n-absorbing I-primary ideals in commutative rings

Sarbast A. Anjuman¹, Ismael Akray²

¹² Mathematics department, Soran University, Soran, Kurdistan region-Erbil, Iraq

ARTICLE INFO

Article history:
-Received: 13-10-2022
-Received in revised form: 15-11-2022
-Accepted: 27-1-2023
-Final Proofreading: 16-4-2023
-Available online: 25-8-2023

Keywords: Ring, primary ideal, I-primary ideal, n-absorbing I-primary ideal

Corresponding Author:
Name: Sarbast A. Anjuman
E-mail: sarbast.mohammed@soran.edu.iq
Tel:

ABSTRACT

We define a new generalization of n-absorbing ideals in commutative rings called n-absorbing I-primary ideals. We investigate some characterizations and properties of such new generalization. If P is an n-absorbing I-primary ideal of R and √IP = I√P, then √P is a n-absorbing I-primary ideal of R. And if √P is an (n-1)-absorbing ideal of R such that √(I√P) ⊆ IP, then P is an n-absorbing I-primary ideal of R.

المثلالي الأولي المختزل n من نوع I

المثالي الأولي المختزل n من نوع I في الحلقات التبديلية

المثالي الأولي المختزل n من نوع I

راعيا التعميم جدبا للمثالي الأولي المختزل n من نوع I في الحلقات التبديلية والذي يسمى المثالي الأولي المختزل n من نوع I حيث تم الاستقصاء عن بعض الميزات والخصائص لهذا التعميم الجديد. فإذا كانت P مثالي أولي مختزل لـ R فإن √P هو مثالي أولي مختزل لن (n-1) بهما × I ≡ IP، وليستا P مثالي مختزل من نوع I في R فإن √(I√P) ⊆ IP في R. إذا كانت P مثالي مختزل من نوع (n-1) في R.
Introduction

In our article all rings are commutative ring with non-zero identity. In the recent years many generalizations of prime ideals were defined. Here state some of them. The notion of a weakly prime ideal was introduced by Anderson and Smith, where a proper ideal \(P \) of a commutative ring \(R \) is a weakly prime if \(x, y \in R \), and \(0 \neq xy \in P \) then \(x \in P \) or \(y \in P \) in \([5]\). Ebrahimi Atani and Farzalipour defined the nation of weakly primary ideals \([8]\). The authors in \([6]\) and \([3]\) introduced the notions \(2 \) — absorbing and \(n \) — absorbing ideals in commutative rings. A proper ideal \(P \) is said to be \(2 \) — absorbing (or \(n \) — absorbing) ideal if whenever the product of three (or \(n + 1 \)) elements of \(R \) in \(P \), the product of two (or \(n \)) of these elements is in \(P \).

Throughout the paper the notation \(b_1 \cdots b_n \) means that \(b_i \) is excluded from the product \(b_1 \cdots b_n \). A proper ideal \(P \) of \(R \) is an \(n \) — absorbing \(I \) — primary ideal if for \(b_1, \cdots, b_{n+1} \in R \) such that \(b_1 \cdots b_{n+1} \in P \) — IP , then \(b_1 \cdots b_n \in P \) or \(b_1 \cdots b_i b_{i+1} \cdots b_{n+1} \in \sqrt{P} \) for some \(i \in \{1, 2, \cdots, n\} \) where \(\sqrt{P} \) is the radical of the ideal \(P \).

