https://doi.org/10.25130/tjps.v28i3.1436

Tikrit Journal of Pure Science

ISSN: 1813 – 1662 (Print) --- E-ISSN: 2415 – 1726 (Online)

TIPS

Journal Homepage: http://tjps.tu.edu.iq/index.php/j

M Nano –Separation Axioms $M_N - T_i$ Spaces

Nawras Hasan Mohammed, Ali A. Shihab Mathematics Department, College of Education for Pure Science, Tikrit University, Tikrit, Iraq

ARTICLE INFO.

Θ

Article history:	
-Received:	13 / 9 / 2022
-Received in revised form: 18 / 9 / 2022	
-Accepted:	13/ 10 / 2022
-Final Proofreading:	8 / 6 / 2023
-Available online:	25 / 6 / 2023
Keywords: $M_N - T_i$ Spaces, $M_N - semi - T_i$	
Spaces, $M_N - pre - T_i$ Spaces.	
Corresponding Author:	
Name: Nawras Hasan Mohammed	
E-mail: <u>nawras.h.mohammed@st.tu.edu.iq</u>	
<u>draliabd@tu.edu.iq</u> , <u>ali.abd82@yahoo.com</u>	
Tel:	
©2022 COLLEGE OF	SCIENCE, TIKRIT
UNIVERSITY. THIS IS	AN OPEN ACCESS
ARTICLE UNDER THE CC BY LICENSE	
http://creativecommons.org/licenses/by/4.	
0/	

ABSTRACT

T he aim of the research is to define new types of M –nano –separation axioms then named $M_N - T_i$ ($M_N - semi - T_i, M_N - pre - T_i$), where i = 0,1,2, Also there are some theorems and examples shown the relationship among these types of spaces.

بديهيات الفصل النانوبة من النمط M

نورس حسن محد، علي عبد المجيد شهاب

قسم الرياضيات، كلية التربية للعلوم الصرفة، جامعة تكريت، تكريت ، العراق.

الملخص

 $M_N - T_i \ (M_N - semi - T_i \ , M_N - pre -$ تم تسميتها M_N تم تسميتها من البحث هو تعريف أنواع جديدة من بديهيات الفصل من النمط M_N تم تسميتها , where i = 0,1,2

1. Introduction and preliminaries

The notion of M-open sets in topological spaces were introduced by El-Ma introduced ghrabi and Al-Juhani [5] in 2011 and studied some of their properties.

In 2013Thivagar M.lelis[4] introduce idea of Nanotopological space with respect to a subset X of universe U which is defined as an upper and lower approximation of X. The element of N-topological space is called a Nano-open sets. In 2019 A. Padma, M. Saraswathi and A. Vadivel, [1] introduced Nano M-Separation axioms. In 2022 Mohmmed N.H and Shihab Ali A. [3] introduced definition of Nano-Mopen set. The purpose of this paper is to discuss the separation axioms via Nano-Mopen sets such as Nano-M- T_i spaces where = 0,1,2, Nano-Moregular and Nano-M-Normal spaces are introduced and some of the properties are discuss spaced.

2. Some Types $M_N - T_i$ -spaces, where i = 0, 1, 2

Definition 2.1[2]: A $Nts(U, T_R(x))$ is called

TJPS

https://doi.org/10.25130/tjps.v28i3.1436

1- $M_N - T_0$ space, if for any two points $L \neq$

 $m, \exists M - No \text{set containing only of them.}$

2- $M_N - T_1$ space, if for any two points $L \neq m, \exists M - No$ sets such that one containing *L* but not *m* and the other containing *m* but not *L*.

3- $M_N - T_2$ space, if for any two points $L \neq m$, \exists disjoint M - No sets G and H for every $L \neq m \in U$ such that $L \in G$ and $f \in H$.

Definition 2.2[1]: A function $f: (U, T_R(x)) \rightarrow (Q, T_R(y))$ is said to be

1- M_N -continuous if for each N - c set a of Q, the set $f^{-1}(a)$ is $M_N - c \subseteq U$.

