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} O(\tilde{X})$ such that $\widetilde{e_{x}} \widetilde{\in}(W, \mathcal{P}) \widetilde{\subseteq}\left(\varepsilon_{1}, \mathcal{P}\right)$. Therefore, $\quad\left(\varepsilon_{1}, \mathcal{P}\right)=\widetilde{U} \widetilde{e_{x}} \widetilde{\subseteq} \widetilde{U}(W, \mathcal{P}) \widetilde{\subseteq}\left(\varepsilon_{1}, \mathcal{P}\right)$, $\forall \widetilde{e_{x}} \widetilde{\epsilon}\left(\varepsilon_{1}, \mathcal{P}\right)$. It means that $\left(\varepsilon_{1}, \mathcal{P}\right)$ is a soft union of soft S_{p}-open sets and hence, $\left(\mathcal{E}_{1}, \mathcal{P}\right) \widetilde{\epsilon} \tilde{S} S_{p} O(\tilde{X})$.
The proof for the others is easy to do.
Remark 3.3. (1) In general, the opposite of part (4) of Proposition 3.2 is not always true.
(2) The soft intersection of two soft $S_{p^{-}}$ neighborhoods of a soft point need not be a soft $S_{p^{-}}$ neighborhood for that soft point.
As the next examples illustrates:
Example 3.4. In Example 2.3, (1) we have $\left(\mathcal{E}_{1}, \mathcal{P}\right)=$ $\left\{\left(e_{1},\left\{x_{1}\right\}\right),\left(e_{2}, \varnothing\right)\right\}$ is a soft semi-neighborhood of $\widetilde{e_{1_{x_{1}}}}=\left(e_{1},\left\{x_{1}\right\}\right)$, but it is not a soft S_{p}-neighborhood of $\widetilde{e_{x_{x_{1}}}}=\left(e_{1},\left\{x_{1}\right\}\right)$.
(2) We have $\left(\mathcal{E}_{9}, \mathcal{P}\right)=\left\{\left(e_{1},\left\{x_{2}\right\}\right),\left(e_{2},\left\{x_{1}\right\}\right)\right\}$ and $\left(\varepsilon_{10}, \mathcal{P}\right)=\left\{\left(e_{1},\left\{x_{1}\right\}\right),\left(e_{2},\left\{x_{1}\right\}\right)\right\}$ are two soft $S_{p^{-}}$ neighborhood of $\widetilde{e_{2_{x_{1}}}}=\left(e_{2},\left\{x_{1}\right\}\right)$, but $\left(\mathcal{E}_{9}, \mathcal{P}\right) \widetilde{\cap}\left(\mathcal{E}_{10}, \mathcal{P}\right)=\left\{\left(e_{1}, \varnothing\right),\left(e_{2},\left\{x_{1}\right\}\right)\right\}$ is not soft S_{p}-neighborhood of $\widetilde{e_{2_{1}}}=\left(e_{2},\left\{x_{1}\right\}\right)$.
Definition 3.5. Let $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ be a $\tilde{S} T S$ and $(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq}(\tilde{X}, \tilde{\tau}, \mathcal{P})$. A soft point $\widetilde{e_{x}} \widetilde{\in} \tilde{S} P(\tilde{X})$ is known as a soft S_{p}-limit point of $(\mathcal{E}, \mathcal{P})$, if $(W, \mathcal{P}) \widetilde{\cap}\left((\mathcal{E}, \mathcal{P}) \tilde{\backslash} \tilde{e_{x}}\right) \neq \widetilde{\emptyset}, \quad \forall(W, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} O(\tilde{X})$ containing $\tilde{e_{x}}$. The family of all soft S_{p}-limit points of $(\mathcal{E}, \mathcal{P})$ is named soft S_{p}-derived set of $(\mathcal{E}, \mathcal{P})$ and is indicated by $\tilde{s} S_{p} D(\mathcal{E}, \mathcal{P})$.
Proposition 3.6. Let $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ be a $\tilde{S} T S$ and $(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq}(\tilde{X}, \tilde{\tau}, \mathcal{P})$. If $\quad(C, \mathcal{P}) \widetilde{\cap}\left((\mathcal{E}, \mathcal{P}) \widetilde{e_{x}}\right) \neq \widetilde{\emptyset}$, $\forall(C, \mathcal{P}) \widetilde{\in} \tilde{S} P C(\tilde{X})$ containing $\widetilde{e_{x}}$, then $\widetilde{e_{x}} \widetilde{\in} \tilde{s} S_{p} D$ $(\mathcal{E}, \mathcal{P})$.
Proof. Let $\widetilde{e_{x}} \widetilde{\in}(W, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} O(\tilde{X})$. Then, there exists $(C, \mathcal{P}) \widetilde{\in} \tilde{S} P C(\tilde{X})$ such that $\widetilde{e_{x}} \widetilde{\in}(C, \mathcal{P}) \widetilde{\subseteq}$ (W, \mathcal{P}). By assumption, we have $(C, \mathcal{P}) \widetilde{\cap}((\mathcal{E}, \mathcal{P}) \widetilde{\}$ $\left.\widetilde{e_{x}}\right) \neq \widetilde{\emptyset}$, hence $(W, \mathcal{P}) \widetilde{\cap}\left((\mathcal{E}, \mathcal{P}) \widetilde{e_{x}}\right) \neq \widetilde{\emptyset}$. Thus, $\widetilde{e_{x}} \widetilde{\epsilon} \tilde{s} S_{p} D(\mathcal{E}, \mathcal{P})$.
Proposition 3.7. Let $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ be a $\tilde{S} T S$. Then, $(C, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} C(\tilde{X})$ iff $\tilde{s} S_{p} D(C, \mathcal{P}) \widetilde{\subseteq}(C, \mathcal{P})$.
Proof. Let $(C, \mathcal{P}) \tilde{\in} \tilde{S} S_{p} C(\tilde{X})$ and $\widetilde{e_{x}} \tilde{\in} \tilde{s} S_{p} D(C, \mathcal{P})$. On contrary, we suppose that $\widetilde{e_{x}} \llbracket(C, \mathcal{P})$, then $\widetilde{e_{x}} \widetilde{\in} \tilde{X} \tilde{\lceil }(C, \mathcal{P})$ but since $\tilde{X} \tilde{\lceil }(C, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} O(\tilde{X})$, then $\tilde{X} \tilde{\}(C, \mathcal{P}) \widetilde{\cap}\left((C, \mathcal{P}) \widetilde{e_{x}}\right) \neq \widetilde{\emptyset}$, which is a contradiction. Hence, $\widetilde{e_{x}} \widetilde{\in}(C, \mathcal{P})$. Thus, $\tilde{s} S_{p} D(C, \mathcal{P})$ $\widetilde{\subseteq}(C, \mathcal{P})$.
Conversely, let $\tilde{s} S_{p} D(C, \mathcal{P}) \widetilde{\subseteq}(C, \mathcal{P})$. To show $(C, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} C(\tilde{X})$. Let $\widetilde{e_{x}} \tilde{\in} \tilde{X} \tilde{\backslash}(C, \mathcal{P})$. Then, $\widetilde{e_{x}} \widetilde{\not}$ (C, \mathcal{P}), so $\widetilde{e_{x}} \widetilde{\not} \tilde{s} S_{p} D(C, \mathcal{P})$, then there exists $(W, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} O(\tilde{X}) \quad$ such that $\widetilde{e_{x}} \widetilde{\in}(W, \mathcal{P})$ and
$(W, \mathcal{P}) \widetilde{\cap}(C, \mathcal{P})=\widetilde{\emptyset} . \quad$ Therefore $\quad(W, \mathcal{P}) \widetilde{\subseteq}$ $\tilde{X} \tilde{\lceil }(C, \mathcal{P})$. Thus, $\tilde{X} \tilde{\Upsilon}(C, \mathcal{P}) \widetilde{\in} \widetilde{\mathrm{N}}_{S_{p}}\left(\widetilde{e_{x}}\right)$ but since $\widetilde{e_{x}}$ is arbitrary soft point of $\tilde{X} \tilde{\}(C, \mathcal{P})$, so $\tilde{X} \tilde{\bigvee}(C, \mathcal{P}) \tilde{\epsilon}$ $\widetilde{\mathrm{N}}_{S_{p}}\left(\widetilde{e_{x}}\right), \forall \widetilde{e_{x}} \tilde{\in} \tilde{X} \tilde{\}(C, \mathcal{P})$. By Proposition 3.2(2), $\tilde{X} \tilde{\}(C, \mathcal{P}) \tilde{\in} \tilde{S} S_{p} O(\tilde{X})$. Hence, $(C, \mathcal{P}) \tilde{\in} \tilde{S} S_{p} C(\tilde{X})$.
In the following result, several properties of the soft S_{p}-derived set are mentioned:
Proposition 3.8. For any $\left(\mathcal{E}_{1}, \mathcal{P}\right),\left(\mathcal{E}_{2}, \mathcal{P}\right) \widetilde{\subseteq}(\tilde{X}, \tilde{\tau}, \mathcal{P})$, the following conditions hold:
(1) $\tilde{s} S_{p} D(\widetilde{\emptyset})=\widetilde{\emptyset}$.
(2) $\widetilde{e_{x}} \widetilde{\in} \tilde{s} S_{p} D\left(\varepsilon_{1}, \mathcal{P}\right)$ iff $\widetilde{e_{x}} \widetilde{\in} \tilde{s} S_{p} D\left(\left(\varepsilon_{1}, \mathcal{P}\right) \tilde{e_{x}}\right)$.
(3) If $\left(\mathcal{E}_{1}, \mathcal{P}\right) \widetilde{\subseteq}\left(\mathcal{E}_{2}, \mathcal{P}\right)$, then $\tilde{s} S_{p} D\left(\varepsilon_{1}, \mathcal{P}\right) \widetilde{\subseteq}$ $\tilde{s} S_{p} D\left(\mathcal{E}_{2}, \mathcal{P}\right)$.
(4) $\tilde{s} S_{p} D\left(\left(\varepsilon_{1}, \mathcal{P}\right) \widetilde{\cap}\left(\varepsilon_{2}, \mathcal{P}\right)\right) \simeq \tilde{s} S_{p} D\left(\varepsilon_{1}, \mathcal{P}\right) \widetilde{\cap} \tilde{s} S_{p} D\left(\varepsilon_{2}, \mathcal{P}\right)$
(5) $\tilde{s} S_{p} D\left(\mathcal{E}_{1} \mathcal{P}\right) \widetilde{\cup} \tilde{s} S_{p} D\left(\varepsilon_{2}, \mathcal{P}\right) \widetilde{\subseteq} S_{p} D\left(\left(\varepsilon_{1}, \mathcal{P}\right) \widetilde{\cup}\left(\varepsilon_{2}, \mathcal{P}\right)\right)$
(6) $\tilde{s} s D\left(\mathcal{E}_{1} \mathcal{P}\right) \widetilde{\subseteq} \tilde{s} S_{p} D\left(\varepsilon_{1}, \mathcal{P}\right)$, where $\tilde{s} s D\left(\varepsilon_{1}, \mathcal{P}\right)$ is a soft semi-derived set of $\left(\varepsilon_{1}, \mathcal{P}\right)$.
Proof. Obvious.
In general, the opposite of parts (3), (4), (5) and (6) of Proposition 3.8 is not always true. As the next examples illustrates:
Example 3.9. In Example 2.3:
(1) Let $\left(\mathcal{E}_{5}, \mathcal{P}\right)=\left\{\left(e_{1},\left\{x_{1}\right\}\right),\left(e_{2},\left\{x_{2}\right\}\right)\right\} \quad$ and $\left(\varepsilon_{8}, \mathcal{P}\right)=\left\{\left(e_{1},\left\{x_{2}\right\}\right),\left(e_{2}, X\right)\right\}$. Then, $\tilde{s} S_{p} D\left(\mathcal{E}_{5}, \mathcal{P}\right)=$ $\widetilde{\emptyset} \quad$ and $\quad \tilde{s} S_{p} D\left(\varepsilon_{8}, \mathcal{P}\right)=\left\{\widetilde{1_{x_{1}}}, \widetilde{e_{x_{x_{2}}}}, \widetilde{e_{x_{x_{2}}}}\right\}=$ $\left\{\left(e_{1}, X\right),\left(e_{2},\left\{x_{2}\right\}\right)\right\}$, so $\tilde{s} S_{p} D\left(\mathcal{E}_{5}, \mathcal{P}\right) \widetilde{\subseteq} \tilde{s} S_{p} D\left(\varepsilon_{8}, \mathcal{P}\right)$, but $\left(\mathcal{E}_{5}, \mathcal{P}\right) \varsubsetneqq\left(\mathcal{E}_{8}, \mathcal{P}\right)$.
(2) Let $\left(\mathcal{E}_{5}, \mathcal{P}\right)=\left\{\left(e_{1},\left\{x_{1}\right\}\right),\left(e_{2},\left\{x_{2}\right\}\right)\right\} \quad$ and $\left(\varepsilon_{6}, \mathcal{P}\right)=\left\{\left(e_{1},\left\{x_{2}\right\}\right),\left(e_{2},\left\{x_{2}\right\}\right)\right\}$. Then, $\tilde{s} S_{p} D\left(\mathcal{E}_{5}, \mathcal{P}\right)=\widetilde{\emptyset}$ and $\tilde{s} S_{p} D\left(\varepsilon_{6}, \mathcal{P}\right)=\widetilde{\emptyset}$, and so $\tilde{s} S_{p} D\left(\mathcal{E}_{5}, \mathcal{P}\right) \widetilde{\cup} \tilde{s} S_{p} D\left(\varepsilon_{6}, \mathcal{P}\right)=\widetilde{\emptyset} . \quad$ But, $\left(\varepsilon_{5}, \mathcal{P}\right) \widetilde{U}\left(\mathcal{E}_{6}, \mathcal{P}\right)=\left\{\left(e_{1}, X\right),\left(e_{2},\left\{x_{2}\right\}\right)\right\}, \quad$ so $\tilde{s} S_{p} D\left(\left(\varepsilon_{5}, \mathcal{P}\right) \widetilde{\cup}\left(\varepsilon_{6}, \mathcal{P}\right)\right)=\left\{\widetilde{e_{2_{1}}}\right\}=\left\{\left(e_{2},\left\{x_{1}\right\}\right)\right\}$.
Thus, $\quad \tilde{s} S_{p} D\left(\left(\mathcal{E}_{5}, \mathcal{P}\right) \widetilde{\cup}\left(\varepsilon_{6}, \mathcal{P}\right)\right) \nsubseteq \tilde{s} S_{p} D\left(\mathcal{E}_{5}, \mathcal{P}\right) \widetilde{U}$ $\tilde{s} S_{p} D\left(\mathcal{E}_{6}, \mathcal{P}\right)$.
(3) Let $\left(\varepsilon_{8}, \mathcal{P}\right)=\left\{\left(e_{1},\left\{x_{2}\right\}\right),\left(e_{2}, X\right)\right\}$, then $\tilde{s} s D\left(\mathcal{E}_{8}, \mathcal{P}\right)=\widetilde{\emptyset} \quad$ and $\quad \tilde{s} S_{p} D\left(\mathcal{E}_{8}, \mathcal{P}\right)=\left\{\widetilde{e_{x_{1}}}, \widetilde{1_{x_{2}}}\right.$, $\left.\widetilde{e_{2 x_{2}}}\right\}=\left\{\left(e_{1}, X\right),\left(e_{2},\left\{x_{2}\right\}\right)\right\}$. Thus, $\tilde{s} S_{p} D\left(\mathcal{E}_{8}, \mathcal{P}\right) \varsubsetneqq \tilde{s} S D\left(\mathcal{E}_{8}, \mathcal{P}\right)$.
Example 3.10. Let $X=\left\{x_{1}, x_{2}, x_{3}\right\}$ and $\mathcal{P}=\left\{e_{1}, e_{2}\right\}$ with the soft topology $\tilde{\tau}=\left\{\widetilde{\emptyset}, \tilde{X},\left(\mathcal{E}_{1}, \mathcal{P}\right),\left(\mathcal{E}_{2}, \mathcal{P}\right)\right.$, $\left.\left(\varepsilon_{3}, \mathcal{P}\right),\left(\mathcal{E}_{4}, \mathcal{P}\right),\left(\mathcal{E}_{5}, \mathcal{P}\right)\right\}, \quad$ where $\quad \widetilde{\emptyset}=\left\{\left(e_{1}, \emptyset\right)\right.$, $\left.\left(e_{2}, \emptyset\right)\right\}, \tilde{X}=\left\{\left(e_{1}, X\right),\left(e_{2}, X\right)\right\},\left(\varepsilon_{1}, \mathcal{P}\right)=\left\{\left(e_{1},\left\{x_{2}\right\}\right)\right.$, $\left.\left(e_{2},\left\{x_{1}\right\}\right)\right\}, \quad\left(\mathcal{E}_{2}, \mathcal{P}\right)=\left\{\left(e_{1},\left\{x_{2}, x_{3}\right\}\right),\left(e_{2},\left\{x_{1}, x_{3}\right\}\right)\right\}$ $\left(\varepsilon_{3}, \mathcal{P}\right)=\left\{\left(e_{1},\left\{x_{1}, x_{2}\right\}\right),\left(e_{2},\left\{x_{1}, x_{2}\right\}\right)\right\}, \quad\left(\mathcal{E}_{4}, \mathcal{P}\right)=$ $\left\{\left(e_{1}, X\right),\left(e_{2},\left\{x_{1}, x_{3}\right\}\right)\right\}, \quad\left(\mathcal{E}_{5}, \mathcal{P}\right)=\left\{\left(e_{1},\left\{x_{1}, x_{2}\right\}\right)\right.$, $\left.\left(e_{2},\left\{x_{1}\right\}\right)\right\}$. Thus, $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ is a $\tilde{S} T S$ over X. Let $\left(C_{1}, \mathcal{P}\right)=\left\{\left(e_{1},\left\{x_{1}\right\}\right),\left(e_{2},\left\{x_{1}, x_{2}\right\}\right)\right\}$, and $(C, \mathcal{P})=$ $\left\{\left(e_{1},\left\{x_{1}, x_{2}\right\}\right),\left(e_{2},\left\{x_{2}\right\}\right)\right\}$. Then, $\quad \tilde{s} S_{p} D\left(C_{1}, \mathcal{P}\right)=$ $\left\{\widetilde{e_{1_{1}}}, \widetilde{e_{x_{2}}}, \widetilde{e_{1_{x_{3}}}}, \widetilde{e_{2_{x_{2}}}}, \widetilde{e_{2_{x_{3}}}}\right\}=\left\{\left(e_{1}, X\right),\left(e_{2},\left\{x_{2}, x_{3}\right\}\right)\right\}$ and $\quad \tilde{s} S_{p} D(C, \mathcal{P})=\left\{\widetilde{e_{1_{1}}}, \widetilde{e_{1_{x_{3}}}}, \widetilde{e_{2_{x_{1}}}}, \widetilde{e_{2_{x_{2}}}}, \widetilde{e_{2_{x_{3}}}}\right\}=$ $\left\{\left(e_{1},\left\{x_{1}, x_{3}\right\}\right),\left(e_{2}, X\right)\right\}$, so $\quad \tilde{s} S_{p} D\left(C_{1}, \mathcal{P}\right) \widetilde{\cap}$ $\tilde{s} S_{p} D(C, \mathcal{P})=\left\{\widetilde{e_{x_{x_{1}}}}, \widetilde{e_{x_{x_{3}}}}, \widetilde{e_{x_{x_{2}}}}, \widetilde{e_{x_{x_{3}}}}\right\}$. But, $\left(C_{1}, \mathcal{P}\right) \widetilde{\cap}$

