4/9/2022

23 / 10 / 2022

7 / 5 / 2023

25 / 6 / 2023

https://doi.org10.25130//tjps.v28i3.1431

Tikrit Journal of Pure Science

ISSN: 1813 – 1662 (Print) --- E-ISSN: 2415 – 1726 (Online)

Journal Homepage: <u>http://tjps.tu.edu.iq/index.php/j</u>

I IPN

$\zeta\text{-}Open$ Sets and $\zeta\text{-}Continuity$

Sabah A. Tamer , Taha H. Jasim College of Computers Sciences and Mathematics, University of Tikrit, Tikrit, Iraq

ARTICLE INFO.

-Received in revised form: 18 / 9 / 2022

Keywords: ζ-Open Set, ζ-continuous map, ζ-Topological Space, ζ-Separation axioms

Article history:

-Final Proofreading:

-Available online:

-Received:

-Accepted:

ABSTRACT

In this work, the concept of ζ -Open Set was introduced as a

generalization of open set. Where it is shown that (X, τ_{ζ}) is a Topological Space.

Also, we study ζ -Interior, ζ -Closure, Continuity Function. At last basics Properties of them are given.

E-mail: sabahabc92@gmail.com

Corresponding Author: Name: Sabah A. Tamer

tahahameed@tu.edu.iq

Tel:

©2022 COLLEGE OF SCIENCE, TIKRIT UNIVERSITY. THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE http://creativecommons.org/licenses/by/4.0/

المجموعة المفتوحة من النوع ζ و الاستمرارية عليها

صباح عبد الله تمر ، طه حميد جاسم

كلية علوم الحاسوب و الرياضيات ، جامعة تكريت ، تكريت ، العراق

الملخص

في هذا البحث، تم تقديم مفهوم المجموعة المفتوحة من النوع ζ كتعميم للمجموعة المفتوحة. حيث تبين أن (X, T_ζ) هي فضاء طوبولوجي. كما ندرس وظيفة الاستمرارية من النوع ζ – مجموعة النقاط الداخلية من النوع ζ – الانغلاق من النوع ζ. و أخيرا سوف نناقش بديهيات الفصل لهذا النوع من المجموعات المفتوحة

1. Introduction and Basic concepts

In this work, we present some basic concepts in the topological space, such as the interior which the scientist studied S.-M. Jung and D. Nam year 2019 [1] and Closure which the scientist studied by N. Levine at year 1961 [2], as well as the continuous functions that the scientist studied by Cenap Ozel at 2021[3], Then the Separation axioms T_0 , T_1 , T_2 was studied by M. Bharti at 2019 [4]. Finally, some of the theorems and properties that we will generalize open set to the $\boldsymbol{\zeta}$ -Open set type.

The definition of topological space is given in [5] as If $X \neq \emptyset$, set, τ is a family of subsets $\tau \subseteq P(X)$ is named to be **topology** on *X* if the following holds:

1- $X, \emptyset \in \tau$.

- **2-** If $S, U \in \tau \Rightarrow S \cap U \in \tau$
- **3-** If $S_i \in \tau \Rightarrow \cup_i S_i \in \tau$
- We called a pair (X,τ) **Topological space**.

In [2] the interior set definition is given as: the topological space (X, τ) , if $S \subseteq X$. The interior of S denoted as union of every open set whose contained

https://doi.org10.25130//tjps.v28i3.1431

in S symbolized by Int (S) or S $^{\rm o}$ i.e., the largest open set that's contained in S.

Also, the closure set was given in [3] as: Assume (X, τ) be a topological space, $S \subseteq X$. The **closure** of *S* is defined as the smallest closed set whose contained in S denoted by *Cl*(*S*) or \overline{S} .

i.e., the smallest closed set that contained.

Definition 1.1[6]

Let $f: (X, \tau) \to (Y, \tilde{\tau})$ be a function where $(X, \tau), (Y, \tilde{\tau})$ are topological spaces. The function f is names continuous function if $f^{-1}(S) \in X$ for all open set in Y.

A function $f: (X, \tau) \to (Y, \ddot{\tau})$ is named an open if f(S) is an open set in *Y*, whenever $S \in \tau$.