Assume that \(R \) is an integral domain with quotient field \(F \). The authors in \([7]\) introduced a “proper ideal \(P \) of \(R \) is a strongly primary if, whenever \(cd \in P \) with \(c, d \in F \), we have \(c \in P \) or \(d \in \sqrt{P} \). In \([9]\), a proper ideal \(P \) of \(R \) is a strongly \(I \) — primary ideal if \(cd \in P \) — IP with \(c, d \in F \), then \(c \in P \) or \(d \in \sqrt{P} \). It is said that a proper ideal \(P \) of \(R \) is quotient \(n \) — absorbing \(I \) — primary” if \(b_1 b_2 \cdots b_{n+1} \in P \) with \(b_1, b_2, \cdots, b_{n+1} \in F \), then \(b_1 b_2 \cdots b_n \in P \) or \(b_1 \cdots \hat{b_i} \cdots b_{n+1} \in \sqrt{P} \) for some \(1 \leq i \leq n \). Set \(P \) is an ideal of a ring \(R \), let \(P \) be an \(n \) — absorbing \(I \) — primary ideal of \(R \) and \(b_1, \cdots, b_{n+1} \in R \). The statement is that \((b_1, \cdots, b_{n+1}) \) is an \(I \) — \((n + 1) \) — tuple of \(P \) if \(b_1 \cdots b_{n+1} \in IP \), \(b_1 b_2 \cdots b_n \in P \) and for any \(1 \leq i \leq n \), \(b_1 \cdots \hat{b_i} \cdots b_{n+1} \in \sqrt{P} \).

2. \(n \) — absorbing \(I \) — primary ideals

In this section, we start with to define the definition of an \(n \) — absorbing \(I \) — primary ideal of a ring \(R \).

Definition: A proper ideal \(P \) of \(R \) is an \(I \) — primary if for \(c, d \in R \) with \(cd \in P \) — IP , then \(c \in P \) or \(d \in \sqrt{P} \).

Definition: A proper ideal \(P \) of \(R \) is an \(n \) — absorbing \(I \) — primary ideal if for \(b_1, \cdots, b_{n+1} \in R \) such that \(b_1 \cdots b_{n+1} \in P \) — IP , then \(b_1 \cdots b_n \in P \) or \(b_1 \cdots b_i b_{i+1} \cdots b_{n+1} \in \sqrt{P} \) for some \(i \in \{1, 2, \cdots, n\} \).

Example 2.1 Consider the ring \(A = k[t_1, t_2, \cdots, t_{n+2}] \), where \(k \) is a field and suppose that \(P = (t_1 t_2 \cdots t_n, t_1^2 t_2 \cdots t_n, t_1 t_2 \cdots t_n) \). Then \(P \) is an \(n \) — absorbing \(I \) — primary ideal but \(P \) is not \(n \) — absorbing.

Proposition 2.2 We set that \(R \) is a ring. Based on this, the following statements can be considered equivalent:

(i) \(P \) is an \(n \) — absorbing \(I \) — primary ideal of \(R \);

(ii) For any elements \(\alpha_1, \cdots, \alpha_n \in R \) with \(\alpha_1 \cdots \alpha_n \) not in \(\sqrt{P} \), \((P: R \alpha_1 \cdots \alpha_n) \subseteq \bigcup_{i=1}^{n-1} \left((P: R \alpha_1 \cdots \alpha_{i-1} \cdots \alpha_n) \right) \cup (P: R \alpha_1 \cdots \alpha_{n-1}) \cup (P: R \alpha_1 \cdots \alpha_n) \).

Proof. (i) \(\Rightarrow \) (ii) Set \(\alpha_1, \cdots, \alpha_n \in R \) such that \(\alpha_1 \cdots \alpha_n \not\in \sqrt{P} \). Let \(r \in (P: R \alpha_1 \cdots \alpha_n) \). So \(r \alpha_1 \cdots \alpha_n \in P \). If \(r \alpha_1 \cdots \alpha_n \in IP \), then \(r \in (IP: R \alpha_1 \cdots \alpha_n) \). Let \(r \alpha_1 \cdots \alpha_n \not\in IP \). Since \(\alpha_1 \cdots \alpha_n \not\in \sqrt{P} \), either \(r \alpha_1 \cdots \alpha_{n-1} \not\in P \), that is, \(r \in (P: R \alpha_1 \cdots \alpha_{n-1}) \) or for some \(1 \leq i \leq n - 1 \) we have
Proposition 2.3 If V be a valuation domain with the quotient field F. Then all n-absorbing I–primary ideal of V is a quotient n–absorbing I–primary ideal of R.