https://doi.org/10.25130/tips.v29i2.1547

$(C, \mathcal{P})=\left\{\left(e_{1},\left\{x_{1}\right\}\right),\left(e_{2},\left\{x_{2}\right\}\right)\right\} \quad$ so $\quad \tilde{s} S_{p} D\left(\left(C_{1}, \mathcal{P}\right) \tilde{n}\right.$ $(C, \mathcal{P}))=\widetilde{\emptyset} . \quad$ Thus, $\quad \tilde{s} S_{p} D\left(C_{1}, \mathcal{P}\right) \widetilde{\cap} \tilde{s} S_{p} D(C, \mathcal{P}) \varsubsetneqq$ $\tilde{s} S_{p} D\left(\left(C_{1}, \mathcal{P}\right) \widetilde{\cap}(C, \mathcal{P})\right)$.
Theorem 3.11. Let $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ be a $\tilde{S} T S$ and $(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq}$ $(\tilde{X}, \tilde{\tau}, \mathcal{P})$. Then:
(1) $(\mathcal{E}, \mathcal{P}) \widetilde{U} \tilde{s} S_{p} D(\mathcal{E}, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} C(\tilde{X})$.
(2) $\tilde{s} S_{p} D\left(\tilde{s} S_{p} D(\mathcal{E}, \mathcal{P})\right) \widetilde{\lceil }(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq} \tilde{s} S_{p} D(\mathcal{E}, \mathcal{P})$.
(3) $\tilde{s} S_{p} D\left((\varepsilon, \mathcal{P}) \widetilde{\mathrm{U}} \tilde{s} S_{p} D(\mathcal{E}, \mathcal{P})\right) \widetilde{\subseteq}(\mathcal{E}, \mathcal{P}) \widetilde{\mathrm{U}}$ $\tilde{s} S_{p} D(\mathcal{E}, \mathcal{P})$.
Proof. (1) To prove $(\mathcal{E}, \mathcal{P}) \widetilde{\cup} \tilde{s} S_{p} D(\mathcal{E}, \mathcal{P}) \widetilde{\epsilon} \tilde{S} S_{p} C(\tilde{X})$. We shall prove that $\tilde{X}\left\lceil\left((\mathcal{E}, \mathcal{P}) \widetilde{\cup} \tilde{s} S_{p} D(\mathcal{E}, \mathcal{P})\right)\right.$ $\widetilde{\epsilon} \tilde{S} S_{p} O(\tilde{X}) . \quad$ Let $\quad \widetilde{e_{x}} \tilde{\in} \tilde{X} \tilde{\lceil }\left((\mathcal{E}, \mathcal{P}) \tilde{U} \tilde{s} S_{p} D(\mathcal{E}, \mathcal{P})\right)$. Then, $\widetilde{e_{x}} \widetilde{\notin}(\mathcal{E}, \mathcal{P})$ and $\widetilde{e_{x}} \widetilde{\not} \tilde{s} S_{p} D(\mathcal{E}, \mathcal{P})$, there exists $(W, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} O(\tilde{X})$ such that $\widetilde{e_{x}} \tilde{\in}(W, \mathcal{P})$ and $(W, \mathcal{P}) \widetilde{\cap}(\mathcal{E}, \mathcal{P})=\widetilde{\emptyset} . \quad$ Thus, $\quad(W, \mathcal{P}) \widetilde{\subseteq} \tilde{X} \check{\lceil }(\mathcal{E}, \mathcal{P})$. Also, if $(W, \mathcal{P}) \widetilde{\sim} \tilde{s} S_{p} D(\mathcal{E}, \mathcal{P}) \neq \widetilde{\emptyset}$, then there exists $\widetilde{e_{y}} \widetilde{\epsilon}(W, \mathcal{P}) \widetilde{\cap} \tilde{s} S_{p} D(\mathcal{E}, \mathcal{P})$. This implies that (W, \mathcal{P}) $\tilde{n}\left((\mathcal{E}, \mathcal{P}) \widetilde{e_{x}}\right) \neq \widetilde{\emptyset}$, and so $(W, \mathcal{P}) \widetilde{n}(\mathcal{\varepsilon}, \mathcal{P}) \neq \widetilde{\emptyset}$, which is a contradiction. So, $(W, \mathcal{P}) \widetilde{\sim} \tilde{s} S_{p} D(\mathcal{E}, \mathcal{P})=$ $\widetilde{\emptyset}$. Thus $(W, \mathcal{P}) \widetilde{\subseteq} \tilde{X}\left\lceil\tilde{s} S_{p} D(\mathcal{E}, \mathcal{P})\right.$, so $(W, \mathcal{P}) \widetilde{\subseteq}$ $\tilde{X} \tilde{\lceil }\left((\mathcal{E}, \mathcal{P}) \widetilde{\cup} \tilde{S_{S}} D(\mathcal{E}, \mathcal{P})\right)$. This means that $\tilde{X}\left\lceil\left((\mathcal{E}, \mathcal{P}) \widetilde{\cup} \tilde{S_{S}} D(\mathcal{E}, \mathcal{P})\right) \widetilde{\in} \widetilde{\mathcal{N}}_{S_{p}}\left(\widetilde{e_{x}}\right)\right.$ and since $\widetilde{e_{x}}$ is arbitrary point of $\left.\tilde{X} \tilde{\lceil }(\mathcal{E}, \mathcal{P}) \widetilde{\cup} \tilde{s} S_{p} D(\mathcal{E}, \mathcal{P})\right)$. So, $\tilde{X} \check{\lceil }\left((\mathcal{E}, \mathcal{P}) \widetilde{\cup} \tilde{s} S_{p} D(\mathcal{E}, \mathcal{P})\right) \widetilde{\in} \widetilde{\mathcal{N}}_{S_{p}}\left(\widetilde{e_{x}}\right), \forall \widetilde{e_{x}} \tilde{\in} \tilde{X} \tilde{\Gamma}$ $\left.(\mathcal{E}, \mathcal{P}) \widetilde{\sim} \tilde{s} S_{p} D(\mathcal{E}, \mathcal{P})\right)$, then by Proposition 3.2(2), $\tilde{X} \tilde{\lceil }\left((\mathcal{E}, \mathcal{P}) \widetilde{\cup} \tilde{s} S_{p} D(\mathcal{E}, \mathcal{P})\right) \tilde{\in} \tilde{S} S_{p} O(\tilde{X})$. Hence, $(\mathcal{E}, \mathcal{P})$ $\widetilde{U} \tilde{s} S_{p} D(\mathcal{E}, \mathcal{P}) \tilde{\epsilon} \tilde{S} S_{p} C(\tilde{X})$.
(2) Let $\widetilde{e_{x}} \tilde{\in} \tilde{s} S_{p} D\left(\tilde{s} S_{p} D(\mathcal{E}, \mathcal{P})\right) \widetilde{\}(\mathcal{E}, \mathcal{P}) \quad$ and $(W, \mathcal{P}) \tilde{\in} \tilde{S} S_{p} O(\tilde{X})$ such that $\widetilde{e_{x}} \tilde{\in}(W, \mathcal{P})$. Then, $(W, \mathcal{P}) \widetilde{\cap}\left(\tilde{s} S_{p} D(\mathcal{E}, \mathcal{P}) \widetilde{e_{x}}\right) \neq \widetilde{\emptyset}$. Let $\widetilde{e_{y}} \widetilde{\epsilon}(W, \mathcal{P}) \widetilde{ก}$ $\left(\tilde{s} S_{p} D(\mathcal{E}, \mathcal{P}) \backslash \widetilde{e_{x}}\right)$. Then, $\widetilde{e_{y}} \widetilde{\epsilon}(W, \mathcal{P})$ and $\widetilde{e_{y}} \widetilde{\epsilon}$ $\tilde{s} S_{p} D(\mathcal{E}, \mathcal{P})$, so $\quad(W, \mathcal{P}) \widetilde{\cap}\left((\mathcal{E}, \mathcal{P}) \widetilde{e_{y}}\right) \neq \widetilde{\emptyset}$, this means, there exists $\widetilde{e_{w}} \widetilde{\epsilon}(W, \mathcal{P}) \widetilde{\cap}\left((\mathcal{E}, \mathcal{P}) \widetilde{\mathcal{P}_{y}}\right)$. Since $\widetilde{e_{w}} \widetilde{\in}(\mathcal{E}, \mathcal{P})$, but $\widetilde{e_{x}} \widetilde{\nexists}(\mathcal{E}, \mathcal{P})$, so $\widetilde{e_{w}} \neq \widetilde{e_{x}}$. Hence, $\quad(W, \mathcal{P}) \tilde{\cap}\left((\mathcal{E}, \mathcal{P}) \widetilde{e_{x}}\right) \neq \widetilde{\emptyset}$. Then, $\widetilde{e_{x}} \tilde{\in}$ $\tilde{s} S_{p} D(\mathcal{E}, \mathcal{P})$.
(3) By part (1), $(\mathcal{E}, \mathcal{P}) \widetilde{U} \tilde{s} S_{p} D(\mathcal{E}, \mathcal{P}) \tilde{\in} \tilde{S} S_{p} C(\tilde{X})$. So by Proposition 3.7, we get $\tilde{s} S_{p} D((\mathcal{E}, \mathcal{P}) \widetilde{\cup}$ $\left.\tilde{s} S_{p} D(\mathcal{E}, \mathcal{P})\right) \widetilde{\subseteq}(\mathcal{E}, \mathcal{P}) \widetilde{\cup} \tilde{s} S_{p} D(\mathcal{E}, \mathcal{P})$.
Definition 3.12. Let $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ be a $\tilde{S} T S$ and $(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq}(\tilde{X}, \tilde{\tau}, \mathcal{P})$. A soft point $\widetilde{e_{x}} \widetilde{\in}(\mathcal{E}, \mathcal{P})$ is known as a soft S_{p}-interior point of $(\mathcal{\varepsilon}, \mathcal{P})$, if there exists $(W, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} O(\tilde{X})$ such that $\widetilde{e_{x}} \widetilde{\in}(W, \mathcal{P}) \widetilde{\subseteq}(\varepsilon, \mathcal{P})$. The set of all soft S_{p}-interior points of $(\mathcal{\varepsilon}, \mathcal{P})$ is named a soft S_{p}-interior of $(\mathcal{E}, \mathcal{P})$, and is indicated by $\tilde{s} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P})$. It is clear that $\tilde{s} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P})=$ $\widetilde{\cup}\left\{(W, \mathcal{P}):(W, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} O(\tilde{X}),(W, \mathcal{P}) \widetilde{\subseteq}(\mathcal{E}, \mathcal{P})\right\}$.
Using Definition 3.1 and Definition 3.12, we can conclude the following result.

Corollary 3.13. Let $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ be a $\tilde{S} T S,(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq}$ $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ and $\widetilde{e_{x}} \tilde{\in} \tilde{S} P(\tilde{X})$. Then, $(\mathcal{E}, \mathcal{P}) \widetilde{\in} \widetilde{\mathcal{N}}_{S_{p}}\left(\widetilde{e_{x}}\right)$ iff $\widetilde{e_{x}} \tilde{\in} \tilde{s} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P})$.
Proposition 3.14. Let $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ be a $\tilde{S} T S$ and $(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq}(\tilde{X}, \tilde{\tau}, \mathcal{P})$. If $\widetilde{e_{x}} \widetilde{\in} \tilde{s} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P})$, then there is $(C, \mathcal{P}) \widetilde{\epsilon} \tilde{S} P C(\tilde{X})$ such that $\widetilde{\varepsilon_{x}} \widetilde{\epsilon}(C, \mathcal{P}) \widetilde{\subseteq}(\mathcal{E}, \mathcal{P})$.
Proof. Since $\widetilde{e_{x}} \tilde{\in} \tilde{s} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P})$, then there exists $(W, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} O(\tilde{X})$ such that $\widetilde{e_{x}} \widetilde{\in}(W, \mathcal{P}) \widetilde{\subseteq}(\mathcal{E}, \mathcal{P})$. Since $(W, \mathcal{P}) \tilde{\in} \tilde{S} S_{p} O(\tilde{X})$, so there is $(C, \mathcal{P}) \widetilde{\mathcal{E}}$ $\tilde{S} P C(\tilde{X})$ containing $\widetilde{e_{x}}$ such that $(C, \mathcal{P}) \widetilde{\subseteq}(W, \mathcal{P})$ $\widetilde{\subseteq}(\mathcal{E}, \mathcal{P})$. Hence, $\widetilde{e_{x}} \widetilde{\in}(C, \mathcal{P}) \widetilde{\subseteq}(\mathcal{E}, \mathcal{P})$.
In the following result, several properties of the soft S_{p}-interior set are mentioned:
Proposition 3.15. For any $\left(\varepsilon_{1}, \mathcal{P}\right),\left(\varepsilon_{2}, \mathcal{P}\right) \widetilde{\subseteq}$ $(\tilde{X}, \tilde{\tau}, \mathcal{P})$, the following conditions hold:
(1) $\tilde{s} S_{p} \operatorname{int}(\widetilde{\varnothing})=\widetilde{\emptyset}, \tilde{s} S_{p} \operatorname{int}(\tilde{X})=\tilde{X}$.
(2) $\tilde{S} S_{p} \operatorname{int}\left(\mathcal{E}_{1}, \mathcal{P}\right)$ is the largest soft S_{p}-open set contained in $\left(\varepsilon_{1}, \mathcal{P}\right)$.
(3) $\left(\mathcal{E}_{1}, \mathcal{P}\right) \tilde{\epsilon} \tilde{S} S_{p} O(\tilde{X})$ iff $\left(\mathcal{E}_{1}, \mathcal{P}\right)=\tilde{s} S_{p} \operatorname{int}\left(\mathcal{E}_{1}, \mathcal{P}\right)$.
(4) $\tilde{s} S_{p} \operatorname{int}\left(\tilde{s} S_{p} \operatorname{int}\left(\mathcal{E}_{1}, \mathcal{P}\right)\right)=\tilde{s} S_{p} \operatorname{int}\left(\mathcal{E}_{1}, \mathcal{P}\right)$.
(5) If $\left(\mathcal{E}_{1}, \mathcal{P}\right) \widetilde{\subseteq}\left(\varepsilon_{2}, \mathcal{P}\right)$, then $\tilde{s} S_{p} \operatorname{int}\left(\mathcal{E}_{1}, \mathcal{P}\right) \widetilde{\subseteq}$ $\tilde{s} S_{p} \operatorname{int}\left(\mathcal{E}_{2}, \mathcal{P}\right)$.
(6) $\tilde{s} S_{p} \operatorname{int}\left(\left(\varepsilon_{1}, \mathcal{P}\right) \widetilde{\cap}\left(\varepsilon_{2}, \mathcal{P}\right)\right) \widetilde{\subseteq} \tilde{s} S_{p} \operatorname{int}\left(\varepsilon_{1}, \mathcal{P}\right) \widetilde{\cap}$ $\tilde{s} S_{p} \operatorname{int}\left(\mathcal{E}_{2}, \mathcal{P}\right)$.
(7) $\tilde{s} S_{p} \operatorname{int}\left(\mathcal{E}_{1}, \mathcal{P}\right) \widetilde{\cup} \tilde{s} S_{p} \operatorname{int}\left(\mathcal{E}_{2}, \mathcal{P}\right) \widetilde{\subseteq} \tilde{s} S_{p} \operatorname{int}($ $\left.\left(\varepsilon_{1}, \mathcal{P}\right) \tilde{U}\left(\varepsilon_{2}, \mathcal{P}\right)\right)$.
In general, $\widetilde{\mathrm{U}}_{\lambda \in \Lambda} \tilde{S} S_{p} \operatorname{int}\left(\mathcal{E}_{1}, \mathcal{P}\right) \widetilde{\subseteq} \tilde{s}_{p} \operatorname{int}\left(\widetilde{\mathrm{U}}_{\lambda \in \Lambda}\right.$ $\left(\varepsilon_{1}, \mathcal{P}\right)$).
Proof. Obvious.
In general, the opposite of parts (5), (6) and (7) of Proposition 3.15 is not always true. As the next examples illustrates:
Example 3.16. In Example 3.10:
(1) Let $\left(B_{1}, \mathcal{P}\right)=\left\{\left(e_{1},\left\{x_{2}\right\}\right),\left(e_{2},\left\{x_{3}\right\}\right)\right\} \quad$ and $\left(\mathcal{E}_{1}, \mathcal{P}\right)=\left\{\left(e_{1},\left\{x_{2}\right\}\right),\left(e_{2},\left\{x_{1}\right\}\right)\right\}$. Then, $\quad \tilde{s} S_{p}$ int $\left(B_{1}, \mathcal{P}\right)=\widetilde{\emptyset}$ and $\tilde{s} S_{p} \operatorname{int}\left(\mathcal{E}_{1}, \mathcal{P}\right)=\left(\mathcal{E}_{1}, \mathcal{P}\right)$, so $\tilde{s} S_{p}$ int