A function $f : (X, \tau) \rightarrow (Y, \tilde{\tau})$ is named closed if f(S) is a closed set in *Y*, whenever *S* is a closed set in *X*. **Definition 1.2** [4], [7],[8]

A topological space (W, τ) is called a **T**₀-space if for any pair of different points of W, there is at least one open set which includes one of them but not the other.

A topological space (W, τ) is named a **T₁-space** if for any pair of different points χ, \bar{y} in W, there is two open sets $S, T \in \tau$, s.t. $\chi \in S, \bar{y} \notin S$ and $\chi \notin T, \bar{y} \in T$.

Let (W, τ) a topological space is named **T₂-space** or Hausdorff space if for each pair of different points can be separated by disjoint open set.

2. Main results

In this section, some new class of sets called Zeta-Open sets was introduced (briefly ζ –open) with some properties.

At last the concept of continuity with some characterization were introduced too.

Definition 2.1

Let (X, τ) be topological space and $S \subseteq X$. Then is S is ζ -open set

If $S \cap \overline{U} \neq \emptyset \forall z \in S \exists$ open set U content z s.t $\emptyset \neq U \neq X$ when $\emptyset \neq S \neq X$

And $S \cap \overline{U} = \begin{cases} \emptyset & if \quad S = \emptyset \\ X & if \quad S = X = U \end{cases}$

The set of all ζ –open is denoted by is ζ –O(X). **Example 2.2:**

Let $X = \{ a, b, c \}$, $\tau = \{ \emptyset, \{ a \}, \{ a, b \}, X \}$ and $\tau^c = \{ X, \{ b, c \}, \{ c \}, \emptyset \}$ then is $\zeta - O(X)$.

Let S=X, \emptyset is ζ -Open set {from def.}.

Let $S = \{ a \}$ is ζ -Open set

Let $S = \{ b_i \}$ is ζ -Open set

Let $S = \{ c \}$ is not ζ -Open set

Let $S = \{ a, b \}$ is ζ -Open set

Let $S = \{ \dot{a}, \varsigma \}$ is not ζ -Open set

Let
$$S = \{ b, c \}$$
 is not ζ -Open set

 $\therefore \tau_{\zeta} = \{ \mathbf{X}, \, \emptyset, \{ \ \mathring{a} \ \}, \{ \ \mathring{b} \ \}, \{ \ \mathring{a} \ , \ \mathring{b} \ \} \}$

Theorem 2.3:

Every open set is ζ -open set and the opposite isn't true.

Proof: Let S be a open set if $S \neq \emptyset$ or X Then is proof done.

Assume $\emptyset \neq S \neq X$ and $z \in S$

Put G=S, $\overline{S} = \overline{G} \implies S \cap \overline{G} = S \neq \emptyset$. Example 2.4:

Example 2.4: Let X={ \dot{a} , \dot{b} , ς }, τ ={ \emptyset ,{ \dot{a} },{ \dot{a} },{ \dot{b} },X} and τ^{c} ={X,{ b, ς }, { ς }, \emptyset } then is $\zeta - O(X)$ $\therefore \zeta - O(X) = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}, \{b\} \}$ is ζ -open set but not open set Theorem 2.5: $(X, \zeta - O(X))$ is topological space. 1- \emptyset , $X \in \zeta - O(X)$ (by def. $\zeta - O(X)$) 2- Let $S_{\alpha} \in \zeta - O(X)$ and $z \in \bigcup S_{\alpha} \Longrightarrow \alpha^* \in \Lambda$ s.t $z \in$ $S_{\alpha^*} \exists G_{\alpha^*}, z \in G_{\alpha^*}$ $S_{\alpha^*} \cap \bar{G}_{\alpha^*} \neq \emptyset \Longrightarrow \bigcup_{\alpha \in \Lambda} (S_\alpha \cap \bar{G}_{\alpha^*}) \neq \emptyset$ $\therefore \bigcup_{\alpha \in \Lambda} S_{\alpha} \cap \bigcup_{\alpha \in \Lambda} \bar{G}_{\alpha^*} \neq \emptyset$ 3- Let $S_1, S_2 \in \zeta$ -O(X), To prove $S_1 \cap S_2 \in \zeta$ – $O(X) \ s. \ t \ z \in S_1 \cap S_2$ 4- ⇒ $z \in S_1, z \in S_2 \exists$ open G_1, G_2 contain zs.t $S_i \cap \overline{G}_i \neq \emptyset \forall i = 1,2$ $\therefore S_1 \cap S_2 \cap \bar{G_1} \cap \bar{G_2} \neq \emptyset \quad (\text{since } z \in S_i \cap \bar{G_i})$ **Corollary 2.6 :**

 (X, τ_7) finer then (X, τ) .