Proof. We can certainly assume that P is n–absorbing I–primary ideal of V , and $a_1a_2\cdots a_{n+1}\in P$ for some $a_1, a_2, ..., a_{n+1}\in V$ such that $a_1a_2\cdots a_{n}\notin P$. If $a_{n+1}\notin V$, then $a_1a_2\cdots a_{n}\in P$. So $a_1a_2\cdots a_{n+1}a_{n+1}^{-1}=a_1\cdots a_{n}\in P$, which is a contradiction. So $a_{n+1}\in V$. If $a_i\notin V$ for all $1\leq i\leq n$, then there is nothing to prove. If $a_i\notin V$ for some $1\leq i\leq n$, then $a_1\cdots a_i\cdots a_{n+1}\in P\subseteq \sqrt{P}$. Consequently, P is a quotient n–absorbing I–primary. □

Proposition 2.4 Set P be an n–absorbing I–primary ideal of R such that $\sqrt{IP}=I\sqrt{P}$, then \sqrt{IP} is a n–absorbing I–primary ideal of R.

Proof. Let us assume $a_1a_2\cdots a_{n+1}\in \sqrt{P} - I\sqrt{P}$ for some $a_1, a_2, ..., a_{n+1}\in R$ such that $a_1\cdots a_i\cdots a_{n+1}\notin \sqrt{P}$ for every $1\leq i\leq n$. Thus, we have $n\in N$ such that $a_1^n a_2^n \cdots a_{n+1}^n \in P$. If $a_1^n a_2^n \cdots a_{n+1}^n \in IP$, then $a_1a_2\cdots a_{n+1}\in I\sqrt{P}$, which is a contradiction. Since P is an n–absorbing I–primary, our hypothesis implies $a_1^n a_2^n \cdots a_{n}^n \in P$. So $a_1a_2\cdots a_{n}\in \sqrt{P}$ and \sqrt{P} is an n–absorbing I–primary ideal of R. □

Theorem 2.5 Assume that “for any $1\leq i\leq k$, I_i is an n_i–absorbing I–primary ideal of R such that $\sqrt{P_i}=q_i$ is an n_i–absorbing I–primary ideal of R, respectively. Let $n=n_1+n_2+\cdots+n_k$. The following statements do hold:

(1) $P_1\cap P_2\cap \cdots \cap P_k$ is an n–absorbing I–primary ideal of R.

(2) $P_1P_2\cdots P_k$ is an n–absorbing I–primary ideal of R.

Proof. The proof of the two parts is similar, so we prove just the first. Let $H=P_1\cap P_2\cap \cdots \cap P_k$. Then $\sqrt{H}=P_1\cap P_2\cap \cdots \cap P_k$. Let $a_1a_2\cdots a_{n+1}\in H-IH$ for some $a_1, a_2, ..., a_{n+1}\in R$ and $a_1\cdots a_i\cdots a_{n+1}\notin \sqrt{H}$ for any $1\leq i\leq n$. By, $\sqrt{H}=P_1\cap P_2\cap \cdots \cap P_k$ is an n–absorbing I–primary, then $a_1a_2\cdots a_{n}\in P_1\cap P_2\cap \cdots \cap P_k$. We prove that $a_1a_2\cdots a_{n}\in H$. For all $1\leq i\leq k$, P_i is an n_i–absorbing I–primary and $a_1a_2\cdots a_{n}\in P_i-I\overline{P}_i$, then we have $1\leq \beta_1^i, \beta_2^i, ..., \beta_n^i \leq n$ such that $a_1^i a_2^i \cdots a_{n}^i \in P_i$. If $\beta_1^i = \beta_2^i = \cdots = \beta_n^i = m$ it is for two couples l, r and m, s, then $a_1^l a_1^r \cdots a_{n}^l a_{n}^r \cdots a_1^l a_1^r \cdots a_{n}^l a_{n}^r \cdots a_1^l a_1^r \cdots a_{n}^l a_{n}^r \cdots a_{\overline{n}}^m a_{\overline{n}}^m \cdots a_{\overline{n}}^m a_{\overline{n}}^m a_{\overline{n}}^m a_{\overline{n}}^m \in \sqrt{H}$.