(2) Let $\left(B_{2}, \mathcal{P}\right)=\left\{\left(e_{1},\left\{x_{2}\right\}\right),\left(e_{2},\left\{x_{2}\right\}\right)\right\}$ and $\left(B_{3}, \mathcal{P}\right)$ $=\left\{\left(e_{1},\left\{x_{3}\right\}\right),\left(e_{2},\left\{x_{1}\right\}\right)\right\}$. Then, $\tilde{s} S_{p}$ int $\left(B_{2}, \mathcal{P}\right)=\widetilde{\varnothing}$, $\tilde{s} S_{p} c l\left(B_{3}, \mathcal{P}\right)=\widetilde{\emptyset}, \quad$ and \quad so $\quad \tilde{s} S_{p} \operatorname{int}\left(B_{2}, \mathcal{P}\right) \widetilde{\mathrm{U}}$ $\tilde{s} S_{p} \operatorname{int}\left(B_{3}, \mathcal{P}\right)=\widetilde{\emptyset}$. But, $\left(B_{2}, \mathcal{P}\right) \widetilde{U}\left(B_{3}, \mathcal{P}\right)=\left(B_{4}, \mathcal{P}\right)$ $=\left\{\left(e_{1},\left\{x_{2}, x_{3}\right\}\right),\left(e_{2},\left\{x_{1}, x_{2}\right\}\right)\right\}$, so $\tilde{s} S_{p} \operatorname{int}\left(B_{4}, \mathcal{P}\right)=$ $\left(B_{4}, \mathcal{P}\right)$. Thus, $\quad \tilde{s} S_{p} \operatorname{int}\left(\left(B_{2}, \mathcal{P}\right) \widetilde{U}\left(B_{3}, \mathcal{P}\right)\right) \llbracket$ $\tilde{s} S_{p} \operatorname{int}\left(B_{2}, \mathcal{P}\right) \widetilde{\mathrm{U}} \tilde{S_{p}} \operatorname{int}\left(B_{3}, \mathcal{P}\right)$.
Example 3.17. In Example 2.3, let $\left(\mathcal{E}_{9}, \mathcal{P}\right)=$ $\left\{\left(e_{1},\left\{x_{2}\right\}\right),\left(e_{2},\left\{x_{1}\right\}\right)\right\} \quad$ and $\quad\left(\varepsilon_{10}, \mathcal{P}\right)=$ $\left\{\left(e_{1},\left\{x_{1}\right\}\right),\left(e_{2},\left\{x_{1}\right\}\right)\right\}$, then $\tilde{s} S_{p} \operatorname{int}\left(\mathcal{E}_{9}, \mathcal{P}\right)=\left(\mathcal{E}_{9}, \mathcal{P}\right)$ and $\tilde{s} S_{p} \operatorname{int}\left(\mathcal{E}_{10}, \mathcal{P}\right)=\left(\varepsilon_{10}, \mathcal{P}\right)$, so $\tilde{s} S_{p} \operatorname{int}\left(\mathcal{E}_{9}, \mathcal{P}\right) \widetilde{\cap}$ $\tilde{s} S_{p} \operatorname{int}\left(\mathcal{E}_{10}, \mathcal{P}\right)=\left(\varepsilon_{14}, \mathcal{P}\right)=\left\{\left(e_{1}, \emptyset\right),\left(e_{2},\left\{x_{1}\right\}\right)\right\}$.
But, $\tilde{s} S_{p} \operatorname{int}\left(\left(\mathcal{E}_{9}, \mathcal{P}\right) \widetilde{\cap}\left(\varepsilon_{10}, \mathcal{P}\right)\right)=\tilde{s} S_{p} \operatorname{int}\left(\mathcal{E}_{14}, \mathcal{P}\right)=$ $\widetilde{\emptyset}$. Thus, $\tilde{s} S_{p} \operatorname{int}\left(\mathcal{E}_{9}, \mathcal{P}\right) \tilde{\cap} \tilde{s} S_{p} \operatorname{int}\left(\mathcal{E}_{10}, \mathcal{P}\right) \varsubsetneqq \tilde{s} S_{p}$ int $\left(\left(\mathcal{E}_{9}, \mathcal{P}\right) \tilde{\cap}\left(\varepsilon_{10}, \mathcal{P}\right)\right)$.
Proposition 3.18. Let $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ be a $\tilde{S} T S$ and $\left(\mathcal{E}_{1}, \mathcal{P}\right),\left(\mathcal{E}_{2}, \mathcal{P}\right) \widetilde{\subseteq}(\tilde{X}, \tilde{\tau}, \mathcal{P})$. Then:
(1) If $\left(\varepsilon_{1}, \mathcal{P}\right) \widetilde{\cap}\left(\varepsilon_{2}, \mathcal{P}\right)=\widetilde{\emptyset}$, then $\tilde{s} S_{p} \operatorname{int}\left(\varepsilon_{1}, \mathcal{P}\right) \widetilde{\cap}$ $\tilde{s} S_{p} \operatorname{int}\left(\mathcal{E}_{2}, \mathcal{P}\right)=\widetilde{\emptyset}$.
(2) $\tilde{s} S_{p} \operatorname{int}\left(\left(\varepsilon_{1}, \mathcal{P}\right) \widetilde{\text { (}}\left(\varepsilon_{2}, \mathcal{P}\right)\right) \widetilde{\subseteq} S_{p} \operatorname{int}\left(\varepsilon_{1}, \mathcal{P}\right) \widetilde{ }$ $\tilde{s} S_{p} \operatorname{int}\left(\mathcal{E}_{2}, \mathcal{P}\right)$.
(3) $\tilde{s} S_{p} \operatorname{int}\left(\mathcal{E}_{1}, \mathcal{P}\right) \widetilde{\subseteq} \tilde{s i n t}\left(\varepsilon_{1}, \mathcal{P}\right)$.

Proof. (1) Obvious.
(2) $\tilde{s} S_{p} \operatorname{int}\left(\left(\mathcal{E}_{1}, \mathcal{P}\right) \tilde{\backslash}\left(\varepsilon_{2}, \mathcal{P}\right)\right)=\tilde{s} S_{p} \operatorname{int}\left(\left(\varepsilon_{1}, \mathcal{P}\right) \tilde{\cap}\right.$ $\left(\tilde{X} \widetilde{\backslash}\left(\mathcal{E}_{2}, \mathcal{P}\right)\right) \widetilde{S_{s}} S_{p} \operatorname{int}\left(\varepsilon_{1}, \mathcal{P}\right) \widetilde{\cap} \tilde{s} S_{p} \operatorname{int}\left(\tilde{X} \widetilde{\backslash}\left(\varepsilon_{2}, \mathcal{P}\right)\right)$
$\widetilde{\subseteq} \tilde{s}_{p} \operatorname{int}\left(\mathcal{E}_{1}, \mathcal{P}\right) \tilde{\operatorname{s}} S_{p} \operatorname{int}\left(\mathcal{E}_{2}, \mathcal{P}\right)$.
(3) The proof arises from the fact that $\tilde{S} S_{p} O(\tilde{X}) \widetilde{\subseteq}$ $\tilde{S} S O(\tilde{X})$.
In general, the opposite of Proposition 3.18 is not always true. As the next examples illustrates:
Example 3.19. In Example 3.10, since $\left(B_{5}, \mathcal{P}\right)=$ $\left\{\left(e_{1},\left\{x_{3}\right\}\right),\left(e_{2},\left\{x_{1}, x_{2}\right\}\right)\right\}$ and $\left(B_{6}, \mathcal{P}\right)=\left\{\left(e_{1},\left\{x_{3}\right\}\right)\right.$, $\left.\left(e_{2},\left\{x_{1}, x_{3}\right\}\right)\right\}$, then $\quad \tilde{s} S_{p} \operatorname{int}\left(B_{5}, \mathcal{P}\right)=\widetilde{\emptyset}$, $\tilde{s} S_{p} \operatorname{int}\left(B_{6}, \mathcal{P}\right)=\widetilde{\emptyset}$, and so $\tilde{s} S_{p} \operatorname{int}\left(B_{5}, \mathcal{P}\right) \tilde{\cap} \tilde{s} S_{p}$ int $\left(B_{6}, \mathcal{P}\right)=\widetilde{\emptyset}$. But, $\left(B_{5}, \mathcal{P}\right) \widetilde{\cap}\left(B_{6}, \mathcal{P}\right) \neq \widetilde{\emptyset}$.
Example 3.20. In Example 2.3:
(1) Let $\left(\varepsilon_{9}, \mathcal{P}\right)=\left\{\left(e_{1},\left\{x_{2}\right\}\right),\left(e_{2},\left\{x_{1}\right\}\right)\right\} \quad$ and $\left(\varepsilon_{10}, \mathcal{P}\right)=\left\{\left(e_{1},\left\{x_{1}\right\}\right),\left(e_{2},\left\{x_{1}\right\}\right)\right\}$. Then, $\left(\varepsilon_{2}, \mathcal{P}\right)=$ $\left(\varepsilon_{9}, \mathcal{P}\right) \tilde{\}\left(\varepsilon_{10}, \mathcal{P}\right) \quad$ and $\quad \tilde{s} S_{p} \operatorname{int}\left(\left(\varepsilon_{9}, \mathcal{P}\right) \widetilde{ }\left(\varepsilon_{10}, \mathcal{P}\right)\right)=$ $\tilde{s} S_{p} \operatorname{int}\left(\mathcal{E}_{2}, \mathcal{P}\right)=\widetilde{\emptyset} . \quad$ But, $\quad \tilde{s} S_{p} \operatorname{int}\left(\mathcal{E}_{9}, \mathcal{P}\right) \tilde{\sim} S_{p}$ int $\left(\varepsilon_{10}, \mathcal{P}\right)=\left(\varepsilon_{2}, \mathcal{P}\right)=\left\{\left(e_{1},\left\{x_{2}\right\}\right),\left(e_{2}, \emptyset\right)\right\}$. Thus, $\tilde{s} S_{p} \operatorname{int}\left(\mathcal{E}_{9}, \mathcal{P}\right) \tilde{\lceil } S_{p} \operatorname{int}\left(\mathcal{E}_{10}, \mathcal{P}\right) \varsubsetneqq \tilde{s} S_{p} \operatorname{int}\left(\left(\mathcal{E}_{9}, \mathcal{P}\right) \tilde{\}\right.$ $\left.\left(\varepsilon_{10}, \mathcal{P}\right)\right)$.
(2) We have $\left(\varepsilon_{1}, \mathcal{P}\right)=\left\{\left(e_{1},\left\{x_{1}\right\}\right),\left(e_{2}, \emptyset\right)\right\}$, then $\tilde{s} \operatorname{sint}\left(\mathcal{E}_{1}, \mathcal{P}\right)=\left(\mathcal{E}_{1}, \mathcal{P}\right) \quad$ and $\quad \tilde{s} S_{p} \operatorname{int}\left(\varepsilon_{1}, \mathcal{P}\right)=\widetilde{\emptyset}$. Thus, $\tilde{s} \operatorname{sint}\left(\mathcal{E}_{1}, \mathcal{P}\right) \varsubsetneqq \tilde{\Phi} S_{p} \operatorname{int}\left(\mathcal{E}_{1}, \mathcal{P}\right)$.
Proposition 3.21. Let $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ be a $\tilde{S} T S$ and $\left(\varepsilon_{1}, \mathcal{P}\right) \subseteq(\tilde{X}, \tilde{\tau}, \mathcal{P})$. Then,
(1) $\tilde{s} S_{p} \operatorname{int}\left(\tilde{s} \operatorname{sint}\left(\mathcal{E}_{1}, \mathcal{P}\right)\right)=\tilde{s} \operatorname{sint}\left(\tilde{s} S_{p} \operatorname{int}\left(\mathcal{E}_{1}, \mathcal{P}\right)\right)$ $=\tilde{s} S_{p} \operatorname{int}\left(\mathcal{E}_{1}, \mathcal{P}\right)$.
(2) $\tilde{s} S_{p} \operatorname{int}\left(\tilde{s} S_{c} \operatorname{int}\left(\varepsilon_{1}, \mathcal{P}\right)\right)=\tilde{s} S_{c} \operatorname{int}\left(\tilde{s} S_{p} \operatorname{int}\left(\varepsilon_{1}, \mathcal{P}\right)\right)$ $=\tilde{s} S_{c} \operatorname{int}\left(\varepsilon_{1}, \mathcal{P}\right)$.
Proof. (1) Since $\tilde{s} S_{p} \operatorname{int}\left(\varepsilon_{1}, \mathcal{P}\right) \tilde{\in} \tilde{S} S_{p} O(\tilde{X})$, then $\tilde{s} S_{p} \operatorname{int}\left(\mathcal{E}_{1}, \mathcal{P}\right) \tilde{\in} \tilde{S} S O(\tilde{X})$. So, $\tilde{\sin \operatorname{sint}\left(\tilde{s} S_{p} \operatorname{int}\left(\mathcal{E}_{1}, \mathcal{P}\right)\right) ~}$ $=\tilde{s} S_{p} \operatorname{int}\left(\varepsilon_{1}, \mathcal{P}\right)$. By Proposition 3.18(3), we have $\tilde{s} S_{p} \operatorname{int}\left(\mathcal{E}_{1}, \mathcal{P}\right) \widetilde{\subseteq} \tilde{s} \operatorname{sint}\left(\mathcal{E}_{1}, \mathcal{P}\right) \widetilde{\subseteq}\left(\varepsilon_{1}, \mathcal{P}\right)$. We get $\tilde{s} S_{p} \operatorname{int}\left(\mathcal{E}_{1}, \mathcal{P}\right) \widetilde{\subseteq} S_{p} \operatorname{int}\left(\tilde{s} \operatorname{sint}\left(\mathcal{E}_{1}, \mathcal{P}\right)\right) \widetilde{\mathscr{s}} S_{p} \operatorname{int}$
$\left(\left(\mathcal{E}_{1}, \mathcal{P}\right)\right)$, so $\tilde{s} S_{p} \operatorname{int}\left(\tilde{\sin } \operatorname{Sint}\left(\varepsilon_{1}, \mathcal{P}\right)\right)=\tilde{s} S_{p} \operatorname{int}\left(\mathcal{E}_{1}, \mathcal{P}\right)$. (2) The proof is similar of part (1).

Theorem 3.22. Let $\left(\varepsilon_{1}, \mathcal{P}\right) \subseteq(\tilde{X}, \tilde{\tau}, \mathcal{P})$. Then, $\tilde{s} S_{p} \operatorname{int}\left(\varepsilon_{1}, \mathcal{P}\right)=\left(\varepsilon_{1}, \mathcal{P}\right) \tilde{s} S_{p} D\left(\tilde{X} \widetilde{\}\left(\varepsilon_{1}, \mathcal{P}\right)\right)$.
Proof. Let $\widetilde{e_{x}} \tilde{\in} \tilde{s} S_{p} \operatorname{int}\left(\varepsilon_{1}, \mathcal{P}\right)$. Then, $\widetilde{e_{x}} \widetilde{\not} \tilde{s} S_{p} D$ $\left(\tilde{X} \widetilde{\}\left(\varepsilon_{1}, \mathcal{P}\right)\right) . \quad$ Since $\quad \tilde{s} S_{p} \operatorname{int}\left(\varepsilon_{1}, \mathcal{P}\right) \tilde{\epsilon} \tilde{S} S_{p} O(\tilde{X})$, $\tilde{s} S_{p} \operatorname{int}\left(\varepsilon_{1}, \mathcal{P}\right) \widetilde{\cap}\left(\tilde{X} \widetilde{ }\left(\varepsilon_{1}, \mathcal{P}\right)\right)=\widetilde{\emptyset}$, then $\widetilde{e_{x}} \widetilde{\in}$ $\left(\varepsilon_{1}, \mathcal{P}\right) \tilde{\widetilde{s}} S_{p} D\left(\tilde{X} \widetilde{\Upsilon}\left(\varepsilon_{1}, \mathcal{P}\right)\right), \quad$ so $\quad \tilde{s} S_{p} \operatorname{int}\left(\varepsilon_{1}, \mathcal{P}\right) \widetilde{\subseteq}$ $\left(\varepsilon_{1}, \mathcal{P}\right) \tilde{\bar{s}} S_{p} D\left(\tilde{X} \widetilde{\backslash}\left(\varepsilon_{1}, \mathcal{P}\right)\right)$.
On the other hand, if $\widetilde{e_{x}} \widetilde{\in}\left(\varepsilon_{1}, \mathcal{P}\right) \widetilde{\wedge} S_{p} D\left(\tilde{X} \widetilde{(}\left(\varepsilon_{1}, \mathcal{P}\right)\right)$, then $\widetilde{e_{x}} \widetilde{\not} \tilde{s} S_{p} D\left(\tilde{X} \widetilde{\backslash}\left(\mathcal{E}_{1}, \mathcal{P}\right)\right)$, so there exists $(W, \mathcal{P}) \widetilde{\in}$ $\tilde{S} S_{p} O(\tilde{X}) \quad$ containing $\quad \widetilde{e_{x}}$ such that $(W, \mathcal{P}) \tilde{\cap}$ $\left(\tilde{X} \tilde{\backslash}\left(\varepsilon_{1}, \mathcal{P}\right)\right)=\widetilde{\emptyset}$. That is, $\widetilde{e_{x}} \widetilde{\in}(W, \mathcal{P}) \widetilde{\subseteq}\left(\varepsilon_{1}, \mathcal{P}\right)$.