2- M_N -irresolute if for each $a M_N - c$ set of Q, then $f^{-1}(a)$ is $M_N - c$ in U.

3. *M_N* – **Separation Axioms**

In this section, we define and study the ideal some types of $M_N - T_i$ space and obtained some of their basic results.

Definition 3.1: A space $(U, T_{R(x)})$ is said to be:

1- *M*-Nano semi- T_0 space $(M_N - S - T_0$ space) if $\exists x, y \in U, \exists G$ is M_{NS} -open set such that either $x \in G, y \notin G$ or $x \notin G, y \in G$.

2- *M*-Nano pre T_0 -space $(M_N - pre - T_0$ space), $\exists x, y \in U, \exists$ an M_N pre-open set containing only one of them.

Theorem 3.4: If $U_{R(x)} \neq U$, $U_{R(x)} \neq L_{R(x)}$, $L_{R(x)} \neq \emptyset$, then $(U, T_{R(x)})M_N - S - T_0(M_N - pre - T_0)$ for any $a, b \in U$ such that $a \in U_{R(x)}$ and $b \in [U_{R(x)}]^c$ or $a \in B_{R(x)}$ and $b \in L_{R(x)}$.

Proof: To prove That $(U, T_{R(x)})$ is $M_N - S - T_0$.

In this case $T_{R(x)} = \{U, \phi, L_{R(x)}, U_{R(x)}, B_{R(x)}\}$. Let $a \in U_{R(x)}$ and $b \in \{U_{R(x)}\}^c$ then $U_{R(x)}$ is Nanoopenset containing a and $b \notin U_{R(x)}$. That is U is $M_N - S - T_0$ for any a and b. Suppose $a \in L_{R(x)}$ and $b \in B_{R(x)}$. Since $L_{R(x)}$ is N-o set containing a and $b \notin L_{R(x)}$. That is U is $M_N - S - T_0$ for any a and b. **Corollary 3.5:** If $U_{R(x)} = U$ and $L_{R(x)} \neq \phi$, then Uis $M_N - S - T_0(M_N - pre - T_0), \forall a, b \in U$, such that $a \in U_{R(x)}$ and $b \in B_{R(x)}$.

Corollary3.6: Then $U_R(x) = L_{R(x)} = x$, if Uis $M_N - S - T_0(M_N - pre - T_0), \forall a, b \in U$, such that $a \in U_{R(x)}$ and $b \in [U_{R(x)}]^c$

Theorem 3.7: Let($U, T_{R(x)}$) be NTs, then $\forall M_N - T_0$ -Space is $M_N - S - T_0(resp M_N - p - T_0)$.

Proof: Let U be $M_N - T_0$ -Space, x and y be two distinct points of U, as U is $M_N T_0$. $\exists M_{No}$ set such that $x \in G$ and $y \notin G$, Since every M_{No} set is M_N -S(resp $M_N - pre$)-openand hence G is $M_N - S(resp M_N - pre)$ -os such that $x \in G$ and $\notin G$. U is $M_N - S - T_0(resp M_N - pre - T_0)$ space. But the converse of the theorem need not be true in general.

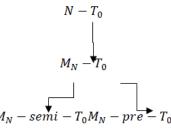
Example 3.8: Let $U = \{1,2,3,4\}, \frac{U}{R} = \{\{1\}, \{2,4\}, \{3\}\}, X = \{1,2\}$ and $T_{R(x)} = \{U, \emptyset, \{1\}, \{1,2,4\}, \{2,4\}\}$ be a NT on U. Wehave

 $M_N so(U, X) =$

$$\{ U, \phi, \{1\}, \{1,3\}, \{2,4\}, \{1,2,4\}, \{2,3,4\}, \\ M_N po(U, X) = \\ \{ U, \phi, \{1\}, \{2\}, \{4\}, \{1,2\}, \{1,4\}, \{2,4\}, \{1,2,3\}, \{1,2,4\} \{1,3,4\} \}$$

1-Let $x = \{1,3\}$ and $y = \{3\}$ then it is $M_N - S - T_0$ space but not $M_N - T_0$ space. 2-Let $x = \{2\}$ and $y = \{3\}$ then it is is $M_N - per - T_0$ space but not $M_N - T_0$ -space.