Therefore $a_1^l a_2^l \cdots a_{n}^l a_{n}^l \cdots a_1^l a_1^r \cdots a_{n}^l a_{n}^r \cdots a_1^l a_1^r \cdots a_{n}^l a_{n}^r \cdots a_{\overline{n}}^m a_{\overline{n}}^m \cdots a_{\overline{n}}^m a_{\overline{n}}^m a_{\overline{n}}^m a_{\overline{n}}^m \in \sqrt{H}$, which is a contradiction. So β_1^i 's is distinct. Hence $\{a_1^l a_2^l \cdots a_{n}^l a_{n}^l \cdots a_1^l a_1^r \cdots a_{n}^l a_{n}^r \cdots a_1^l a_1^r \cdots a_{n}^l a_{n}^r \cdots a_{\overline{n}}^m a_{\overline{n}}^m \cdots a_{\overline{n}}^m a_{\overline{n}}^m a_{\overline{n}}^m a_{\overline{n}}^m \}$ = $\{a_1, a_2, ..., a_n\}$. If $a_1^l a_1^r \cdots a_{n}^l a_{n}^r \cdots a_1^l a_1^r \cdots a_{n}^l a_{n}^r \cdots a_{\overline{n}}^m a_{\overline{n}}^m \cdots a_{\overline{n}}^m a_{\overline{n}}^m a_{\overline{n}}^m a_{\overline{n}}^m \in H$, then $a_1a_2\cdots a_{n}\in H$. □
thus, we are done. Therefore, we may assume that $a_{\beta_1}a_{\beta_2^*}\cdots a_{\beta_{n+1}} \notin P_1$. Since P_1 is I – absorbing
I – primary and
\[a_{\beta_1}a_{\beta_2^*}\cdots a_{\beta_{n+1}} \in P_2 \implies a_{\beta_1}a_{\beta_2^*}\cdots a_{\beta_{n+1}} \in P_2 \cap \cdots \cap P_k. \]
Consequently
\[a_{\beta_1}a_{\beta_2^*}\cdots a_{\beta_{n+1}} \in \sqrt{H}, \]
which is a contradiction. Similarly, $a_{\beta_1}a_{\beta_2^*}\cdots a_{\beta_{n+1}} \in P_1$ for every
$2 \leq i \leq k$. Then $a_1a_2\cdots a_n \in H$.

Proposition 2.6 Assume that P is an ideal of a ring R with $\sqrt{IP} \subseteq IP$. If \sqrt{P} is an $(n-1)$ – absorbing ideal of R, then P is an n – absorbing I – primary ideal of R.

Proof. Let \sqrt{P} be an $(n-1)$ – absorbing, and consider $b_1b_2\cdots b_{n+1} \in P \setminus IP$ for some $b_1, b_2, ..., b_{n+1} \in R$ and $b_1b_2\cdots b_n \notin P$. Since
\[(b_1b_{n+1})(b_2b_{n+1})\cdots (b_nb_{n+1}) = (b_1b_2\cdots b_n)^n b_{n+1} \in P \subseteq \sqrt{P} - I\sqrt{P}. \]
Then for some $1 \leq i \leq n$,
\[(b_1b_{n+1}) \cdots (b_i\cdots b_n) = (b_1\cdots b_{n+1}) \] and so $b_1\cdots b_i \cdots b_{n+1} \in \sqrt{P}$. Consequently P is an
n – absorbing I – primary ideal of R.