Hence, $\widetilde{e_{x}} \widetilde{\in} \tilde{s} S_{p} \operatorname{int}\left(\varepsilon_{1}, \mathcal{P}\right)$. Thus, $\left(\varepsilon_{1}, \mathcal{P}\right) \tilde{\sim} \tilde{s} S_{p} D$ $\left(\tilde{X} \widetilde{\backslash}\left(\varepsilon_{1}, \mathcal{P}\right)\right) \widetilde{\subseteq} \tilde{s}_{p} \operatorname{int}\left(\varepsilon_{1}, \mathcal{P}\right)$. Therefore, $\tilde{s} S_{p} \operatorname{int}\left(\mathcal{E}_{1}, \mathcal{P}\right)=\left(\mathcal{E}_{1}, \mathcal{P}\right) \tilde{\lceil } S_{p} D\left(\tilde{X} \widetilde{ }\left(\mathcal{E}_{1}, \mathcal{P}\right)\right)$.
Definition 3.23. The soft intersection of all soft $S_{p^{-}}$ closed sets in $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ containing (C, \mathcal{P}) is known as a soft S_{p}-closure of (C, \mathcal{P}) and is indicated by $\tilde{s} S_{p} c l(C, \mathcal{P})$, (i.e., $\tilde{s} S_{p} c l(C, \mathcal{P})=\widetilde{\cap}\{(D, \mathcal{P}):(D, \mathcal{P}) \widetilde{\epsilon}$ $\left.\left.\tilde{S} S_{p} C(\tilde{X}),(C, \mathcal{P}) \widetilde{\subseteq}(D, \mathcal{P})\right\}\right)$.
The following result contains some properties of soft S_{p}-closure:
Proposition 3.24. For any $\left(\mathcal{E}_{1}, \mathcal{P}\right)$, $\left(\mathcal{E}_{2}, \mathcal{P}\right) \widetilde{\subseteq}(\tilde{X}, \tilde{,}, \mathcal{P})$, the following conditions hold.
(1) $\tilde{s} S_{p} c l(\widetilde{\emptyset})=\widetilde{\emptyset}, \tilde{s} S_{p} c l(\tilde{X})=\tilde{X}$.
(2) $\tilde{s} S_{p} c l\left(\mathcal{E}_{1}, \mathcal{P}\right)$ is the smallest soft S_{p}-closed set containing $\left(\varepsilon_{1}, \mathcal{P}\right)$.
(3) $\left(\varepsilon_{1}, \mathcal{P}\right) \widetilde{\in} \tilde{S} S_{p} C(\tilde{X})$ iff $\left(\varepsilon_{1}, \mathcal{P}\right)=\tilde{s} S_{p} c l\left(\varepsilon_{1}, \mathcal{P}\right)$.
(4) $\tilde{s} S_{p} c l\left(\tilde{s} S_{p} c l\left(\varepsilon_{1}, \mathcal{P}\right)\right)=\tilde{s} S_{p} c l\left(\varepsilon_{1}, \mathcal{P}\right)$.
(5) $\tilde{s} S_{p} D\left(\mathcal{E}_{1}, \mathcal{P}\right) \subseteq \tilde{s} S_{p} \operatorname{cl}\left(\mathcal{E}_{1}, \mathcal{P}\right)$.
(6) If $\left(\varepsilon_{1}, \mathcal{P}\right) \widetilde{\subseteq}\left(\varepsilon_{2}, \mathcal{P}\right)$, then $\tilde{s} S_{p} c l\left(\varepsilon_{1}, \mathcal{P}\right) \widetilde{\subseteq} \tilde{s} S_{p} c l$ $\left(\mathcal{E}_{2}, \mathcal{P}\right)$.
(7) $\tilde{s} S_{p} c l\left(\left(\varepsilon_{1}, \mathcal{P}\right) \widetilde{\cap}\left(\varepsilon_{2}, \mathcal{P}\right)\right) \widetilde{\subseteq} S_{p} c l\left(\varepsilon_{1}, \mathcal{P}\right) \widetilde{\cap}$ $\tilde{s} S_{p} c l\left(\mathcal{E}_{2}, \mathcal{P}\right)$.
(8) $\tilde{s} S_{p} c l\left(\mathcal{E}_{1}, \mathcal{P}\right) \widetilde{\cup} \tilde{s} S_{p} c l\left(\mathcal{E}_{2}, \mathcal{P}\right) \widetilde{\subseteq} S_{p} \operatorname{cl}\left(\left(\varepsilon_{1}, \mathcal{P}\right) \widetilde{\mathrm{U}}\right.$ $\left.\left(\mathcal{E}_{2}, \mathcal{P}\right)\right)$.
Proof. Obvious.
In general, the opposite of parts (5), (6), (7) and (8) of Proposition 3.24 is not always true. As the next examples illustrates:
Example 3.25. In Example 3.10:
(1) Let $\left(C_{1}, \mathcal{P}\right)=\left\{\left(e_{1},\left\{x_{1}\right\}\right),\left(e_{2},\left\{x_{1}, x_{2}\right\}\right)\right\}$. Then, $\tilde{s} S_{p} D\left(C_{1}, \mathcal{P}\right)=\left\{\widetilde{e_{1_{x_{1}}}}, \widetilde{e_{1_{x_{2}}}}, \widetilde{e_{1_{x_{3}}}}, \widetilde{e_{2_{x_{2}}}}, \widetilde{e_{2_{x_{3}}}}\right\}=$
$\left\{\left(e_{1}, X\right),\left(e_{2},\left\{x_{2}, x_{3}\right\}\right)\right\}$ and $\tilde{s} S_{p} c l\left(C_{1}, \mathcal{P}\right)=\tilde{X}$. So, $\tilde{s} S_{p} c l\left(C_{1}, \mathcal{P}\right) \varsubsetneqq \tilde{s} S_{p} D\left(C_{1}, \mathcal{P}\right)$.
(2) Let $\left(C_{2}, \mathcal{P}\right)=\left\{\left(e_{1},\left\{x_{1}\right\}\right),\left(e_{2},\left\{x_{2}\right\}\right)\right\}$ and $\left(\mathcal{E}_{1}, \mathcal{P}\right)$ $=\left\{\left(e_{1},\left\{x_{2}\right\}\right),\left(e_{2},\left\{x_{1}\right\}\right)\right\}$. Then, $\quad \tilde{s} S_{p} c l\left(C_{2}, \mathcal{P}\right)=$ $\left(C_{2}, \mathcal{P}\right)$ and $\tilde{s} S_{p} c l\left(\varepsilon_{1}, \mathcal{P}\right)=\tilde{X}$, so $\tilde{s} S_{p} c l\left(C_{2}, \mathcal{P}\right)$ $\widetilde{\subseteq} \tilde{s} S_{p} c l\left(\varepsilon_{1}, \mathcal{P}\right)$ but $\left(C_{2}, \mathcal{P}\right) \varsubsetneqq\left(\varepsilon_{1}, \mathcal{P}\right)$.
(3) Let $\left(B_{5}, \mathcal{P}\right)=\left\{\left(e_{1},\left\{x_{3}\right\}\right),\left(e_{2},\left\{x_{1}, x_{2}\right\}\right)\right\} \quad$ and $\left(C_{3}, \mathcal{P}\right)=\left\{\left(e_{1},\left\{x_{2}, x_{3}\right\}\right),\left(e_{2},\left\{x_{2}\right\}\right)\right\}$. Then, $\tilde{s} S_{p} c l\left(B_{5}, \mathcal{P}\right)=\tilde{X}, \quad \tilde{s} S_{p} c l\left(C_{3}, \mathcal{P}\right)=\tilde{X}, \quad$ and \quad so $\tilde{s} S_{p} c l\left(B_{5}, \mathcal{P}\right) \tilde{\cap} \tilde{s} S_{p} c l\left(C_{3}, \mathcal{P}\right)=\tilde{X} . \quad$ But, $\quad\left(B_{5}, \mathcal{P}\right) \tilde{\cap}$ $\left(C_{3}, \mathcal{P}\right)=\left(C_{4}, \mathcal{P}\right)=\left\{\left(e_{1},\left\{x_{3}\right\}\right),\left(e_{2},\left\{x_{2}\right\}\right)\right\}, \quad$ so $\tilde{s} S_{p} c l\left(C_{4}, \mathcal{P}\right)=\left(C_{4}, \mathcal{P}\right)$. Thus, $\quad \tilde{s} S_{p} c l\left(B_{5}, \mathcal{P}\right) \widetilde{\cap}$ $\tilde{s} S_{p} c l\left(C_{3}, \mathcal{P}\right) \widetilde{\Phi} \tilde{s} S_{p} c l\left(\left(B_{5}, \mathcal{P}\right) \widetilde{\cap}\left(C_{3}, \mathcal{P}\right)\right)$.
Example 3.26. In Example 2.3, we have $\left(\mathcal{E}_{5}, \mathcal{P}\right)=$ $\left\{\left(e_{1},\left\{x_{1}\right\}\right),\left(e_{2},\left\{x_{2}\right\}\right)\right\} \quad$ and $\quad\left(\mathcal{E}_{6}, \mathcal{P}\right)=\left\{\left(e_{1},\left\{x_{2}\right\}\right)\right.$, $\left.\left(e_{2},\left\{x_{2}\right\}\right)\right\}$, then $\tilde{s} S_{p} c l\left(\mathcal{E}_{5}, \mathcal{P}\right)=\left(\varepsilon_{5}, \mathcal{P}\right)$ and $\tilde{s} S_{p} c l\left(\mathcal{E}_{6}, \mathcal{P}\right)=\left(\mathcal{E}_{6}, \mathcal{P}\right)$. So, $\quad \tilde{s} S_{p} c l\left(\mathcal{E}_{5}, \mathcal{P}\right) \widetilde{\sim} \tilde{s} S_{p} c l$ $\left(\mathcal{E}_{6}, \mathcal{P}\right)=\left(\mathcal{E}_{7}, \mathcal{P}\right)=\left\{\left(e_{1}, X\right),\left(e_{2},\left\{x_{2}\right\}\right)\right\}$ and $\tilde{s} S_{p} c l($ $\left.\left(\varepsilon_{5}, \mathcal{P}\right) \widetilde{\cup}\left(\varepsilon_{6}, \mathcal{P}\right)\right)=\tilde{s} S_{p} c l\left(\varepsilon_{7}, \mathcal{P}\right)=\tilde{X}$. Thus, $\tilde{s} S_{p} c l$ $\left(\left(\varepsilon_{5}, \mathcal{P}\right) \widetilde{\cup}\left(\varepsilon_{6}, \mathcal{P}\right)\right) \llbracket \tilde{s} S_{p} c l\left(\varepsilon_{5}, \mathcal{P}\right) \widetilde{\cup} \tilde{s} S_{p} c l\left(\varepsilon_{6}, \mathcal{P}\right)$.
Proposition 3.27. Let $(C, \mathcal{P}) \widetilde{\subseteq}(\tilde{X}, \tilde{\tau}, \mathcal{P})$. Then, $\widetilde{e_{x}} \widetilde{\in} \tilde{s} S_{p} c l(C, \mathcal{P})$ iff $\forall(\mathcal{E}, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} O(\tilde{X})$ containing $\widetilde{e_{x}},(\mathcal{E}, \mathcal{P}) \widetilde{\cap}(C, \mathcal{P}) \neq \widetilde{\emptyset}$.

Proof. Let $\widetilde{e_{x}} \tilde{\in} \tilde{s} S_{p} c l(C, \mathcal{P})$ and suppose that $(\mathcal{E}, \mathcal{P}) \widetilde{\cap}(C, \mathcal{P})=\widetilde{\emptyset}$, for some $(\mathcal{E}, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} O(\tilde{X})$ containing $\tilde{e_{x}}$. Then, $\tilde{X} \tilde{\backslash}(\mathcal{E}, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} C(\tilde{X})$ and $(C, \mathcal{P}) \widetilde{\subseteq} \tilde{X} \widetilde{\}(\mathcal{E}, \mathcal{P}), \quad$ so by Proposition 3.24(2), $\left.\tilde{s} S_{p} c l(C, \mathcal{P}) \widetilde{\subseteq} \tilde{X} \widetilde{(\mathcal{E}}, \mathcal{P}\right)$. This implies that $\tilde{e_{x}} \widetilde{\in} \tilde{X} \tilde{\backslash}(\mathcal{E}, \mathcal{P})$, which is contradiction. Therefore, $(\mathcal{E}, \mathcal{P}) \widetilde{\cap}(C, \mathcal{P}) \neq \widetilde{\emptyset}$.
Conversely, let $(\mathcal{E}, \mathcal{P}) \widetilde{\cap}(C, \mathcal{P}) \neq \widetilde{\emptyset}, \quad \forall(\mathcal{E}, \mathcal{P}) \widetilde{\epsilon}$ $\tilde{S} S_{p} O(\tilde{X})$ containing $\widetilde{e_{x}}$. If $\widetilde{e_{x}} \widetilde{\notin} \tilde{s} S_{p} c l(C, \mathcal{P})$, then by Definition 3.23 , there exists $(D, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} C(\tilde{X})$ such that $(C, \mathcal{P}) \widetilde{\subseteq}(D, \mathcal{P})$ but $\widetilde{e_{x}} \widetilde{\not}(D, \mathcal{P})$. Thus, $\tilde{X} \tilde{\backslash}(D, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} O(\tilde{X})$ such that $\widetilde{e_{x}} \widetilde{\in} \tilde{X} \widetilde{\backslash}(D, \mathcal{P})$ and therefore, $\tilde{X} \tilde{\bar{\wedge}}(D, \mathcal{P}) \widetilde{\cap}(C, \mathcal{P})=\widetilde{\emptyset}$, which is a contradiction. Thus, $\widetilde{e_{x}} \widetilde{\in} \tilde{s} S_{p} c l(C, \mathcal{P})$.
Corollary 3.28. Let $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ be a $\tilde{S} T S$ and (C, \mathcal{P}) $\widetilde{\subseteq}(\tilde{X}, \tilde{\tau}, \mathcal{P})$ and $\widetilde{e_{x}} \tilde{\in} \tilde{S} P(\tilde{X})$. If $(W, \mathcal{P}) \widetilde{\cap}(C, \mathcal{P}) \neq \widetilde{\emptyset}$, $\forall(W, \mathcal{P}) \widetilde{\in} \tilde{S} P C(\tilde{X})$ such that $\widetilde{e_{x}} \widetilde{\in}(W, \mathcal{P})$, then $\widetilde{e_{x}} \tilde{\in} \tilde{s} S_{p} c l(C, \mathcal{P})$.
Proof. Let $(\mathcal{E}, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} O(\tilde{X})$ containing $\widetilde{e_{x}}$. Then, there is $(W, \mathcal{P}) \widetilde{\in} \tilde{S} P C(\tilde{X})$ such that $\widetilde{e_{x}} \widetilde{\in}(W, \mathcal{P}) \widetilde{\subseteq}$ $(\mathcal{E}, \mathcal{P})$. By hypothesis, $(W, \mathcal{P}) \widetilde{\cap}(C, \mathcal{P}) \neq \widetilde{\emptyset}$ so, $(\mathcal{E}, \mathcal{P}) \widetilde{\cap}(C, \mathcal{P}) \neq \widetilde{\emptyset}$. Therefore, by Proposition 3.27, $\widetilde{e_{x}} \tilde{\mathcal{E}} \tilde{S} S_{p} c l(C, \mathcal{P})$.
Proposition 3.29. Let $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ be a $\tilde{S} T S$ and $(C, \mathcal{P}) \widetilde{\subseteq}(\tilde{X}, \tilde{\tau}, \mathcal{P})$. Then, $\quad \tilde{s} S_{p} c l(C, \mathcal{P})=(C, \mathcal{P}) \widetilde{U}$ $\tilde{s} S_{p} D(C, \mathcal{P})$.
Proof. By Proposition 3.24(5), $\tilde{s} S_{p} D(C, \mathcal{P}) \widetilde{\subseteq}$ $\tilde{s} S_{p} c l(C, \mathcal{P})$ and $(C, \mathcal{P}) \widetilde{\subseteq} \tilde{s} S_{p} c l(C, \mathcal{P})$, then $(C, \mathcal{P}) \widetilde{\cup}$ $\tilde{s} S_{p} D(C, \mathcal{P}) \simeq \tilde{\subseteq} S_{p} c l(C, \mathcal{P})$.