Diagram (1)



Definition 3.9.: A space $(U, T_{R(x)})$ is said tobe:

1- M_N -Semi $-T_1$ -space for every $x \neq y \in U, \exists$ two open set such that one containing x but noty and the other containing y but not x.

2- M_N -pre $-T_1$ -space $\forall x, y \in U, \exists$ two M_N -pre-open set such that one containing *x* but not *y* and the other containing *y* butnot *x*.

Theorem 3.10: Every $M_{N-}T_1$ is $M_N - S - T_1$.

Theorem 3.11: Every $M_N - T_1$ is M_N -pre- T_1 .

Proof: Let U be $M_{N-}T_1$ space and $x \neq y$ in U. Then \exists distinct M - No sets G and H such that $x \in G$ and $y \in H$. As every M-N-O set is $M_N - preT_1(resp M_N - semi T_1)$ open G and H are distinct $M_N - pre(res M_N - S)$ open sets such that $x \in G$ and $y \in H$. Converse of above theorem is need not be true in general.

Example $U = \{1, 2, 3, 4\}, U/R_1 =$ 3.12: Let $\{\{1\}, \{2,4\}, \{3\}\}, x_1 = \{1,2\} and T_{R(x_1)} =$ $\{U, \phi, \{1\}, \{1, 2, 4\}, \{2, 4\}\}$ be a *NT* on *U*, we have $MNSo(U, x_1) =$ $\{U, \emptyset, \{1\}, \{1,3\}, \{2,4\}, \{1,2,4\}, \{2,3,4\}\}$ $MNpo(U, x_1) =$ $\{U, \emptyset, \{1\}, \{2\}, \{4\}, \{1,2\}, \{1,4\}, \{2,4\}, \{1,2,3\}, \{1,2,4\}, \{1,3,4\}\}$ $U/R_2 = \{\{1,2\}, \{3\}, \{4\}\}, x_2 = \{2,3\}$ and $T_{R(x_2)} =$ $\{U, \phi, \{3\}, \{1,3,4\}\}, \{1,4\}\}.$ We have $MNSo(U, x_2) =$ $\{U, \phi, \{3\}, \{1,4\}, \{2,3\}, \{1,2,4\}, \{1,3,4\}\}$ $MNpo(U, x_2) =$ $\{U, \phi, \{1\}, \{3\}, \{4\}, \{1,3\}, \{1,4\}, \{2,4\}, \{1,2,3\}, \{1,3,4\}\}.$ 1- Let $x = \{1,3\}$ and $y = \{1,2\}$ then it is $M_N - S - S$ T_1 space but not $M_N - T_1$ space. 2- Let $x = \{2\}$ and $y = \{3\}$ then it is $M_N - pre - T_1$ space but not $M_N - T_1$ space. **Theorem 3.13:** If $U_{R(x)} = U$ and $L_{R(x)} \neq \phi$, and $U_R \neq L_{R(x)}$ then U is $M_N - S - T_1(M_N - pre - T_1)$ for

any $a, b \in U$ s.t. $a \in L_{R(x)}$ and $b \in B_{R(x)}$.

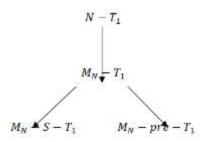
TJPS

https://doi.org/10.25130/tjps.v28i3.1436

Proof: To prove $M_N - pre - T_1$. Let $a, b \in U$ such that $a \in L_{R(x)}$ and $b \in B_{R(x)}$, since $L_{R(x)}$ and $B_{R(x)}$ are $M_N - o$ Sets and $L_{R(x)} \cap B_{R(x)} = \emptyset$ This implies to that is U is $M_N - pre - T_1(M_N - S - T_1)$ for any a and b.