We recall that a proper ideal Q of R is an n – absorbing primary if $a_1, a_2, ..., a_{n+1} \in R$
and $a_1a_2\cdots a_{n+1} \in Q$, then $a_1a_2\cdots a_n \in Q$ or the
product of a_{n+1} with $(n-1)$ of $a_1, a_2, ..., a_n$ is in
\sqrt{Q}. It is clearly every n – absorbing primary is an n – absorbing I – primary.

Proposition 2.7 Suppose that R is a ring and $r \notin R$, a nonunit and $m \geq 2$ is not negative integer. Let
$(0: r) \subseteq (a)$, then (r) is an n – absorbing I – primary, for some I with $IP \subseteq I^m$ if and only if (a) is
an n – absorbing primary.

Proof. Let (r) be an n – absorbing I^m – primary, and
$a_1a_2\cdots a_{n+1} \in (r)$ for some $a_1, a_2, ..., a_{n+1} \in R$. If
$a_1a_2\cdots a_{n+1} \notin (r)$, then $a_1a_2\cdots a_n \in (r)$ or
$a_1\cdots a_{n+1} \in \sqrt{(r)}$ for some $1 \leq i \leq n$. Based on
this assumption, $a_1a_2\cdots a_{n+1} \in (r^m)$. Hence
$a_1a_2\cdots a_n(a_{n+1} + r) \in (r)$. If $a_1a_2\cdots a_n(a_{n+1} + r) \notin (r^m)$,
then $a_1a_2\cdots a_n(a_{n+1} + r) \in (r)$ or
$a_1\cdots a_{n+1} \in \sqrt{(r)}$ for some $1 \leq i \leq n$. So
$a_1a_2\cdots a_n \in (r)$ or $a_1\cdots a_{n+1} \in \sqrt{(r)}$ for
some $1 \leq i \leq n$. Hence, suppose that
$a_1a_2\cdots a_n(a_{n+1} + r) \in (r^m)$. Thus $a_1a_2\cdots a_{n+1} \in (r^m)$ implies that $a_1a_2\cdots a_n \in (r)$.
Therefore, there exists $s \in R$ such that $a_1a_2\cdots a_n \neq sr^{m-1} \in
(0: r) \subseteq (r)$. Consequently $a_1a_2\cdots a_n \in (r)$.

Proposition 2.8 Assume V is a valuation domain and
$n \in \mathbb{N}$. Let P be an ideal of V such that P^{n+1} is not principal. Then P is an n – absorbing I^{n+1} – primary if
and only if it is an n – absorbing primary.

Proof. (\Rightarrow) Let P be an n – absorbing I^n – primary that is not n – absorbing primary. Therefore, there are
$a_1, a_2, ..., a_{n+1} \in R$ such that $a_1\cdots a_{n+1} \in P$, but neither
$a_1\cdots a_n \in P$ nor $a_1\cdots a_{n+1} \in \sqrt{P}$ for any $1 \leq i \leq n$. Hence $(a_i) \nsubseteq P$ for any $1 \leq i \leq n + 1$. And so
V is a valuation domain, thus $P \subseteq (a_i)$ for any $1 \leq i \leq n + 1$, and so $P^{n+1} \subseteq (a_1\cdots a_{n+1})$. Therefore
P^{n+1} is not principal, then $a_1\cdots a_{n+1} \in P - P^{n+1}$. Therefore P is an n – absorbing I^{n+1} – primary implies that either $a_1\cdots a_n \in P$ or $a_1\cdots a_{n+1} \in \sqrt{P}$ for some $1 \leq i \leq n$, which is a contradiction. Hence P is an n – absorbing primary ideal of R.

(\Leftarrow) Is trivial.

Theorem 2.9 We consider that $f \subseteq P$ are a proper ideal of a ring R.

121
1. Let P is an n-absorbing I-primary ideal of R, then P/J is a n-absorbing I-primary ideal of R/J.