On the other hand, by Proposition 3.24(2), $\tilde{s} S_{p} c l(C, \mathcal{P})$ is the smallest soft S_{p}-closed set containing (C, \mathcal{P}) and by Theorem 3.11(1), $(C, \mathcal{P}) \widetilde{\cup} \tilde{s} S_{p} D(C, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} C(\tilde{X})$, so $\tilde{s} S_{p} c l(C, \mathcal{P}) \widetilde{\subseteq}$ $(C, \mathcal{P}) \widetilde{\cup} \tilde{s} S_{p} D(C, \mathcal{P})$. Thus, $\tilde{s} S_{p} c l(C, \mathcal{P})=(C, \mathcal{P}) \widetilde{\mathrm{U}}$ $\tilde{s} S_{p} D(C, \mathcal{P})$.
Proposition 3.30. For any $(C, \mathcal{P}) \widetilde{\subseteq}(\tilde{X}, \tilde{\tau}, \mathcal{P})$. The following statements are true:
(1) $\tilde{X} \widetilde{\tilde{s}} S_{p} \operatorname{int}(C, \mathcal{P})=\tilde{s} S_{p} c l(\tilde{X} \widetilde{\backslash}(C, \mathcal{P}))$.
(2) $\tilde{X} \widetilde{\sim} \tilde{s} S_{p} c l(C, \mathcal{P})=\tilde{s} S_{p} \operatorname{int}(\tilde{X} \tilde{\}(C, \mathcal{P}))$.
(3) $\tilde{s} S_{p} \operatorname{int}(C, \mathcal{P})=\tilde{X} \widetilde{\widetilde{s}} S_{p} c l(\tilde{X} \tilde{\backslash}(C, \mathcal{P}))$.
(4) $\tilde{s} S_{p} c l(C, \mathcal{P})=\tilde{X} \widetilde{S} S_{p} \operatorname{int}(\tilde{X} \widetilde{\lceil }(C, \mathcal{P}))$.

Proof. (1) $\widetilde{e_{x}} \tilde{\in} \tilde{X} \backslash \tilde{s} S_{p}$ int $(C, \mathcal{P}) \leftrightarrow \quad \widetilde{e_{x}} \mathbb{\oplus} \tilde{s} S_{p}$ int $(C, \mathcal{P}) \leftrightarrow \forall(W, \mathcal{P}) \tilde{\in} \tilde{S} S_{p} O(\tilde{X})$, with $\widetilde{e_{x}} \tilde{\epsilon}(W, \mathcal{P})$, $(W, \mathcal{P}) \widetilde{\mp}(C, \mathcal{P}) \leftrightarrow \quad$ By Proposition 3.27, $(W, \mathcal{P}) \widetilde{\cap}(\tilde{X} \widetilde{\widetilde{P}}(C, \mathcal{P})) \neq \widetilde{\emptyset}, \quad \forall(W, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} O(\tilde{X})$ with $\widetilde{e_{x}} \widetilde{\in}(W, \mathcal{P}) \leftrightarrow \widetilde{e_{x}} \widetilde{\in} \tilde{s} S_{p} c l(\tilde{X} \widetilde{\}(C, \mathcal{P}))$.
(2) $\widetilde{e_{x}} \widetilde{\in} \tilde{X} \widetilde{s} S_{p} c l(C, \mathcal{P}) \leftrightarrow \widetilde{e_{x}} \widetilde{\not} \tilde{s} S_{p} c l(C, \mathcal{P}) \leftrightarrow$ $(W, \mathcal{P}) \widetilde{\cap}(C, \mathcal{P})=\widetilde{\emptyset}, \quad \exists(W, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} O(\tilde{X})$ containing $\tilde{e_{x}} \leftrightarrow \tilde{e_{x}} \tilde{\in}(W, \mathcal{P}) \widetilde{\subseteq} \tilde{X} \widetilde{(}(C, \mathcal{P}) \leftrightarrow$ $\widetilde{e_{x}} \widetilde{\in} \tilde{s} S_{p} \operatorname{int}(\tilde{X} \widetilde{\backslash}(C, \mathcal{P}))$.
(3) By part (2), $\tilde{X} \widetilde{\Gamma} S_{p} c l(\tilde{X} \widetilde{\lceil }(C, \mathcal{P}))=$ $\tilde{s} S_{p} \operatorname{int}(\tilde{X} \tilde{\backslash}(\tilde{X} \widetilde{\backslash}(C, \mathcal{P})))=\tilde{s} S_{p} \operatorname{int}(C, \mathcal{P})$.
(4) By part (1), $\tilde{X} \widetilde{\Gamma} \tilde{S} S_{p} \operatorname{int}(\tilde{X} \tilde{\lceil }(C, \mathcal{P}))=$ $\tilde{s} S_{p} c l(\tilde{X} \tilde{\backslash}(\tilde{X} \widetilde{\backslash}(C, \mathcal{P})))=\tilde{s} S_{p} c l(C, \mathcal{P})$.
Proposition 3.31. For any $(C, \mathcal{P}) \widetilde{\subseteq}(\tilde{X}, \tilde{\tau}, \mathcal{P})$, we have $\tilde{s} \operatorname{scl}(C, \mathcal{P}) \widetilde{\subseteq} \tilde{s}_{p} c l(C, \mathcal{P})$.
Proof. Let $\widetilde{e_{x}} \widetilde{\in} \tilde{\operatorname{sccl}}(C, \mathcal{P})$ and $\widetilde{e_{x}} \widetilde{\in}(W, \mathcal{P}) \widetilde{\epsilon}$ $\tilde{S} S_{p} O(\tilde{X})$. Then, $(W, \mathcal{P}) \widetilde{\in} \tilde{S} S O(\tilde{X})$ and so $(W, \mathcal{P}) \widetilde{\cap}$ $(C, \mathcal{P}) \neq \widetilde{\emptyset}$. By Proposition 3.27, $\widetilde{e_{x}} \widetilde{\in} \tilde{s} S_{p} c l(C, \mathcal{P})$. Thus, $\tilde{s} \operatorname{scl}(C, \mathcal{P}) \widetilde{\subseteq} \tilde{s} S_{p} c l(C, \mathcal{P})$.

In general, the opposite of Proposition 3.31 is not always true. As the next examples illustrates:
Example 3.32. In Example 2.3, we have $\left(\varepsilon_{14}, \mathcal{P}\right)=$ $\left\{\left(e_{1}, \varnothing\right),\left(e_{2},\left\{x_{1}\right\}\right)\right\}$, then $\tilde{\sin } \operatorname{scl}\left(\varepsilon_{14}, \mathcal{P}\right)=\left(\varepsilon_{14}, \mathcal{P}\right)$ and $\tilde{s} S_{p} c l\left(\mathcal{E}_{14}, \mathcal{P}\right)=\tilde{X} . \quad$ Thus, $\quad \tilde{s} S_{p} c l\left(\varepsilon_{14}, \mathcal{P}\right) \varsubsetneqq$ $\tilde{\operatorname{sincl}}\left(\varepsilon_{14}, \mathcal{P}\right)$.
Proposition 3.33. Let $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ be a $\tilde{S} T S$ and $(C, \mathcal{P}) \widetilde{\subseteq}(\tilde{X}, \tilde{\tau}, \mathcal{P})$. Then, $\quad \tilde{s} \theta \operatorname{int}(C, \mathcal{P}) \widetilde{\subseteq} \tilde{s}_{c}$ int $(C, \mathcal{P}) \widetilde{\subseteq} S_{p} \operatorname{int}(C, \mathcal{P}) \simeq \tilde{\sin } \operatorname{sint}(C, \mathcal{P}) \widetilde{\subseteq}(C, \mathcal{P}) \widetilde{\subseteq}$ $\tilde{s} \operatorname{scl}(C, \mathcal{P}) \widetilde{\subseteq} S_{p} c l(C, \mathcal{P}) \subseteq \tilde{s} S_{c} c l(C, \mathcal{P}) \widetilde{ } \subseteq \tilde{s} \theta c l(C, \mathcal{P})$.
Proof. Obvious.
Proposition 3.34. Let $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ be a $\tilde{S} T S$ and $\left(\varepsilon_{1}, \mathcal{P}\right) \widetilde{\subseteq}(\tilde{X}, \tilde{\tau}, \mathcal{P})$. If $\left(\varepsilon_{1}, \mathcal{P}\right) \widetilde{\in} \tilde{S} S_{p} O(\tilde{X})$, then $\tilde{s} \operatorname{s} \theta c l\left(\varepsilon_{1}, \mathcal{P}\right)=\tilde{s} \operatorname{scl}\left(\varepsilon_{1}, \mathcal{P}\right) \widetilde{\subseteq} \tilde{s} S_{p} \operatorname{cl}\left(\mathcal{E}_{1}, \mathcal{P}\right)$, where $\tilde{s} \operatorname{s} \theta c l\left(\varepsilon_{1}, \mathcal{P}\right)$ is soft semi- θ-closure of $\left(\mathcal{E}_{1}, \mathcal{P}\right)$.
Proof. Since $\left(\varepsilon_{1}, \mathcal{P}\right) \tilde{\in} \tilde{S} S_{p} O(\tilde{X})$, then $\left(\varepsilon_{1}, \mathcal{P}\right) \tilde{\in}$ $\tilde{S} S O(\tilde{X})$, so by Proposition 1.12(4), $\tilde{s} \operatorname{s} \theta c l\left(\mathcal{E}_{1}, \mathcal{P}\right)=$ $\tilde{\operatorname{scc}}\left(\mathcal{E}_{1}, \mathcal{P}\right)$ and by Proposition 3.31, $\tilde{\operatorname{sscl}}\left(\mathcal{E}_{1}, \mathcal{P}\right)$ $\cong \tilde{s} S_{p} c l\left(\mathcal{E}_{1}, \mathcal{P}\right)$. Therefore, $\quad \tilde{s} s \theta c l\left(\mathcal{E}_{1}, \mathcal{P}\right)=$ $\tilde{\operatorname{sincl}}\left(\mathcal{E}_{1}, \mathcal{P}\right) \widetilde{\subseteq} \tilde{s} S_{p} c l\left(\varepsilon_{1}, \mathcal{P}\right)$.
Proposition 3.35. Let $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ be a $\tilde{S} T S$ and $(C, \mathcal{P}) \widetilde{\subseteq}(\tilde{X}, \tilde{\tau}, \mathcal{P})$. If $(C, \mathcal{P}) \widetilde{\in} \tilde{S} P O(\tilde{X})$, then $\tilde{s} S_{p} c l(C, \mathcal{P})=\tilde{s} s c l(C, \mathcal{P})=\tilde{\operatorname{sint}}(\tilde{s} c l(C, \mathcal{P}))$.
Proof. By Proposition 3.31, we have $\tilde{s} s c l(C, \mathcal{P}) \widetilde{\subseteq} \tilde{s} S_{p} c l(C, \mathcal{P})$. So, it remains to prove that $\tilde{s} S_{p} c l(C, \mathcal{P}) \simeq \tilde{s} s c l(C, \mathcal{P})$. Let $\widetilde{e_{x}} \tilde{\notin} \tilde{s c l}(C, \mathcal{P})$ Then, there exists $(W, \mathcal{P}) \widetilde{\in} \tilde{S} S O(\tilde{X})$ containing $\widetilde{e_{x}}$ such that $(W, \mathcal{P}) \widetilde{\cap}(C, \mathcal{P})=\widetilde{\emptyset}$ and hence, $\tilde{s} c l(\tilde{s i n t}(W, \mathcal{P})) \widetilde{\cap} \operatorname{sint}(\tilde{s} c l(C, \mathcal{P}))=\widetilde{\emptyset}$. Since $(W, \mathcal{P}) \tilde{\in} \tilde{S} S O(\tilde{X}), \quad$ then by Lemma 1.11(1), $\tilde{\operatorname{s} c l}(W, \mathcal{P})=\tilde{\operatorname{s}} \operatorname{cl}(\tilde{\sin } \operatorname{int}(W, \mathcal{P}))$ and $(C, \mathcal{P}) \subseteq \tilde{\operatorname{sint}}($ $\tilde{s} c l(C, \mathcal{P}))$, so $\tilde{s} c l(W, \mathcal{P}) \widetilde{\cap}(C, \mathcal{P})=\widetilde{\emptyset}$, by Lemma 1.18(2), $\quad \tilde{s} c l(W, \mathcal{P}) \tilde{\in} \tilde{S} S_{p} O(\tilde{X}) \quad$ containing $\quad \widetilde{e_{x}}$. Therefore, by Proposition 3.27, $\widetilde{e_{x}} \widetilde{\not} \tilde{s} S_{p} c l(C, \mathcal{P})$. Thus, $\tilde{s} S_{p} c l(C, \mathcal{P})=\tilde{s} s c l(C, \mathcal{P})$.
For the second part, by Proposition 1.12(3), we have $\tilde{s} s c l(C, \mathcal{P})=\operatorname{sint}(\tilde{s} c l(C, \mathcal{P}))$. Hence, $\tilde{s} S_{p} \operatorname{cl}(C, \mathcal{P})=$ $\tilde{\operatorname{sicl}}(C, \mathcal{P})=\tilde{\operatorname{sint}}(\tilde{\operatorname{sicl}}(C, \mathcal{P}))$.
Corollary 3.36. If $(C, \mathcal{P}) \tilde{\in} \tilde{S} P C(\tilde{X})$, then $\tilde{s} S_{p} \operatorname{int}(C, \mathcal{P})=\tilde{s} \operatorname{sint}(C, \mathcal{P})=\tilde{s} \operatorname{cl}(\tilde{\operatorname{sint}}(C, \mathcal{P}))$.
Proof. This follows from the use of soft complements and Propositions 3.35 and 3.30(2).
Proposition 3.37. Let $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ be $\tilde{S} E D$ and $(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq} \tilde{X}$. If $(\mathcal{E}, \mathcal{P}) \widetilde{\epsilon} \tilde{S} S_{p} O(\tilde{X})$, then $\tilde{S} S_{p} c l(\mathcal{E}, \mathcal{P}) \widetilde{\epsilon}$ $\tilde{S} R O(\tilde{X}) \cap \tilde{S} R C(\tilde{X})$.