Theorem 3.14: Let $(U, T_{R(x)})$ be a *NTs* then $\forall M_N - pre - T_1(res M_N - S - T_1)$ space is $M_N - pre - T_0$ space. **Proof:** Let *U* be $M_N - pre - T_1(res M_N - S - T_1)$ space and *a* and *b* be two distinct points of *U*, as *U* is $M_N - pre - T_1(res.M_N - S - T_1)$ space $\exists M_N - pre(resp.M_N - S)$ open set *G* such that $a \in G$ and $b \in G$, since every M_N -open set is $M_N - pre(res.M_N - S)$ open sets such that $a \in G$ and $b \notin G \Longrightarrow U$ is $M_N - pre - T_0$.

Diagram (2)

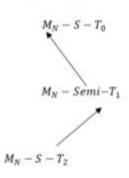


Definition 3.15: Aspace $(U, T_{R(x)})$ is said to be:

1- $M_N - semi - T_2$ space $(M_N - S - T_2$ space)that there exist two disjoint open sets *G* and *V* for every $x \neq y \in U$ such that $x \in G$ and $y \in V$.

2- $M_N - pre - T_2$ space $(M_N - p - T_2$ space) $\exists x, y \in U \exists two disjoint M-N open sets G and V for every <math>x \neq y \in U$ s.t. $x \in G$ and $y \in V$.

Diagram (4)



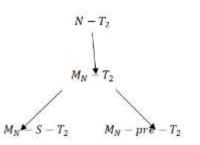
Theorem 3.19: If $f: (U, T_{R(x)}) \to (Q, T_{R(y)})$ is injective M_N sets function and Q is a $N - T_0$ space then U is a $M_N - S - T_0$ space.

Proof: Suppose that *a* and *b* is any points in $U, a \neq b$ and *f* injective such that f(a), f(b) in $Q, f(a) \neq$ f(b), by using Remark (2) (every N-open set is $M_N - semi$ open $(M_N - pre)$ set. Since *Q* is $M_N S - T_0$ space, $\exists a \text{ NOS } G$ in *Q* containing f(a) butnot f(b), Againsince *f* is M_N sets, $f^{-1}(G)$ is $aM_N -$ OSin U containing*a* but not *b*. Therefore *U* is a $M_N - S - T_0$ space. **Theorem 3.16.:** Every $M_N - T_2$ space is $M_N - p - T_2(resp. M_N - S - T_2)$ space.

Proof: Let U be $M_N - T_2$ space and let $x \neq y$ in U, then \exists disjoint $M_N - O$ sets G and H such that $x \in G, y \in H$. As every $M_N - Oset$ is $M_N - pre(resp. M_N - S)$ open G and H are disjoint $M_N - pre(resp. M_N - S)$ open sets such that $x \in G, y \in H$. Converse of above theorem is need not be true in general.

Example 3.17: From Example 3.12. Let $x = \{1\}, y = \{3\}, x, y \in U, x \neq y$, then it is clear that $x \in G, g \notin G$ and $y \in H, x \notin H$, then we can say that it is $M_N - pre - T_0$ space but not $M_N - p - T_2(resp. M_N - S - T_2)$ space.

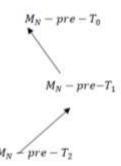
Diagram (3)



Theorem 3.18: Let $(U, T_{R(x)})$ be a N - T space then for each $M_N - p - T_2(resp. M_N - S - T_2)$ space is $M_N - pre - T_0$ space.

Proof: Let U be $M_N - p - T_2(resp. M_N - S - T_2)$ space and x, y be two distinct points of U, as U is $M_N - p - T_2(resp. M_N - S - T_2)$ space $\exists M_N - pre(res. M_N - S)$ open set G such that $x \in G, y \notin G$, since every M_N - open set is $M_N - p$ (resp. $M_N - S$) open and hence G is $M_N - pre(resp. M_N - Semi)$ open set such that $x \in G, y \notin G \Rightarrow U$ is $M_N - p - T_0$.