2. Let $I \subseteq IP$ and P/J be an n-absorbing I-primary ideal of R/J, then P is an n-absorbing I-primary ideal of R.

3. Let $IP \subseteq J$ and P be an n-absorbing I-primary ideal of R, then P/J is a weakly n-absorbing primary ideal of R/J.

4. Let $JP \subseteq IP$, J be an n-absorbing I-primary ideal of R and P/J be a weakly n-absorbing primary ideal of R/J, then P is an n-absorbing I-primary ideal of R.

Proof. (1) Set $b_1, b_2, \ldots, b_{n+1} \in R$ such that $(b_1 + J)(b_2 + J) \cdots (b_{n+1} + J) \in (P/J) - I(P/J) = (P/J) - (I(P) + J)/J$. Then $b_1b_2 \cdots b_{n+1} \in P - IP$ and from being P is an n-absorbing I-primary, we obtain $b_1 \cdots b_n \in P$ or $b_1 \cdots b_i \cdots b_{n+1} \in \sqrt{P}$ for some $1 \leq i \leq n$. And so $(b_1 + J) \cdots (b_{i-1} + J)(b_{i+1} + J) \cdots (b_{n+1} + J) \in (P/J) - (I(P) + J)/J$. Then $b_1b_2 \cdots b_{n+1} \in P - IP$ and from being P/J is an n-absorbing I-primary, we obtain $b_1 \cdots b_i \cdots b_{n+1} \in \sqrt{P}$ for some $1 \leq i \leq n$. Therefore $b_1 \cdots b_n \in P$ or $b_1 \cdots b_i \cdots b_{n+1} \in \sqrt{P}$ for some $1 \leq i \leq n$, hence P is an n-absorbing I-primary ideal of R.

(2) Resulted directly from part (1).

(4) Set $b_1 \cdots b_{n+1} \in P - IP$ where $b_1, b_2, \ldots, b_{n+1} \in R$. Note that $b_1 \cdots b_{n+1} \in JP$ because $JP \subseteq IP$. If $b_1 \cdots b_{n+1} \in J$, then either $b_1 \cdots b_n \in J \subseteq P$ or $b_1 \cdots b_i \cdots b_{n+1} \in \sqrt{J} \subseteq \sqrt{P}$ for some $1 \leq i \leq n$, since J is an n-absorbing I-primary. If $b_1 \cdots b_{n+1} \notin J$, then $(b_1 + J)(b_2 + J) \cdots (b_{n+1} + J) \in (P/J) - (I(P) + J)/J$ and so either $(b_1 + J)(b_2 + J) \cdots (b_n + J) \in P/J$ or $(b_1 + J)(b_2 + J) \cdots (b_i + J)(b_{i+1} + J) \cdots (b_{n+1} + J) \in \sqrt{P}/J = \sqrt{P}/J$ for some $1 \leq i \leq n$. Therefore $b_1 \cdots b_n \in P$ or $b_1 \cdots \hat{b}_i \cdots b_{n+1} \in \sqrt{P}$ for some $1 \leq i \leq n$. Hence P is an n-absorbing I-primary ideal of R.

(3) Resulted directly from part (1).

Proposition 2.10 Suppose that P is an ideal of a ring R such that IP is an n-absorbing primary ideal of R.

If P is an n-absorbing I-primary ideal of R, then P is an n-absorbing primary ideal of R.

Proof. Let $a_1, a_2, \ldots, a_{n+1} \in P$ for some elements $a_1, a_2, \ldots, a_{n+1} \in P$ such that $a_1, a_2, \ldots, a_n \notin P$. If $a_1, a_2, \ldots, a_{n+1} \in IP$, then $P = IP$ is an n-absorbing primary and $a_1, a_2, \ldots, a_n \notin IP$ implies that $a_1, a_2, \ldots, a_{n+1} \in \sqrt{IP} \subseteq \sqrt{P}$ for some $1 \leq i \leq n$, and so we are done. When $a_1, a_2, \ldots, a_{n+1} \in IP$ clearly the result follows.