https://doi.org/10.25130/tips.v29i2.1547

Proof. Since $(\mathcal{E}, \mathcal{P}) \tilde{\in} \tilde{S} S_{p} O(\tilde{X})$, then by Proposition $1.9(2),(\mathcal{E}, \mathcal{P}) \widetilde{\in} \tilde{S} P O(\tilde{X})$. Hence, by Proposition 3.35 and Proposition 1.9(1), we have $\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P})=$ $\tilde{\operatorname{sint}}(\tilde{\operatorname{sicl}}(\mathcal{E}, \mathcal{P}))=\tilde{\operatorname{sicl}}(\tilde{\sin }(\mathcal{E}, \mathcal{P}))$.
Proposition 3.38. Let $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ be $\tilde{S} E D$ and $(\mathcal{E}, \mathcal{P}),(C, \mathcal{P}) \widetilde{\subseteq} \tilde{X}$. Then,:
(1) $\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P})=\tilde{s} \operatorname{scl}(\mathcal{E}, \mathcal{P})=\tilde{s} c l(\mathcal{E}, \mathcal{P})$, if $(\mathcal{E}, \mathcal{P})$ $\tilde{\in} \tilde{S} S_{p} O(\tilde{X})$.
(2) $\tilde{\operatorname{s}} S_{p} \operatorname{int}(C, \mathcal{P})=\tilde{\operatorname{sinint}}(C, \mathcal{P})=\tilde{\operatorname{sint}}(C, \mathcal{P})$, if $(C, \mathcal{P}) \tilde{\in} \tilde{S} S_{p} C(\tilde{X})$.
Proof. (1) Since $(\mathcal{E}, \mathcal{P}) \tilde{\in} \tilde{S} S_{p} O(\tilde{X})$, then by Proposition 1.9(2), $(\mathcal{E}, \mathcal{P}) \widetilde{\in} \tilde{S} P O(\tilde{X})$. Hence, by Proposition 3.35 and Lemma 1.19(1), we have $\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P})=\tilde{s} \operatorname{scl}(\mathcal{E}, \mathcal{P})=\tilde{s} c l(\mathcal{E}, \mathcal{P})$.
(2) Since $(C, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} C(\tilde{X})$, then by Proposition 2.8 , $(C, \mathcal{P}) \tilde{\in} \tilde{S} P C(\tilde{X})$. Hence, by Corollary 3.36 and Lemma 2.12(1), we have $\tilde{s} S_{p} \operatorname{int}(C, \mathcal{P})=$ $\tilde{s} \operatorname{sint}(C, \mathcal{P})=\tilde{\sin } \operatorname{t}(C, \mathcal{P})$.
Proposition 3.39. Let $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ be $\tilde{S} E D$ and $(\mathcal{E}, \mathcal{P}),(C, \mathcal{P}) \widetilde{\subseteq} \tilde{X}$. Then:
(1) $\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P})=\tilde{s} \operatorname{scl}(\mathcal{E}, \mathcal{P})=\tilde{s} c l(\mathcal{E}, \mathcal{P})=$ $\tilde{\sin } \operatorname{cl}(\mathcal{E}, \mathcal{P})=\tilde{\sin p l}(\mathcal{E}, \mathcal{P})=\tilde{\sin \beta c l}(\mathcal{E}, \mathcal{P})=$ $\tilde{s} \alpha c l(\mathcal{E}, \mathcal{P})$, if $(\mathcal{E}, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} O(\tilde{X})$.
(2) $\tilde{\operatorname{s}} S_{p} \operatorname{int}(C, \mathcal{P})=\tilde{\sin } \operatorname{sint}(C, \mathcal{P})=\tilde{\operatorname{sint}}(C, \mathcal{P})=$ $\tilde{s} \operatorname{bint}(C, \mathcal{P})=\tilde{\operatorname{sinint}}(C, \mathcal{P})=\tilde{s} \beta \operatorname{int}(C, \mathcal{P})=$ $\tilde{s} \alpha \operatorname{int}(C, \mathcal{P})$, if $(C, \mathcal{P}) \tilde{\in} \tilde{S} S_{p} C(\tilde{X})$.
Proof. (1) Since $(\mathcal{E}, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} O(\tilde{X})$, then by Proposition $1.9(2)$, $(\mathcal{E}, \mathcal{P}) \tilde{\in} \tilde{S} P O(\tilde{X})$. Hence, by Proposition 3.35 and Lemma 1.19(2), $\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P})=$ $\tilde{\operatorname{sccl}}(\mathcal{E}, \mathcal{P})=\tilde{\operatorname{s} c l}(\mathcal{E}, \mathcal{P})=\tilde{\sin } \operatorname{cl}(\mathcal{E}, \mathcal{P})=$
$\tilde{s} p c l(\mathcal{E}, \mathcal{P})=\tilde{s} \beta c l(\mathcal{E}, \mathcal{P})=\tilde{s} \alpha c l(\mathcal{E}, \mathcal{P})$.
(2) Since $(C, \mathcal{P}) \tilde{\in} \tilde{S} S_{p} C(\tilde{X})$, then by Proposition 2.8 , $(C, \mathcal{P}) \widetilde{\in} \tilde{S} P C(\tilde{X})$. Hence, by Corollary 3.36 and Lemma $\quad 2.12(2), \quad \tilde{s} S_{p} \operatorname{int}(C, \mathcal{P})=\tilde{s} \operatorname{sint}(C, \mathcal{P})=$ $\tilde{\operatorname{sint}}(C, \mathcal{P})=\tilde{\operatorname{sinint}}(C, \mathcal{P})=\tilde{\operatorname{spint}}(C, \mathcal{P})=$ $\tilde{s} \beta \operatorname{int}(C, \mathcal{P})=\tilde{\operatorname{s} \alpha i n t}(C, \mathcal{P})$.
Proposition 3.40. Let $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ be a $\tilde{S} T S$, $(\mathcal{E}, \mathcal{P}) \widetilde{\in} \tilde{S} C O(\tilde{X})$ and $(W, \mathcal{P}) \widetilde{\subseteq}(\tilde{X}, \tilde{\tau}, \mathcal{P})$. Then,:
(1) $(\mathcal{E}, \mathcal{P}) \widetilde{\cap} \tilde{s} S_{p} c l(W, \mathcal{P}) \simeq \tilde{s} S_{p} c l((\mathcal{E}, \mathcal{P}) \widetilde{\cap}$ $(W, \mathcal{P}))$.
(2) $\tilde{s} S_{p} \operatorname{int}((\mathcal{E}, \mathcal{P}) \widetilde{\cap}(W, \mathcal{P})) \widetilde{\subseteq}(\mathcal{E}, \mathcal{P}) \widetilde{\cap} \tilde{s} S_{p}$ int (W, \mathcal{P}).
Proof. (1) Let $\widetilde{e_{x}} \widetilde{\in}(\mathcal{E}, \mathcal{P}) \widetilde{\cap} \tilde{s} S_{p} c l(W, \mathcal{P})$. Then, $\widetilde{e_{x}} \widetilde{\in}(\mathcal{E}, \mathcal{P})$ and $\widetilde{e_{x}} \widetilde{\operatorname{\epsilon }} \tilde{s} S_{p} c l(W, \mathcal{P})$. So, $\forall(G, \mathcal{P}) \widetilde{\epsilon}$ $\tilde{S} S_{p} O(\tilde{X})$ containing $\widetilde{e_{x}}$, we have $(G, \mathcal{P}) \widetilde{\cap}(W, \mathcal{P}) \neq$ $\widetilde{\emptyset}$. By Proposition $1.20,(G, \mathcal{P}) \widetilde{\cap}(\mathcal{E}, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} O(\tilde{X})$ and $\widetilde{e_{x}} \widetilde{\in}(G, \mathcal{P}) \widetilde{\cap}(\mathcal{E}, \mathcal{P})$. This implies that $((G, \mathcal{P}) \widetilde{\cap}(\mathcal{E}, \mathcal{P})) \widetilde{\cap}(W, \mathcal{P}) \neq \widetilde{\emptyset}$. Now, $\quad(G, \mathcal{P}) \widetilde{\cap}$ $((\mathcal{E}, \mathcal{P}) \widetilde{\cap}(W, \mathcal{P})) \neq \widetilde{\emptyset}$ and by Proposition 3.27, $\widetilde{e_{x}} \widetilde{\in} \tilde{s} S_{p} c l((\mathcal{E}, \mathcal{P}) \widetilde{\cap}(W, \mathcal{P}))$. Thus, $\quad(\mathcal{E}, \mathcal{P}) \widetilde{\cap}$ $\tilde{s} S_{p} c l(W, \mathcal{P}) \widetilde{\subseteq} \tilde{s} S_{p} c l((\mathcal{E}, \mathcal{P}) \widetilde{\cap}(W, \mathcal{P}))$.
(2) Part (1) and Proposition 3.30 provide the proof.

Proposition 3.41. Let $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ be a $\tilde{S} T S$ and $(\mathcal{E}, \mathcal{P}),(W, \mathcal{P}) \widetilde{\subseteq}(\tilde{X}, \tilde{\tau}, \mathcal{P})$. If $(\mathcal{E}, \mathcal{P}) \widetilde{\in} \tilde{S} \alpha O(\tilde{X})$ or
$(\mathcal{E}, \mathcal{P}) \tilde{\in} \tilde{\tau}$ and $(W, \mathcal{P}) \tilde{\in} \tilde{S} P O(\tilde{X})$, then $\tilde{s} S_{p} c l$ $((\mathcal{E}, \mathcal{P}) \widetilde{\cap}(W, \mathcal{P}))=\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P}) \widetilde{\cap} \tilde{s} S_{p} c l(W, \mathcal{P})$.
Proof. Let $(\mathcal{E}, \mathcal{P}) \widetilde{\in} \tilde{S} \alpha O(\tilde{X})$ or $(\mathcal{E}, \mathcal{P}) \widetilde{\in} \tilde{\tau}$ and $(W, \mathcal{P}) \widetilde{\in} \tilde{S} P O(\tilde{X})$. Then, by Proposition $1.10(1)$ or Proposition $1.10(2), \quad(\mathcal{E}, \mathcal{P}) \widetilde{\cap}(W, \mathcal{P}) \widetilde{\in} \tilde{S} P O(\tilde{X})$. Since $\tilde{S} \alpha O(\tilde{X}) \subseteq \tilde{S} P O(\tilde{X})$ or $\tilde{\tau} \simeq \tilde{S} P O(\tilde{X})$, then $(\mathcal{E}, \mathcal{P}) \widetilde{\in} \tilde{S} P O(\tilde{X})$. So, $(\mathcal{E}, \mathcal{P}),(W, \mathcal{P})$, and $(\mathcal{E}, \mathcal{P}) \widetilde{\cap}$ $(W, \mathcal{P}) \tilde{\in} \tilde{S} P O(\tilde{X})$. By Proposition 3.35, $\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P})=\tilde{\operatorname{sint}}(\tilde{\sin } \mathrm{Cl}(\mathcal{E}, \mathcal{P})), \quad \tilde{s} S_{p} c l(W, \mathcal{P})=$ $\tilde{\operatorname{sint}}(\tilde{\operatorname{s} c l}(W, \mathcal{P})), \quad$ and $\quad \tilde{s} S_{p} c l((\mathcal{E}, \mathcal{P}) \widetilde{\cap}(W, \mathcal{P}))=$ $\tilde{\operatorname{sint}}(\tilde{s} c l((\mathcal{E}, \mathcal{P}) \widetilde{\cap}(W, \mathcal{P})))$. Also, $\tilde{\tau} \simeq \tilde{S} \alpha O(\tilde{X}) \widetilde{\subseteq}$ $\tilde{S} S O(\tilde{X})$, so $(\mathcal{E}, \mathcal{P}) \widetilde{\in} \tilde{S} S O(\tilde{X})$. By Lemma 1.11(2), $\tilde{\operatorname{sint}}(\tilde{\operatorname{sicl}}((\mathcal{E}, \mathcal{P}) \widetilde{\cap}(W, \mathcal{P})))=\tilde{\operatorname{sint}}(\tilde{\sin }(\mathcal{E}, \mathcal{P})) \widetilde{\cap}$
$\tilde{\operatorname{sint}}(\tilde{s} c l(W, \mathcal{P}))$. Hence by Proposition 3.35, $\tilde{s} S_{p} c l$ $((\mathcal{E}, \mathcal{P}) \widetilde{\cap}(W, \mathcal{P}))=\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P}) \widetilde{\cap} \tilde{s} S_{p} c l(W, \mathcal{P})$.
Note: Let $\left(\tilde{Z}, \tilde{\tau}_{\tilde{Z}}, \mathcal{P}\right)$ be a soft subspace of a $\tilde{S} T S$ $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ and $(\mathcal{E}, \mathcal{P}) \subseteq \tilde{Z}$. Then, $\tilde{s} S_{p} c l_{\tilde{Z}}(\mathcal{E}, \mathcal{P})$ and $\tilde{s} S_{p}$ int $_{\tilde{Z}}(\mathcal{E}, \mathcal{P})$ mean the soft S_{p}-closure and soft $S_{p^{-}}$ interior of $(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq} \tilde{Z}$.
Now, we have the following results:
Proposition 3.42. Let $\left(\tilde{Z}, \tilde{\tau}_{\tilde{Z}}, \mathcal{P}\right)$ be a soft subspace of $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ and $(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq} \tilde{Z}$. Then,:
(1) $\tilde{s} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq} \tilde{s} S_{p} \operatorname{int}_{\tilde{Z}}(\mathcal{E}, \mathcal{P})$, if $\tilde{Z} \widetilde{\in} \tilde{S} S O(\tilde{X})$ (resp., $\tilde{S} \alpha O(\tilde{X}), \tilde{\tau}, \tilde{S} S_{p} O(\tilde{X}), \tilde{S} C O(\tilde{X})$, and $\tilde{S} R C(\tilde{X})$). (2) $\tilde{s} S_{p} c l_{\tilde{Z}}(\mathcal{E}, \mathcal{P}) \subseteq \tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P})$, if $\tilde{Z} \tilde{\in} \tilde{\tau} \quad$ (resp., $\tilde{S} C O(\tilde{X}))$.
Proof. (1) Let $\widetilde{e_{x}} \tilde{\in} \tilde{s} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P})$. Then, there exists $(W, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} O(\tilde{X})$ such that $\widetilde{e_{x}} \widetilde{\in}(W, \mathcal{P}) \widetilde{\subseteq}(\mathcal{E}, \mathcal{P})$. Since $\tilde{Z} \tilde{\in} \tilde{S} S O(\tilde{X})$ (resp., $\tilde{S} \alpha O(\tilde{X}), \tilde{\tau}, \tilde{S} S_{p} O(\tilde{X})$, $\tilde{S} C O(\tilde{X})$, and $\tilde{S} R C(\tilde{X}))$, then by Proposition 1.13(1) (resp., Proposition 1.13(2), and Proposition 1.14(2)), $(W, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} O(\tilde{Z})$ such that $\widetilde{e_{x}} \widetilde{\in}(W, \mathcal{P}) \widetilde{\subseteq}(\mathcal{E}, \mathcal{P})$. Therefore, $\widetilde{e_{x}} \tilde{\in} \tilde{s} S_{p} \operatorname{int}_{\tilde{Z}}(\mathcal{E}, \mathcal{P})$. Thus, $\tilde{s} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P})$ $\widetilde{\subseteq} \tilde{s} S_{p} i n t_{\tilde{Z}}(\mathcal{E}, \mathcal{P})$.
(2) Let $\widetilde{e_{x}} \widetilde{\not} \tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P})$. Then, there exists $(W, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} O(\tilde{X})$ such that $\widetilde{e_{x}} \widetilde{\in}(W, \mathcal{P})$ and $(W, \mathcal{P}) \widetilde{\cap}(\mathcal{E}, \mathcal{P})=\widetilde{\emptyset}$. Since $(W, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} O(\tilde{X})$ and $\tilde{Z} \widetilde{\in} \tilde{\tau}$ (resp., $\tilde{S} C O(\tilde{X})$), then by Proposition 1.14(1), $(W, \mathcal{P}) \widetilde{\cap} \tilde{Z} \tilde{\in} \tilde{S} S_{p} O(\tilde{Z})$. Now, if $\widetilde{e_{x}} \widetilde{\notin} \tilde{Z}$, then $\widetilde{e_{x}} \widetilde{\notin}$ $\tilde{s} S_{p} c l_{\tilde{Z}}(\mathcal{E}, \mathcal{P})$. If $\tilde{e_{x}} \tilde{\in} \tilde{Z}$, then $\widetilde{e_{x}} \tilde{\in}(W, \mathcal{P}) \tilde{\cap} \tilde{Z}$ and we have $((W, \mathcal{P}) \widetilde{\cap} \tilde{Z}) \widetilde{\cap}(\mathcal{E}, \mathcal{P})=\widetilde{\emptyset}$. Therefore, $\widetilde{e_{x}} \widetilde{\nexists}$ $\tilde{s} S_{p} c l_{\tilde{Z}}(\mathcal{E}, \mathcal{P})$. Thus, $\tilde{s} S_{p} c l_{\tilde{Z}}(\mathcal{E}, \mathcal{P}) \simeq \tilde{S} S_{p} c l(\mathcal{E}, \mathcal{P})$.
Corollary 3.43. Let $\left(\tilde{Z}, \tilde{\tau}_{\tilde{Z}}, \mathcal{P}\right)$ be a soft subspace of $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ and $(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq} \tilde{Z}$. Then,:
(1) $\tilde{s} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P}) \widetilde{\cap} \tilde{Z} \widetilde{\subseteq} S_{p} \operatorname{int}_{\tilde{Z}}(\mathcal{E}, \mathcal{P})$, if $\tilde{Z} \widetilde{\in}$ $\tilde{S} S O(\tilde{X})$ (resp., $\tilde{S} \alpha O(\tilde{X}), \tilde{\tau}, \tilde{S} S_{p} O(\tilde{X}), \tilde{S} C O(\tilde{X})$, and $\tilde{S} R C(\tilde{X}))$.
(2) $\tilde{s} S_{p} c l_{\tilde{Z}}(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq} \tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P}) \widetilde{\cap} \tilde{Z}$, if $\tilde{Z} \widetilde{\epsilon} \tilde{\tau}$ (resp., $\tilde{S} C O(\tilde{X}))$.
Proof. (1) By Proposition 3.42(1), $\tilde{s} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P}) \widetilde{\cap} \tilde{Z} \widetilde{\subseteq} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq} S_{p} \operatorname{int}_{\tilde{Z}}(\mathcal{E}, \mathcal{P})$. (2) By Proposition 3.42(2), $\tilde{s} S_{p} c l_{\tilde{Z}}(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq} \tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P})=\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P}) \widetilde{\cap} \tilde{Z}$.

https://doi.org/10.25130/tips.v29i2.1547

Proposition 3.44. Let $\left(\tilde{Z}, \tilde{\tau}_{\tilde{Z}}, \mathcal{P}\right)$ be a soft subspace of $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ and $(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq} \tilde{Z}$. If $\tilde{Z} \widetilde{\in} \tilde{S} R C(\tilde{X})$ (resp., $\tilde{S} C O(\tilde{X})$, then:
(1) $\tilde{s} S_{p} \operatorname{int}_{\tilde{Z}}(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq} \int_{p} \operatorname{int}(\mathcal{E}, \mathcal{P})$.
(2) $\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P}) \widetilde{s_{s}} S_{p} c l_{\tilde{Z}}(\mathcal{E}, \mathcal{P})$.

Proof. (1) Let $\widetilde{e_{x}} \tilde{\in} \tilde{s} S_{p}$ int $_{\tilde{Z}}(\mathcal{E}, \mathcal{P})$. Then, there exists $(W, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} O(\tilde{Z})$ such that $\widetilde{e_{x}} \widetilde{\in}(W, \mathcal{P}) \widetilde{\subseteq}(\mathcal{E}, \mathcal{P})$. Since $\tilde{Z} \tilde{\in} \tilde{S} R C(\tilde{X})$ (resp., $\tilde{S} C O(\tilde{X})$), then by Proposition $1.13(3), \quad(W, \mathcal{P}) \tilde{\in} \tilde{S} S_{p} O(\tilde{X})$. Since $\widetilde{e_{x}} \widetilde{\in}(W, \mathcal{P}) \widetilde{\subseteq}(\mathcal{E}, \mathcal{P})$, then $\widetilde{e_{x}} \widetilde{\operatorname{c}} \tilde{s} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P})$. Hence, $\tilde{s} S_{p} \operatorname{int} t_{\tilde{Z}}(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P})$.
(2) Let $\widetilde{e_{x}} \widetilde{\not} \tilde{s} S_{p} c l_{\tilde{Z}}(\mathcal{E}, \mathcal{P})$. Then, there exists $(W, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} O(\tilde{Z})$ containing $\widetilde{e_{x}}$ such that $(W, \mathcal{P}) \widetilde{\cap}$ $(\mathcal{E}, \mathcal{P})=\widetilde{\emptyset}$. Since $\tilde{Z} \tilde{\in} \tilde{S} R C(\tilde{X})$ (resp., $\tilde{S} C O(\tilde{X})$), then by Proposition 1.13(3), $(W, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} O(\tilde{X})$. Since $(W, \mathcal{P}) \widetilde{\cap}(\mathcal{E}, \mathcal{P})=\widetilde{\emptyset}$, so $\widetilde{e_{x}} \mathbb{\oplus} \tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P})$. Thus, $\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq} S_{p} c l_{\tilde{Z}}(\mathcal{E}, \mathcal{P})$.
Corollary 3.45. Let $\left(\tilde{Z}_{\tilde{Z}}, \tilde{\tau}_{\tilde{Z}}, \mathcal{P}\right)$ be a soft subspace of $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ and $(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq} \tilde{Z}$. If $\tilde{Z} \tilde{\in} \tilde{S} C O(\tilde{X})$, then:
(1) $\tilde{s} S_{p} \operatorname{int}_{\tilde{Z}}(\mathcal{E}, \mathcal{P})=\tilde{s} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P})$.
(2) $\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P})=\tilde{s} S_{p} c l_{\tilde{Z}}(\mathcal{E}, \mathcal{P})$.