Diagram (5)



Theorem 3.20: If $f: (U, T_{R(x)}) \to (Q, T_{R(y)})$ is an injective M_N irr form and Q is a $M - NST_0$ then U is a $M_N - S - T_0$.

Proof: Suppose Q is $M_N - S - T_0$ space. Let a and b be any two distinct points in U. Since f is injective f(a) and f(b) are distinct points in Q. Since Q is a $M_N - S - T_0$ space, $\exists a M_N$ - open set G in Q containing f(a) butnot f(b). Again, since f is $M_N - Sirr, f^{-1}(G)$ is a M - NOSinU containing abut not b therefore U is a $M_N - S - T_0$ space.

https://doi.org/10.25130/tjps.v28i3.1436

Theorem 3.21: If $f:(U, T_{R(x)}) \to (Q, T_{R(y)})$ is an injective M_N irr function and Q is a $M_N - S - T_1(M_N - pre - T_1)$ space. Then U is also a $M_N - S - S - T_1(M_N - pre - T_1)$ space.

Proof: Let *a* and *b* be pair of distinct points in *U*. since *f* is injective, \exists two distinct points *c* and *d* of *Q* such that f(a) = c, f(b) = d. Since *Q* is a $M_N - S - T_1$ space, $\exists M - No$ sets *G* and *W* in *Q* such that $c \in G, d \notin G$ and $c \notin W, d \in W$. That is $a \in f^{-1}(G), a \notin f^{-1}(W)$ and $b \in f^{-1}(W), b \notin$ $f^{-1}(G)$, since *f* is $M_N - irr$ function $f^{-1}(G)$ and $f^{-1}(W)$ are M - No sets in *U*. Thus, for any two distinct points *a*, *b* of $U \exists M - No$ sets $f^{-1}(G)$ and $f^{-1}(W)$ such that $a \in f^{-1}(G), a \notin f^{-1}(W)$ and $b \in f^{-1}(W)$ and $b \notin f^{-1}(G)$. Therefore *U* is $M_N - S - T_1$ space.

Theorem 3.22: If $f: (U, T_{R(x)}) \rightarrow (Q, T_{R(y)})$ is a M-N sets injective and Q is a $N - T_1$ –space. Then U is a $M_N - pre - T_1(M_N - S - T_1)$ space.

Proof: for any two distinct points a, b of $U \exists$ two distinct points c and d of Q such that f(a) = c, f(b) = d, since Q is a $N - T_1$ –space, \exists a $M_N oSG$ and W in Q such that $a \in G, b \notin G$ and $a \notin W, b \in W$. That is $a \in f^{-1}(G), a \notin f^{-1}(W)$ and $b \in f^{-1}(W), b \notin f^{-1}(G)$. Since f is a M-Ncts function $f^{-1}(G)$ and $f^{-1}(W)$ are M_N –open sets in U. Thus, for any two distinct points a, b of $U \exists M_N oSf^{-1}(G)$ and $f^{-1}(W)$ Such that $a \in f^{-1}(G), a \notin f^{-1}(W)$ and $b \in f^{-1}(W), b \notin f^{-1}(G)$. Therefore, U is a $M_N - pre - T_1$ space.

Theorem 3.23: If $f: (U, T_{R(x)}) \rightarrow (Q, T_{R(y)})$ is a $M_N cts$ injection and Q is a $N - T_2$ -space, then Uis a $M_N - S - T_2(M_N - p - T_2)$ space.

Proof: for any two distinct points *a* and *b* of *U*, \exists two distinct points *c*, *d* of *Q* such that f(a) = c, f(b) = d, since *Q* is $N - T_2$ space, \exists a disjoint Nos *G* and *W*in*Q* such that $a \in G$ and $b \in W$. That is $a \in f^{-1}(G)$ and $b \in f^{-1}(W)$. Since *f* is a N - Mcts function, $f^{-1}(G)$ and $f^{-1}(W)$ are $M_N oS$ in *U*. Further as *f* is injective $f^{-1}(G) \cap f^{-1}(W) = f^{-1}(G \cap W) = f^{-1}(\phi) = \phi$. Thus, for any two distinct points*a* and *b* of $U, \exists M_N oSf^{-1}(G)$ and $f^{-1}(W)$ such that $a \in f^{-1}(G)$ and $b \in f^{-1}(W)$. Therefore *U* is $M_N - S - T_2$ space.