Proof : By(**Theorem 3.3**) Every open set is ζ -open set.

Definition 2.7:

Let (X, τ_{ζ}) be a topological space and $S \subseteq X$. A point $z \in S$ is called an ζ - **interior point** of S and is denoted by S_z^o or $\operatorname{In} t_{\zeta}(S)$. i.e.,

 $Int_{\zeta} (S) = \{ z \in S : \exists U \in \tau_{\zeta}; z \in U \subseteq S \}$

 $z \in Int_{\zeta}(S) \Leftrightarrow \exists U \in \tau_{\zeta}; z \in U \subseteq S$

Example 2.8:

Let X={ a,b,c}, $\tau = \{X, \{a, \}, \{a, c\}, \emptyset\}$ and $\tau^{c} = \{\emptyset, \{b,c\}, \{b, \}, X\}$ then is

 τ_{ζ} ={X,{ å },{ ç },{ å, ç }, Ø}. then is $Int_{\zeta}(S)$. Let S=X

Let $S=X, \emptyset \Longrightarrow Int_{\zeta}(S) = X, \emptyset$.

Let $S = \{ a \} \Longrightarrow Int_{\zeta}(S) = \{a\}.$

Let $S = \{ b \} \Longrightarrow Int_{\zeta}(S) = \emptyset$.

Let $S=\{ c \} \Longrightarrow Int_{\zeta}(S) = \{ c \}.$

Let $S = \{ a, b \} \Longrightarrow Int_{\zeta} (S) = \{ a \}.$

Let $S = \{ a, c \} \Longrightarrow Int_{\zeta}(S) = \{ a, c \}.$

Let $S = \{b, c\} \Longrightarrow Int_{\zeta}(S) = \{c\}.$

Definition 2.9:

Let (X, τ_{ζ}) be topological space and $S_{\zeta} \subseteq X$. The ζ closure of sets S_{ζ} is $S_{\zeta} \cup S_{\zeta}$ and denoted by $\overline{S_{\zeta}}$ or $cl_{\zeta}(S)$.i.e. $\overline{S_{\zeta}} = S_{\zeta} \cup S_{\zeta}$ Example 2.10: Let $X = \{ a, b, c \}, \tau = \{X, \{ b \}, \{ b, c \}, \emptyset \}$ and $\tau^{c} = \{\emptyset, \{ b, c \}, \tau = \{X, \{ b \}, \{ b, c \}, \emptyset \}$

 $b, c \}, \{ c \}, X \}$ then is $\tau_{\zeta} = \{X, \{ b \}, \{ c \}, \{ b, c \}, \emptyset \}$ and $\zeta - c(x) = \{ \emptyset , \{ a, c \}, \{ c \}, \{ b, c \}, \emptyset \}$

 $, \{ a, b \}, \{ a \}, X \}$ then is $b_{\zeta}(S)$. Let $S = \{X\}$

Let $S=X, \emptyset \implies cl_{\zeta}(S)=X, \emptyset$

Let $S = \{a\} \Rightarrow cl_{\zeta}(S) = \{a, c\}.$

Let $S = \{ b_i \} \implies cl_{\zeta}(S) = \{ a, b_i \}.$ Let $S = \{ b_i \} \implies cl_{\zeta}(S) = \{ a, b_i \}.$

Let $S=\{ c \} \Longrightarrow cl_{\zeta}(S)=\{ a, c \}.$

Let S={ a, b } $\Rightarrow cl_{\zeta}(S) = \{a, b\}$.