Proof. This follows directly from Proposition 3.42 and Proposition 3.44.
Proposition 3.46. Let $\left(\tilde{Z}, \tilde{\tau}_{\tilde{Z}}, \mathcal{P}\right)$ be a soft subspace of $(\tilde{X}, \tilde{\tau}, \mathcal{P})$. If $\tilde{Z} \widetilde{\in} \tilde{\tau}$ (resp., $\tilde{S} C O(\tilde{X}))$ and $(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq} \tilde{Z}$, then $\tilde{s} S_{p} c l_{\tilde{Z}}(\mathcal{E}, \mathcal{P})=\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P}) \widetilde{\cap} \tilde{Z}$.
Proof. From Corollary 3.43(2), $\tilde{s} S_{p} c l_{\tilde{Z}}(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq} S_{p} c l(\mathcal{E}, \mathcal{P}) \tilde{\cap} \tilde{Z}$. On the other hand, let $\widetilde{e_{x}} \widetilde{\in} \tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P}) \widetilde{\cap} \tilde{Z}$. Then, $\widetilde{e_{x}} \tilde{\in} \tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P})$ and $\widetilde{e_{x}} \widetilde{\in} \tilde{Z}$. This is, for all $(W, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} O(\tilde{X})$ such that $\widetilde{e_{x}} \widetilde{\in}(W, \mathcal{P})$ and $(W, \mathcal{P}) \widetilde{\cap}(\mathcal{E}, \mathcal{P}) \neq \widetilde{\emptyset}$ and $\widetilde{e_{x}} \widetilde{\in} \tilde{Z}$. Since $\tilde{Z} \widetilde{\in} \tilde{\tau}$ (resp., $\tilde{S} C O(\tilde{X})$), then by Proposition 1.14(1), $(W, \mathcal{P}) \tilde{\cap} \tilde{Z} \tilde{\in} \tilde{S} S_{p} O(\tilde{Z}) \quad$ such that $\widetilde{e_{x}} \widetilde{\in}(W, \mathcal{P}) \widetilde{\cap} \tilde{Z}$ and $((W, \mathcal{P}) \widetilde{\cap} \tilde{Z}) \widetilde{\cap}(\mathcal{E}, \mathcal{P}) \neq \widetilde{\emptyset}$. So, $\widetilde{e_{x}} \widetilde{\in} \tilde{s} S_{p} c l_{\tilde{Z}}(\mathcal{E}, \mathcal{P})$. Hence, $\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P}) \widetilde{\cap} \tilde{Z} \widetilde{\subseteq}$ $\tilde{s} S_{p} c l_{\tilde{Z}}(\mathcal{E}, \mathcal{P}) . \quad$ Thus, $\quad \tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P}) \tilde{\cap} \tilde{Z}=$ $\tilde{s} S_{p} c l_{\tilde{Z}}(\mathcal{E}, \mathcal{P})$.
Definition 3.47. Let $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ be a $\tilde{S} T S$ and $(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq}(\tilde{X}, \tilde{\tau}, \mathcal{P})$. A soft point $\widetilde{e_{x}} \widetilde{\in} \tilde{S} P(\tilde{X})$ is known as a soft S_{p}-boundary point of $(\mathcal{E}, \mathcal{P})$, if $\forall(W, \mathcal{P}) \tilde{\in} \tilde{S} S_{p} O(\tilde{X}) \quad$ containing $\quad \tilde{e_{x}}$, we have $(W, \mathcal{P}) \widetilde{\cap}(\mathcal{E}, \mathcal{P}) \neq \widetilde{\emptyset}$ and $(W, \mathcal{P}) \widetilde{\cap}(\tilde{X} \widetilde{\}(\mathcal{E}, \mathcal{P})) \neq \widetilde{\emptyset}$. Or equivalently, the soft S_{p}-boundary of $(\mathcal{E}, \mathcal{P})$ is $\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P}) \tilde{} \tilde{s} S_{p} i n t(\mathcal{E}, \mathcal{P})$ and the family of all soft S_{p}-boundary points of $(\mathcal{E}, \mathcal{P})$ is indicated by $\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})$.
Theorem 3.48. For any $(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq}(\tilde{X}, \tilde{\tau}, \mathcal{P})$, the following conditions hold.
(1) $\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P})=\tilde{s} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P}) \widetilde{\cup} \tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})$.
(2) $\tilde{s} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P}) \tilde{\cap} \tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})=\widetilde{\emptyset}$.
(3) $\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})=\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P}) \tilde{\cap} \tilde{s} S_{p} c l(\tilde{X} \widetilde{\Upsilon}(\mathcal{E}, \mathcal{P}))$.
(4) $\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})$ is a soft S_{p}-closed set.
(5) $\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})=\tilde{s} S_{p} B d(\tilde{X} \widetilde{\backslash}(\mathcal{E}, \mathcal{P}))$.
(6) $\tilde{s} S_{p} B d\left(\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})\right) \widetilde{\widetilde{s}} S_{p} B d(\mathcal{E}, \mathcal{P})$.
(7) $\tilde{s} S_{p} B d\left(\tilde{s} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P})\right) \widetilde{\subseteq} S_{p} B d(\mathcal{E}, \mathcal{P})$.

(9) $\tilde{s} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P})=(\mathcal{E}, \mathcal{P}) \widetilde{\tilde{s}} S_{p} B d(\mathcal{E}, \mathcal{P})$.
(10) $\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P})=(\mathcal{E}, \mathcal{P}) \widetilde{\cup} \tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})$
(11) $\tilde{X}=\tilde{s} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P}) \tilde{\cup} \tilde{s} S_{p} \operatorname{int}(\tilde{X} \widetilde{\backslash}(\mathcal{E}, \mathcal{P}))$ $\widetilde{\cup} \tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})$.
(12) $\tilde{X} \tilde{\lceil } \tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})=\tilde{s} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P}) \tilde{\cup} \tilde{s} S_{p}$ int $(\tilde{X} \widetilde{ }(\mathcal{E}, \mathcal{P}))$.
Proof. (1) $\quad \tilde{s} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P}) \tilde{\cup} \tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})=$ $\tilde{s} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P}) \widetilde{\cup}\left(\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P}) \tilde{} \tilde{s} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P})\right)=$ $\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P})$.
(2) $\tilde{s} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P}) \widetilde{\cap} \tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})=\tilde{s} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P}) \tilde{\cap}$ $\left(\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P}) \widetilde{ } \tilde{s} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P})\right)=\widetilde{\emptyset}$.
(3) $\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})=\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P}) \tilde{\operatorname{s}} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P})=$ $\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P}) \widetilde{\cap} \tilde{X} \widetilde{S_{S}} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P})$
$=\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P}) \widetilde{\cap} \tilde{s} S_{p} c l(\tilde{X} \widetilde{\widetilde{ }}(\mathcal{E}, \mathcal{P})) \quad$ by \quad Proposition 3.30(1)\}.
(4) $\quad \tilde{s} S_{p} c l\left(\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})\right)=\tilde{s} S_{p} \operatorname{cl}\left(\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P})\right.$
$\left.\tilde{\cap} \tilde{s} S_{p} c l(\tilde{X} \widetilde{\backslash}(\mathcal{E}, \mathcal{P}))\right)$
$\widetilde{\subseteq} S_{p} c l\left(\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P})\right) \tilde{\cap} \tilde{s} S_{p} c l\left(\tilde{s} S_{p} c l(\tilde{X} \widetilde{ }(\mathcal{E}, \mathcal{P}))\right)$
$=\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P}) \tilde{\cap} \tilde{s} S_{p} c l(\tilde{X} \widetilde{\backslash}(\mathcal{E}, \mathcal{P}))=\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})$.
Therefore, by Proposition 3.24(4), $\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})$ is a soft S_{p}-closed set.
(5) By part (3),
$\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})=\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P}) \tilde{\cap} \tilde{s} S_{p} c l(\tilde{X} \tilde{\backslash}(\mathcal{E}, \mathcal{P}))$
$\left.=\tilde{s} S_{p} c l\left(\tilde{X} \widetilde{(\mathcal{E}, \mathcal{P}))} \tilde{\cap} \tilde{s} S_{p} c l(\tilde{X} \widetilde{ } \tilde{X} \tilde{X} \widetilde{(\mathcal{E}}, \mathcal{P})\right)\right)$
$=\tilde{s} S_{p} B d(\tilde{X} \widetilde{\backslash}(\mathcal{E}, \mathcal{P}))\{$ by part (3) $\}$.
(6) $\quad \tilde{s} S_{p} B d\left(\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})\right)=\tilde{s} S_{p} c l\left(\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})\right)$
$\tilde{\cap} \tilde{s} S_{p} c l\left(\tilde{X} \widetilde{\widetilde{s}} S_{p} B d(\mathcal{E}, \mathcal{P})\right)$ \{by part (3) \}
$\widetilde{\subseteq} S_{p} c l\left(\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})\right)=\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P}) \quad$ by part (4) $\}$.
(7) $\tilde{s} S_{p} B d\left(\tilde{s} S_{p}\right.$ int $\left.(\mathcal{E}, \mathcal{P})\right)=$
$\tilde{s} S_{p} \operatorname{cl}\left(\tilde{S} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P})\right) \widetilde{\operatorname{s}} S_{p} \operatorname{int}\left(\tilde{s} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P})\right)$
$=\tilde{s} S_{p} c l\left(\tilde{s} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P})\right) \backslash \tilde{s} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P})$
\{by
Proposition 3.15(5)\}
$\widetilde{\subseteq} \tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P}) \widetilde{\operatorname{s}} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P})=\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})$.
(8) $\tilde{s} S_{p} B d\left(\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P})\right)=$
$\tilde{s} S_{p} c l\left(\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P})\right) \widetilde{\tilde{s}} S_{p} \operatorname{int}\left(\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P})\right)$
$=\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P}) \tilde{} \tilde{s} S_{p} \operatorname{int}\left(\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P})\right)$ \{by Proposition 3.24(5)\}
$\widetilde{\subseteq} \tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P}) \widetilde{\sim} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P})=\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})$.
(9) $(\mathcal{E}, \mathcal{P}) \backslash \tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})=$
$(\mathcal{E}, \mathcal{P}) \widetilde{\}\left(\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P}) \tilde{} \tilde{s} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P})\right)$
$=\left((\mathcal{E}, \mathcal{P}) \tilde{\} \tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P})\right) \widetilde{\cup}\left((\mathcal{E}, \mathcal{P}) \widetilde{\cap} \tilde{s} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P})\right)$
$=\widetilde{\emptyset} \widetilde{\cup} \tilde{s} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P})=\tilde{s} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P})$.
(10) By part (1),
$\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P})=\tilde{s} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P}) \widetilde{\cup} \tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})$
$=\left((\mathcal{E}, \mathcal{P})\left\lceil\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})\right) \widetilde{\cup} \tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})\right.$ bby part
(9) $\}=\left((\mathcal{E}, \mathcal{P}) \tilde{\cup} \tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})\right) \tilde{\cap}$
$\left(\tilde{X} \widetilde{\sim} S_{p} B d(\mathcal{E}, \mathcal{P}) \widetilde{\cup} \tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})\right)$
$=(\mathcal{E}, \mathcal{P}) \widetilde{\cup} \tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})$.
(11) This follows from (1) and Proposition 3.30(1). (12) This follows from (11).