Theorem 3.24: If $f: (U, T_{R(x)}) \to (Q, T_{R(y)})$ is an injective, M-N irr function and Q is a $M_N - p - T_2(M_N - S - T_2)$ space, then Uisalso a $M_N - p - T_2(resp. M_N - S - T_2)$ space.

Proof: Let *a* and *b* be a pair of distinct pointsin*U*. Since *f* is injective are distinct in*Q*such that f(a) and f(b) are distinct points in *Q*. \exists two distinct points and dof *Q* such that f(a) = c, f(b) = d. Since *Q* is a $M_N - T_2$ space, \exists a disjoint M - NoSG and *W* in *Q* such that $a \in G, b \in W$. That is $a \in f^{-1}(G), b \in f^{-1}(W)$. Since *f* is a $M_N - irr$ function $f^{-1}(G)$ and $f^{-1}(W)$ are disjoint $M_N os$ in*U*. Thus, for any two distinct points *a* and *b* of *U*, \exists disjoint $M_N osf^{-1}(G)$ and $f^{-1}(w)$ such that $a \in f^{-1}(G)$ and $b \in f^{-1}(W)$, Therefore U is $M_N - p - T_2$ space.

Definition 3.25: A $M_N - T_S(U, T_{R(x)})$ be called M-Nano-regular space (briefly $M_N - R - S$). If for any $M_N - cl$ –set W and a point p such that $p \notin W \exists$ a disjoint $M_N - o$ sets M and Qsuch that WCM and $p \in Q$

Theorem 3.26: If $U_{R(x)} = U, L_{R(x)} \neq \phi, U_{R(x)} \neq L_{R(x)}$, then the space $U \quad \text{is}M_N - R$ -space. **Proof:** since $U_{R(x)} = U$ and $L_{R(x)} \neq \phi$, then $T_{R(x)} = \{U, \phi, L_{R(x)}, B_{R(x)}\}$ the $M_N - cl$ sets are $U, \phi, [L_{R(x)}]^C, [B_{R(x)}]^C$. $\forall M_N - 0$ set in $T_{R(x)}$ are $M_N - cl$ set in U, that is $L_{R(x)} = [B_{R(x)}]^C, B_{R(x)} = [L_{R(x)}]^C$.

Thus, U is extremely disconnected space. Therefore, U is $M_N - R$ -space.

Lemma 3.27: when $U_{R(x)} \neq U$, $L_{R(x)} = U_{R(x)} = x$. Then the space *U* is not $M_N - R$ -space.

Theorem 3.28:If $U_{R(x)} \neq U$, $L_{R(x)} \neq \emptyset$, then the space is not $M_N - R$ –space.

Proof: when $U_{R(x)} \neq U, L_{R(x)} \neq \phi$, then $T_{R(x)} = \{U, \phi, L_{R(x)}, U_{R(x)}, B_{R(x)}\}$. The M_N -cl-sets in U, are $U, \phi, [L_{R(x)}]^C, [U_{R(x)}]^C$ and $[B_{R(x)}]^C$. All these $M_N - cl$ -sets contained only inU, so that if taking any point p out of any $M_N - cl$ -set, then the only $M_N - o$ -set which contain the $M_N - cl$ -set is U, and $p \in U$. Hence U is not $M_N - R$ -space.

Definition 3.29: A $M_N - R$ -space which also $M_N - T_1$ space be called $M_N - T_3$ space.