Tikrit Journal of Pure Science Vol. 28 (3) 2023

TJPS

https://doi.org10.25130//tjps.v28i3.1431

Let $S = \{ a, c \} \Longrightarrow cl_{\zeta}(S) = \{ a, c \}.$ Let $S = \{ b, c \} \Longrightarrow cl_{\zeta}(S) = \{X\}.$

Definition 2.11:

Let (X, τ_{ζ}) and $(Y, \ddot{\tau}_{\zeta})$ be topological space and f: $(X, \tau_{\tau}) \to (Y, \ddot{\tau}_{\zeta})$

The function f is called $\pmb{\zeta}\textbf{-continuous}$ if the inverts image for any $\pmb{\zeta}\textbf{-open}$ set Y is an

 ζ -open set in X .i.e.

f: $(X, \tau_{\zeta}) \rightarrow (Y, \vec{\tau}_{\zeta})$ is ζ -continuous $\Leftrightarrow f^{-1}(U) \in \tau_{\zeta}$ $\forall U \in \vec{\tau}_{\zeta}$

and the function f is called ζ -dis-continuous if there exist an ζ -open set in Y. but inverts image is not ζ -open set in X.i.e.

f is ζ -dis-continuous $\Leftrightarrow U \in \dot{\tau}_{\zeta} \land f^{-1}(U) \notin \tau_{\zeta}$

Example 2.12 :

Let X={1,2,3,4}, τ_x ={X, Ø,{1,2}} τ_x^c ={X, Ø,{3,4} and Y={ å,b,c}, τ_y ={Y,Ø,{ b, c }}, τ_y^c ={Ø,Y,{ å }} then is

 $\tau_{\zeta} = \{X, \emptyset, \{1,2\}, \{1\}, \{2\}\} \ \ddot{\tau}_{\zeta} = \{X, \emptyset, \{ a \}, \{ b \}, \{ a, b \}\}$

Define h: $(X,\tau_{\zeta}) \rightarrow (Y,\dot{\tau}_{\zeta})$; h(1) = a, f(2) = b, f(3) = b

f(4) = c

Thus $h \zeta$ - continuous

Theorem 2.13 :

if $f: (X, \tau_{\zeta}) \rightarrow (Y, \ddot{\tau_{\zeta}})$ and $g: (Y, \ddot{\tau_{\zeta}}) \rightarrow (M, \check{\tau_{\zeta}})$

are both ζ -continuous function , then the composition gof : $(X,\tau_{\zeta}) \to (M,\widetilde{\tau_{\zeta}})$ is ζ -continuous

proof : Let $V \in \check{\tau}_{\zeta} \Longrightarrow g^{-1}(V) \in \check{\tau}_{\zeta}$ (since g is ζ -continuous)

notes that $g^{-1}(V) \subseteq Y$

 $\Rightarrow f^{-1}(g^{-1}(V)) \in \tau_{\zeta}$ (since is f is ζ -continuous)

 $\Rightarrow (f^{-1}og^{-1})(V) \in \tau_{\zeta} \quad \text{(by composition is f is } \zeta\text{-continuous)}$

$$\Rightarrow (fog)^{-1}(V)) \in \tau_{\zeta} \quad (\text{since } (gof)^{-1} = f^{-1}og^{-1})$$

 \div gof is $\zeta\text{-continuous.}$ the figure below clear this theorem .

3- ζ-Seperation axioms

Some new class of separation axioms were introduced in this section with their relations.

Definition 3.1 :

A topological space(X, τ_{ζ}) is ζ -**T0** – **space**, if for each pair of distinct points $x, \bar{y} \in X$, there is either an ζ -open set containing χ but not \bar{y} or an ζ -open set containing \bar{y} but not χ .

Example 3.2 :

 T_0 – space.

Example 3.3 :

Let (X, τ_x) be topological space

 $\textbf{X}{=}\{\textbf{a}, \textbf{b}, \textbf{c}\} , \boldsymbol{\tau}_{x}{=}\{\textbf{X}, \emptyset, \{\texttt{ a}, \texttt{b}\}\} , \, \boldsymbol{\tau}_{x}^{c}{=}\{\textbf{X}, \emptyset, \{\texttt{ c}\}\}$

then is $\tau_{\zeta} = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$ and let $\zeta - \tau_x$ = $\{X, \emptyset, \{a, b\}\}$ then is $\zeta - T_0 - \text{space}$

 $(\mathbf{X}, \mathbf{y}, [\mathbf{a}, \mathbf{y}])$ includes $\zeta = \mathbf{I}_0 = \mathbf{space}$

 \therefore (X, $\zeta - \tau_x$) is not ζ - T₀ – space

Because $\dot{a}, \dot{b} \in X$ and $\nexists \zeta$ -open set containing \dot{a} but not \dot{b} .