Remark 3.49. Let $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ be a $\tilde{S} T S$ and $\left(\varepsilon_{1}, \mathcal{P}\right),\left(\varepsilon_{2}, \mathcal{P}\right) \widetilde{\subseteq}(\tilde{X}, \tilde{\tau}, \mathcal{P})$ and $\left(\varepsilon_{1}, \mathcal{P}\right) \widetilde{\subseteq}\left(\varepsilon_{2}, \mathcal{P}\right)$ does not imply that $\tilde{s} S_{p} B d\left(\varepsilon_{1}, \mathcal{P}\right) \subseteq \tilde{s} S_{p} B d\left(\varepsilon_{2}, \mathcal{P}\right)$ or $\tilde{s} S_{p} B d\left(\mathcal{E}_{2}, \mathcal{P}\right) \widetilde{\subseteq} \tilde{s}_{p} B d\left(\mathcal{E}_{1}, \mathcal{P}\right)$, as the next example illustrates:
Example 2.50. In Example 2.3, we have $\left(\mathcal{E}_{4}, \mathcal{P}\right)=$ $\left\{\left(e_{1}, \varnothing\right),\left(e_{2},\left\{x_{2}\right\}\right)\right\}, \quad\left(\varepsilon_{13}, \mathcal{P}\right)=\left\{\left(e_{1}, \emptyset\right),\left(e_{2}, X\right)\right\} \widetilde{\subseteq}$ $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ such that $\left(\mathcal{E}_{4}, \mathcal{P}\right) \widetilde{\subseteq}\left(\varepsilon_{13}, \mathcal{P}\right)$. So, $\tilde{s} S_{p} B d\left(\mathcal{E}_{4}, \mathcal{P}\right)=\left(\mathcal{E}_{4}, \mathcal{P}\right) \quad$ and $\quad \tilde{s} S_{p} B d\left(\mathcal{E}_{13}, \mathcal{P}\right)=$ $\left(\varepsilon_{3}, \mathcal{P}\right)$, this show that $\tilde{s} S_{p} B d\left(\varepsilon_{4}, \mathcal{P}\right) \varsubsetneqq$ $\tilde{s} S_{p} B d\left(\varepsilon_{13}, \mathcal{P}\right)$ and $\tilde{s} S_{p} B d\left(\varepsilon_{13}, \mathcal{P}\right) \varsubsetneqq \tilde{\Phi} S_{p} B d\left(\varepsilon_{4}, \mathcal{P}\right)$.
Proposition 3.51. Let $(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq}(\tilde{X}, \tilde{\tau}, \mathcal{P})$. Then, $\tilde{s} s B d(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq} \tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})$.
Proof. Let $\widetilde{e_{x}} \tilde{\in} \tilde{s} s B d(\mathcal{E}, \mathcal{P})$ and $(W, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} O(\tilde{X})$ containing $\widetilde{e_{x}}$. Then, $(W, \mathcal{P}) \widetilde{\in} \tilde{S} S O(\tilde{X})$. Since $\widetilde{e_{x}} \widetilde{\in} \tilde{s} S B d(\mathcal{E}, \mathcal{P})$, so $(W, \mathcal{P}) \widetilde{\cap}(\mathcal{E}, \mathcal{P}) \neq \widetilde{\emptyset} \quad$ and $(W, \mathcal{P}) \widetilde{\cap}(\tilde{X} \tilde{\backslash}(\mathcal{E}, \mathcal{P})) \neq \widetilde{\emptyset}$. Hence, $\widetilde{e_{x}} \widetilde{\epsilon}$ $\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})$. Thus, $\tilde{s} s B d(\mathcal{E}, \mathcal{P}) \subseteq \tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})$.
In general, the opposite of Proposition 3.51 is not always true. As the next example illustrates:
Example 3.52. In Example 2.3, we have $\left(\varepsilon_{14}, \mathcal{P}\right)=$ $\left\{\left(e_{1}, \varnothing\right),\left(e_{2},\left\{x_{1}\right\}\right)\right\}$, then $\tilde{s} s B d\left(\mathcal{E}_{14}, \mathcal{P}\right)=\left(\mathcal{E}_{14}, \mathcal{P}\right)$ and $\tilde{s} S_{p} B d\left(\varepsilon_{14}, \mathcal{P}\right)=\tilde{X}$. Thus, $\tilde{s} S_{p} B d\left(\varepsilon_{14}, \mathcal{P}\right) \varsubsetneqq$ $\tilde{s} s B d\left(\varepsilon_{14}, \mathcal{P}\right)$.
Proposition 3.53. For any $(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq}(\tilde{X}, \tilde{\tau}, \mathcal{P})$, the following conditions hold.
(1) If $(\mathcal{E}, \mathcal{P}) \tilde{\in} \tilde{S} S_{p} C(\tilde{X}), \quad$ then $\quad \tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})=$ $(\mathcal{E}, \mathcal{P}) \widetilde{s_{s}} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P})$.
(2) If $(\mathcal{E}, \mathcal{P}) \tilde{\in} \tilde{S} S_{p} O(\tilde{X})$, then $\quad \tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})=$ $\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P}) \widetilde{ }(\mathcal{E}, \mathcal{P})$.
(3) If $(\mathcal{E}, \mathcal{P}) \tilde{\in} \tilde{S} S_{p} C(\tilde{X})$ and $\tilde{s} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P})=\widetilde{\emptyset}$, then $\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})=(\mathcal{E}, \mathcal{P})$.
(4) $(\mathcal{E}, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} O(\tilde{X})$ iff $\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq} \tilde{X} \widetilde{\backslash}(\mathcal{E}, \mathcal{P})$ (i.e., $\left.\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P}) \widetilde{\cap}(\mathcal{E}, \mathcal{P})=\widetilde{\varnothing}\right)$.
(5) $(\mathcal{E}, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} C(\tilde{X})$ iff $\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P}) \simeq(\mathcal{E}, \mathcal{P})$.
(6) $\tilde{S} S_{p} B d(\mathcal{E}, \mathcal{P})=\widetilde{\emptyset} \quad$ iff $\quad(\mathcal{E}, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} O(\tilde{X}) \widetilde{\cap}$ $\tilde{S} S_{p} C(\tilde{X})$.
Proof. The proof of (1)-(3) are obvious.
(4) Suppose that $(\mathcal{E}, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} O(\tilde{X})$, then by part(2), $\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})=\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P}) \tilde{\}(\mathcal{E}, \mathcal{P})$. Hence, $\tilde{s} S_{p} B d$ $(\mathcal{E}, \mathcal{P}) \widetilde{\cap}(\mathcal{E}, \mathcal{P})=\widetilde{\emptyset} . \quad$ That \quad is $\quad \tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq}$ $\tilde{X} \widetilde{ }(\mathcal{E}, \mathcal{P})$.
Conversely, $\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P}) \widetilde{\cap}(\mathcal{E}, \mathcal{P})=\widetilde{\emptyset}$. Then, $\widetilde{\emptyset}=$ $\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P}) \tilde{s_{s}} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P}) \widetilde{\cap}(\mathcal{E}, \mathcal{P})=\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P})$
$\widetilde{\cap} \tilde{X} \widetilde{s} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P}) \widetilde{\cap}(\mathcal{E}, \mathcal{P})$. Since $\quad(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq}$ $\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P})$, then $\tilde{X} \widetilde{\widetilde{s}} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P}) \widetilde{\cap}(\mathcal{E}, \mathcal{P})=\widetilde{\emptyset}$. Thus,
$(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq} \tilde{X}\left\lceil\left(\tilde{X} \widetilde{\widetilde{s}} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P})\right)=\right.$ $\tilde{s} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P})$. But always $\tilde{s} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P}) \widetilde{(\mathcal{E}, \mathcal{P}) \text {. } . ~ . ~ . ~}$ This implies that $(\mathcal{E}, \mathcal{P})=S_{p}$ int $(\mathcal{E}, \mathcal{P})$. Therefore, $(\mathcal{E}, \mathcal{P}) \tilde{\in} \tilde{S} S_{p} O(\tilde{X})$.
(5) $(\mathcal{E}, \mathcal{P}) \tilde{\in} \tilde{S} S_{p} C(\tilde{X}) \leftrightarrow \tilde{X} \widetilde{(\mathcal{E}, \mathcal{P})} \tilde{\in} \tilde{S} S_{p} O(\tilde{X}) \leftrightarrow$ by part (4), $\tilde{s} S_{p} B d(\tilde{X} \backslash(\mathcal{E}, \mathcal{P})) \widetilde{\subseteq}(\mathcal{E}, \mathcal{P}) \leftrightarrow$ by Theorem 3.48(5), $\left.\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})=\tilde{s} S_{p} B d(\tilde{X} \widetilde{(\mathcal{E}}, \mathcal{P})\right) \widetilde{\subseteq}(\mathcal{E}, \mathcal{P})$.
(6) Suppose that $\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})=\widetilde{\emptyset}$, then $\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})=\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P}) \widetilde{ } \tilde{s} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P})=\widetilde{\emptyset}$. This means that $\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P})=\tilde{s} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P})=(\mathcal{E}, \mathcal{P})$. Hence, $(\mathcal{E}, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} O(\tilde{X}) \widetilde{\cap} \tilde{S} S_{p} C(\tilde{X})$.
Conversely, if $(\mathcal{E}, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} O(\tilde{X}) \widetilde{\cap} \tilde{S} S_{p} C(\tilde{X})$, then $(\mathcal{E}, \mathcal{P})=\tilde{s} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P})=\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P})$. Hence, $\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})=\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P}) \tilde{\backslash} \tilde{s} S_{p} \operatorname{int}(\mathcal{E}, \mathcal{P})=$ $(\mathcal{E}, \mathcal{P}) \widetilde{ }(\mathcal{E}, \mathcal{P})=\widetilde{\emptyset}$.
Proposition 3.54. Let ($\tilde{X}, \tilde{\tau}, \mathcal{P}$) be a $\tilde{S} T S$ and $(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq}(\tilde{X}, \tilde{\tau}, \mathcal{P})$. Then, $\tilde{s} S_{p} B d\left(\tilde{s} S_{p} B d\left(\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})\right)\right)=$ $\tilde{s} S_{p} B d\left(\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})\right)$.
Proof. $\quad \tilde{s} S_{p} B d\left(\tilde{s} S_{p} B d\left(\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})\right)\right)=$ $\tilde{s} S_{p} c l\left(\tilde{s} S_{p} B d\left(\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})\right)\right)$
$\tilde{\cap} \tilde{s} S_{p} c l\left(\tilde{X} \widetilde{\backslash}\left(\tilde{s} S_{p} B d\left(\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})\right)\right)\right)$
$=\tilde{s} S_{p} B d\left(\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})\right) \tilde{\cap} \tilde{s} S_{p} c l\left(\tilde{X} \widetilde{\Upsilon}\left(\tilde{s} S_{p} B d\left(\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})\right)\right)\right)$ \{by Theorem 3.48(3) and Proposition 3.24(3)\}.(1)
Now, we have
$\tilde{X}\left\lceil\left(\tilde{s} S_{p} B d\left(\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})\right)\right)\right.$
$=\tilde{X} \widetilde{\sim}\left[\tilde{s} S_{p} c l\left(\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})\right) \tilde{\cap} \tilde{s} S_{p} c l\left(\tilde{X} \widetilde{\widetilde{S}}\left(\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})\right)\right)\right]$
$\left.=\tilde{X} \widetilde{[} \tilde{s}_{p} B d(\mathcal{E}, \mathcal{P}) \widetilde{\cap} \tilde{s}_{p} \operatorname{cl}\left(\tilde{X} \widetilde{(}\left(\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})\right)\right)\right]\{\mathrm{by}$
Theorem 3.48(10) \}
$=\left(\tilde{X}\left\lceil\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})\right) \widetilde{U}\left(\tilde{X}\left\lceil\tilde{s} S_{p} c l\left(\tilde{X}\left\lceil\left(\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})\right)\right)\right)\right.\right.\right.$.
Therefore, by Proposition 3.24(8), we obtain:
$\tilde{s} S_{p} c l\left(\tilde{X}\left\lceil\left(\tilde{s} S_{p} B d\left(\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})\right)=\right.\right.\right.$
$\tilde{s} S_{p} c l\left[\left(\tilde{X} \tilde{\widetilde{s}} S_{p} B d(\mathcal{E}, \mathcal{P})\right)\right.$
$\widetilde{U}\left(\tilde{X} \widetilde{\lceil } \tilde{S} S_{p} c l\left(\tilde{X}\left\lceil\left(\tilde{S} S_{p} B d(\mathcal{E}, \mathcal{P})\right)\right)\right)\right]$
$\cong \tilde{s} S_{p} c l\left[\left(\tilde{X} \widetilde{\tilde{s}} S_{p} B d(\mathcal{E}, \mathcal{P})\right)\right]$
$\widetilde{\mathrm{U}} \tilde{s} S_{p} c l\left[\left(\tilde{X} \widetilde{\sim} \tilde{S}_{p} c l\left(\tilde{X} \widetilde{ }\left(\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})\right)\right)\right)\right]$
$=(W, \mathcal{P}) \widetilde{\cup} \tilde{s} S_{p} c l(\tilde{X} \widetilde{\backslash}(W, \mathcal{P}))=\tilde{X}$, where $(W, \mathcal{P})=$ $\tilde{s} S_{p} c l\left[\left(\tilde{X} \widetilde{\sim} \tilde{S} S_{p} B d(\mathcal{E}, \mathcal{P})\right)\right]$. So,
$\tilde{s} S_{p} c l\left(\tilde{X} \widetilde{\lceil }\left(\tilde{s} S_{p} B d\left(\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})\right)\right)\right)=\tilde{X}$.
From (1) and (2), we obtain:
$\tilde{s} S_{p} B d\left(\tilde{s} S_{p} B d\left(\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})\right)\right)=$ $\tilde{s} S_{p} B d\left(\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})\right) \tilde{\cap} \tilde{X}=\tilde{s} S_{p} B d\left(\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})\right)$.
Now, we will show by an example that the opposite of part (6) of Theorem 3.48 is not always true in general. Thus, $\tilde{s} S_{p} B d\left(\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})\right) \neq \tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})$:
Example 3.55. In Example 2.3, we have $\left(\varepsilon_{14}, \mathcal{P}\right)=$ $\left\{\left(e_{1}, \emptyset\right),\left(e_{2},\left\{x_{1}\right\}\right)\right\}$, then $\tilde{s} S_{p} B d\left(\varepsilon_{14}, \mathcal{P}\right)=\tilde{X}$ and $\tilde{s} S_{p} B d\left(\tilde{s} S_{p} B d\left(\varepsilon_{14}, \mathcal{P}\right)\right)=\widetilde{\emptyset}$. Thus,
$\tilde{s} S_{p} B d\left(\mathcal{E}_{14}, \mathcal{P}\right) \nsubseteq \tilde{s} S_{p} B d\left(\tilde{s} S_{p} B d\left(\varepsilon_{14}, \mathcal{P}\right)\right)$ and hence, $\tilde{s} S_{p} B d\left(\tilde{s} S_{p} B d\left(\varepsilon_{14}, \mathcal{P}\right)\right) \neq \tilde{s} S_{p} B d\left(\mathcal{E}_{14}, \mathcal{P}\right)$.
However we have the following result:
Proposition 3.56. If $(\mathcal{E}, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} O(\tilde{X}) \widetilde{\cup} \tilde{S} S_{p} C(\tilde{X})$, then $\tilde{s} S_{p} B d\left(\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})\right)=\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})$.
Proof. Since $(\mathcal{E}, \mathcal{P}) \widetilde{\in} \tilde{S} S_{p} O(\tilde{X}) \widetilde{\cup} \tilde{S} S_{p} C(\tilde{X})$, then $\tilde{s} S_{p} B d\left(\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})\right)=\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P}) \tilde{\cap} \tilde{s} S_{p} c l$
$(\tilde{X} \widetilde{ }(\mathcal{E}, \mathcal{P})) \tilde{\cap} \tilde{s} S_{p} c l\left(\tilde{X} \widetilde{\Gamma} S_{p} B d(\mathcal{E}, \mathcal{P})\right)$. Since $(\mathcal{E}, \mathcal{P})$ $\widetilde{\in} \tilde{S} S_{p} O(\tilde{X}) \quad\left(r e s p ., \quad(\mathcal{E}, \mathcal{P}) \tilde{\in} \tilde{S} S_{p} C(\tilde{X})\right)$, then by Proposition 3.53(4) (resp., Proposition 3.53(5)), $\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P}) \widetilde{\cap}(\mathcal{E}, \mathcal{P})=\widetilde{\emptyset} \quad\left(\right.$ resp., $\quad \tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq}$ $(\mathcal{E}, \mathcal{P})$). This implies that $(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq} \tilde{X} \widetilde{\tilde{s}} S_{p} B d(\mathcal{E}, \mathcal{P})$ (resp., $\quad \tilde{X} \widetilde{\}(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq} \tilde{X} \widetilde{{ }_{S}} S_{p} B d(\mathcal{E}, \mathcal{P})$). Hence, $\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P}) \widetilde{\subseteq} S_{p} c l\left(\tilde{X} \widetilde{\sim} \tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})\right) \quad$ (resp., $\left.\tilde{s} S_{p} c l(\tilde{X} \widetilde{(\mathcal{P}}, \mathcal{P})\right) \widetilde{\subseteq} S_{p} c l\left(\tilde{X} \widetilde{\widetilde{s}} S_{p} B d(\mathcal{E}, \mathcal{P})\right)$. Thus,:
$\tilde{s} S_{p} B d\left(\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})\right)=\tilde{s} S_{p} c l(\mathcal{E}, \mathcal{P}) \tilde{\sim} \tilde{s} S_{p} c l(\tilde{X} \widetilde{ }(\mathcal{E}, \mathcal{P}))=$ $\tilde{s} S_{p} B d(\mathcal{E}, \mathcal{P})$.

4- Conclusion

References

[1] P. M. Mahmood, H. M. Darwesh, H. A. Shareef, and S. Al Ghour, "A Stronger Novel Form of Soft Semi-Open Set," New Mathematics and Natural Computation, December 2023, doi: https://doi.org/10.1142/S1793005725500164.
[2] D. Molodtsov, "Soft Set Theory- First Results," Computers and Mathematics with Applications, vol. 37, no. 4-5, pp. 19-31, 1999.
[3] P. K. Maji, R. Biswas, and A. R. Roy, "Soft set theory," Computers and Mathematics with Applications, vol. 45, no. 4-5, pp. 555-562, 2003.
[4] S. Das and S. K. Samanta, "Soft metric," Annals of Fuzzy Mathematics and Informatics, vol. 6, no. 1, pp. 77-94, 2013.
[5] M. Shabir and M. Naz, "On soft topological spaces," Computers and Mathematics with Applications, vol. 61, no. 7, pp. 1786-1799, 2011.
[6] S. Hussain and B. Ahmad, "Some properties of soft topological spaces," Computers and Mathematics with Applications, vol. 62, no. 11, pp. 4058-4067, 2011.
[7] J. Mahanta and P. K. Das, "On soft topological space via semiopen and semiclosed soft sets," Kyungpook Mathematical Journal, vol. 54, no. 2, pp. 221-236, 2014.
[8] G. Ilango and M. Ravindran, "On Soft Preopen Sets in Soft Topological Spaces," International Journal of Mathematics Research, vol. 5, no. 4, pp. 399-409, 2013.
[9] M. Akdag and A. Ozkan, "Soft α-Open Sets and Soft α-Continuous Functions," Abstract and Applied Analysis, vol. 2014, Art., no. 1, p. 7, 2014.
[10] M. Akdag and A. Ozkan, "Soft b-open sets and soft b-continuous functions," Mathematical Sciences, vol. 8, no. 2, Sep. 2014.
[11] I. Arockiarani and A. A. Lancy, "Generalized soft $g \beta$ closed sets and soft gs β closed sets in soft topological spaces," International Journal of Mathematical Archive, vol. 4, no. 2, pp. 17-23, 2013.
[12] S. Yüksel, N. Tozlu, and Z. G. Ergül, "Soft regular generalized closed sets in soft topological spaces," International Journal of Mathematical Analysis, vol. 8, no. 5-6, pp. 355-367, 2014.
[13] S. Y. Khalaf, A. B., \& Musa, "SSc-open Sets in Soft Topological Spaces," Journal of Garmian

In this paper, we introduce soft S_{p}-closed sets as a new class of soft sets which is contained in the class of soft semi-closed sets. Also, via soft S_{p}-closedness and soft S_{p}-openness, several new soft topological operators are defined. Several characterizations, properties, relationships, and examples regarding the new concepts are introduced. These results help us in the future to study new classes of soft functions such as soft almost S_{p}-continuity and soft weakly $S_{p^{-}}$ continuity.

University, vol. 1, pp. 1-22, 2015.
[14] B. Chen, "Soft Semi-open sets and related properties in soft topological spaces," Applied Mathematics and Information Sciences, vol. 7, no. 1, pp. 287-294, 2013.
[15] M. Akdag and A. Ozkan, "On Soft β-open sets and soft β-continuous functions," Scientific World Journal, vol. 2014, no. Article ID 843456, p. 6, 2014.
[16] S. Hussain, "Properties of Soft Semi-open and Soft semi-closed Sets Properties," Pensee Journal, vol. 76(2), pp. 133-143, 2014.
[17] D. N. Georgiou, A. C. Megaritis, and V. I. Petropoulos, "On soft topological spaces," Applied Mathematics and Information Sciences, vol. 7, no. 5, pp. 1889-1901, 2013.
[18] S. Hussain, "On soft regular-open (closed) sets in soft topological spaces," Journal of applied mathematics \& informatics, vol. 36, no. 1-2, pp. 5968, 2018.
[19] A. Aclkgoz and Nihal A. Tas, "Some New Soft Sets and Decompositions of Some Soft Continuities," Annals of Fuzzy Mathematics and Informatics, vol. 9, no. 1, pp. 23-35, 2015.
[20] R. A. Hosny and D. Al-Kadi, "Soft semi open sets with respect to soft ideals," Applied Mathematical Sciences, vol. 8, no. 149-152, pp. 7487-7501, 2014.
[21] S. Hussain and B. Ahmad, "Soft separation axioms in soft topological spaces," Hacettepe Journal of Mathematics and Statistics, vol. 44, no. 3, pp. 559568, 2015.
[22] B. A. Asaad, "Results on soft extremally disconnectedness of soft topological spaces," Journal of Mathematics and Computer Science, vol. 17, no. 04, pp. 448-464, 2017.
[23] A. Kandil, O. El-tantawy, S. A. El-Sheikh, and A. M. A. El-latif, " γ-operation and decompositions of some forms of soft continuity in soft topological spaces," Annals of Fuzzy Mathematics and Informatics, vol. 7, no. 2, pp. 181-196, 2014.
[24] Y. Yumak and A. K. Kaymakcı, "Soft β-open sets and their applications," Journal of New Theory, no. 4, pp. 80-89, 2015.
[25] T. Aydın and S. Enginoğlu, "Some results on soft topological notions," Journal of New Results in

Science, vol. 10, no. 1, pp. 65-75, 2021.
[26] M. E. Al-shami, T. M., \& El-Shafei, "On soft compact and soft Lindelof spaces via soft pre-open
sets," Annals of Fuzzy Mathematics and Informatics, vol. 17, no. 1, pp. 79-100, 2019.