Example 3.30:Let $U = \{1,2,3,4\}$ with $U/R = \{\{1,2\},\{3,4\}\}$ and $X = \{1,2,3\}$. Then $T_{R(x)} = \{U, \emptyset, \{1,2\}, \{3,4\}\}$, the $M_N - cl$ –sets are $U, \phi, \{1,2\}$ and $\{3,4\}$. Then U is $M_N - T_1$ for $\{1,2\}$ and $\{3,4\}$. And U is $M_N - R$ Space. U is $M_N - T_3$ space for $\{1,2\}$ and $\{3,4\}$.

Definition 3.31: A space *U* be called M_N -Normal iff \forall two disjoint $M_N - cl W_1, W_2 \subseteq U, \exists$ disjoint M_N -oset *G* and *H* such that $W_1 \subset G, W_2 \subset H$.

Theorem 3.32: If $U_{R(x)} = U, U_{R(x)} \neq L_{R(x)}$ and $L_{R(x)} \neq \emptyset$ then the space U is $M_N - N$ -space.

Proof: when $U_{R(x)} = U$ and $L_{R(x)} \neq \emptyset$. then $T_{R(x)} = \{U, \emptyset, B_{R(x)}, L_{R(x)}\}$, the $M_N - cl$ -sets are $U, \emptyset, \{B_{R(x)}\}^C$ and $\{U_{R(x)}\}^C$.

Suppose $W_1 = [B_{R(x)}]^C$ and $W_2 = [L_{R(x)}]^C$, $W_1 \cap W_2 = \emptyset$. Since $W_1 c L_{R(x)}$ and $W_2 c B_{R(x)}$. Since $L_{R(x)}$ and $B_{R(x)}$ are disjoint $N_N - o$ -sets. Hence is M_N -Normal-space.

Lemma 3.33: If $U_{R(x)} \neq U$, $L_{R(x)} \neq \emptyset$, then the space is $M_N - N$ –space.

Proof: In this case there are only three *cl*-sets except *U*. these cl-sets are $[L_{R(x)}]^{c}$, $[B_{R(x)}]^{c}$ and $[U_{R(x)}]^{c}$, since all these cl-sets are not disjoint. So that *U* is $M_{N} - N$ –space.

https://doi.org/10.25130/tjps.v28i3.1436

Definition 3.34: Aspace $(U, T_{R(x)})$ be called $M_N - S - N$ -space $(M_N - pre - Normal)$ if for any two disjoint $M_N - S - cl(res. M_N - pre - cl)$ sets W_1 and $W_2 \exists$ adisjoint $M_N - S - O(res. M_N - pre - o)$ sets G and H such that $W_1 \subset G$ and $W_2 \in H$, and symbolized be $M_N - S - Normal(res. M_N - pre - N)$.

Theorem 3.35: $\forall M_N$ –extremely disconnected space the following are true:

References

[1] A. Padma, M. Saraswathi and A. Vadivel, More on generalizations of Nano M- continuous functions, submitted.

[2] A. Padma, M. Saraswathi and A. Vadivel,"Nano *M* separation axioms", *Malaya Journal of Matematic*, S(1),pp 673-678, (2019).

[3] N.H. Mohammed and A.A.Shihab, "M-open Nano Topological spaces", , first international conference for physics and mathematics IEEE Accepted.(2022).

a) Every
$$M_N - N$$
 -space is $M_N - S - N$

b) Every $M_N - N$ -space is $M_N - p - N$.

Proof: a) If *U* be extremely disconnected space and *U* is $M_N - N$ -space [Theorem 3.32]. Since $T_{R(x)} = M_N - S - o$.

b) Since every M_N -open is M_N -pre then U is M_N -pre. **Definition 3.36:** A $M_N - N$ -space which also $M_N - T_1$ space be called $M_N - T_4$ space $(M_N - T_4)$.

[4] M. L. Thivagar and C. Richard, "on Nano forms of weakly open sets", *International Journal of Mathematics and Statistics Invention*, 1(1), PP 31-37,(2013).

[5] A.I.El-Maghrabi and M.A.Al-Juhani,"M-open sets in topological spaces,"*Pioneer J.Math.Sci.*, 4(2), pp.213-230,(2011).