Theorem 2.11 If P is an n-absorbing I-primary ideal of a ring R and (a_1, \ldots, a_{n+1}) is an $I - (n + 1)$-tuple of P for some $a_1, \ldots, a_{n+1} \in R$. Then for every element $a_1, a_2, \ldots, a_m \in \{1, 2, \ldots, n + 1\} $ which $1 \leq m \leq n$,

$$ a_1 \cdot \hat{a}_1 \cdot a_2 \cdot \hat{a}_2 \cdot \ldots \cdot \hat{a}_m \cdot \hat{a}_{n+1} \cdot m \subseteq IP $$

Proof. We claim that by using induction on m. We take $m = 1$ and assume $a_1 \cdots \hat{a}_1 \cdots a_{n+1}x \notin IP$ for some $x \in P$. Then $a_1 \cdots \hat{a}_1 \cdots a_{n+1}(a_{n+1} \cdot x) \notin IP$. Since P is an n-absorbing I-primary ideal of R and $a_1 \cdots \hat{a}_1 \cdots a_{n+1} \notin P$, we conclude that $a_1 \cdots \hat{a}_1 \cdots a_{n+1} \cdot (a_{n+1} \cdot x) \in \sqrt{P}$, for some $1 \leq a_2 \leq n + 1$ different from a_1. Hence $a_1 \cdots \hat{a}_1 \cdots a_{n+1} \in \sqrt{P},$ a contradiction. Thus $a_1 \cdots \hat{a}_1 \cdots a_{n+1} \cdot P \subseteq IP$. Here assume that $m > 1$ and for every integer less than m the prove does hold. Let $a_1 \cdots \hat{a}_1 \cdots a_{n+1} \cdot x_1, x_2, \ldots, x_m \notin IP$ for some $x_1, x_2, \ldots, x_m \in P$. According to the induction assumption, we conclude that there exists $\zeta \in IP$ such that
\[a_1 \cdots a_{n-1} a_n + x_1 \in \sqrt{\mathcal{P}} \]

\[\mathcal{P} = (a_1, a_2, \ldots, a_n) \subseteq \mathcal{M} \]

Proof. (i) Since \(\mathcal{P} \) is assumed not to be an \(n \)-absorbing primary ideal of \(R \), so \(\mathcal{P} \) has an \((n+1) \)-tuple zero \((b_1, \ldots, b_{n+1})\) for some \(b_1, \ldots, b_{n+1} \in R \). Let \(c_1 c_2 \cdots c_{n+1} \notin \mathcal{P} \) for some \(c_1, c_2, \ldots, c_{n+1} \in \mathcal{P} \). Therefore, according to the Theorem 2.11, there is \(\lambda \in \mathcal{P} \) such that \((b_1 + c_1) \cdots (b_{n+1} + c_{n+1}) = \lambda + c_1 c_2 \cdots c_{n+1} \notin \mathcal{P} \). Hence either \((b_1 + c_1) \cdots (b_n + c_n) \in \mathcal{P} \) or \((b_1 + c_1) \cdots (b_i + c_i) \cdots (b_{n+1} + c_{n+1}) \in \sqrt{\mathcal{P}} \) for some \(1 \leq i \leq n \). Thus either \(b_1 \cdots b_n \in \mathcal{P} \) or \(b_1 \cdots \hat{b}_i \cdots b_{n+1} \in \sqrt{\mathcal{P}} \) for some \(1 \leq i \leq n \), which is a contradiction. Hence \(\mathcal{P}^{n+1} \subseteq \mathcal{P} \).

(ii) Clearly, \(\sqrt{\mathcal{P}} \subseteq \mathcal{P} \). As \(\mathcal{P}^{n+1} \subseteq \mathcal{P} \), we obtain \(\sqrt{\mathcal{P}} \subseteq \sqrt{\mathcal{P}} \), we are done.

References