Theorem 3.4 :

The property of being a ζ -T $_{\circ}$ – space is a hereditary property.

Proof :

Let $(X, \tau_{\zeta}) \zeta$ -T0 – space and $(W, \ddot{\tau}_{\zeta})$ subspace of X, to prove $(W, \ddot{\tau}_{\zeta})$ is ζ -T0 – space

Let $x, \bar{y} \in W ; x \neq \bar{y} \Longrightarrow x, \bar{y} \in X$ (since $W \subseteq X$)

 $\because X \text{ is } \zeta \text{-} \text{T0} - \text{space} \Longrightarrow \exists U \in \tau_{\zeta} ; (\chi \in U \land \bar{y} \notin U) \lor$

 $(\mathfrak{X} \notin U \land \overline{\mathfrak{y}} \in U)$ $\Rightarrow U \notin W \in (W, \vec{\tau}_{\zeta})$

(by def. of $\vec{\tau}_{\zeta}$)

; $(x \in U \cap W \land \bar{y} \notin U \cap W) \lor (x \notin U \cap W \land \bar{y} \in U \cap W)$

 \therefore (W, $\ddot{\tau}_{\zeta}$) is ζ -T0 – space.

Definition 3.5 :

Let (X, τ_{ζ}) be a topological space. Then is the space

(X, τ_{ζ}) is called

 ζ -T₁ – Space if for each pair of distinct points $x, \bar{y} \in X$, there exists an ζ - open set in X containing x but not \bar{y} , and an ζ -open set in X containing \bar{y} but not x. **Example 3.6:**

Example 3.7:

Let X={ \dot{a} , \dot{b} , ς }, $\tau_x = \{X, \emptyset, \{\dot{a}, \dot{b}\}\}$, $\tau_x^c = \{X, \emptyset, \{\varsigma\}\}$ then $\tau_{\zeta} = \{X, \emptyset, \{\dot{a}\}, \{\dot{b}\}, \{\dot{a}, \dot{b}\}\}$

 \therefore (X, τ_{ζ}) is not ζ - T₁ – space

Because $a, c \in X$ and \nexists two ζ – open sets U, P s.t. $a \in U$, $a \notin P$ and $c \notin U$, $c \in P$

Remark 3.8 :

every ζ - T_1 – space is ζ - T_0 -spase (i.e. ζ - $T_1 \Longrightarrow \zeta$ - T_0). But the reverse implications doesn't hold (i.e. ζ - $T_0 \not\Rightarrow \zeta$ - T_1). As in the example below :

Example 3.9 :

Let X={ \dot{a} ,b, ς }, τ_x ={X, \emptyset ,{b, ς },{ ς }}, τ_x^c ={X, \emptyset ,{ \dot{a} },{ \dot{a} },{ \dot{a} }} then, τ_{ζ} ={X, \emptyset ,{b},{ ς },{b, ς }, then

(X, τ_{7}) is ζ - T₀ – space. But doesn't ζ - T₁ – space.

Definition 3.10 : Let (X, τ_{ζ}) be a topological space, $z \in X$ and $S \subseteq X$. S is said to be ζ – neighborhood for a point z if there exist a ζ – open set U contains z which is contain in S denoted by $nbhd_{\zeta}$

Theorem 3.11 :

 (X, τ_{7}) is ζ -T₁ – Space if { x } is ζ - closed $\forall x \in X$.

i.e., (X, τ_{ζ}) is ζ -T₁ – Space if every singleton set in X is ζ - closed.

Proof : (\Rightarrow) Suppose that X is ζ -T₁ – Space, to prove {x } ζ - Closed $\forall x \in X$

Tikrit Journal of Pure Science Vol. 28 (3) 2023

TJPS

https://doi.org10.25130//tjps.v28i3.1431

i.e., $X - \{x\}$ ζ - open set, we must prove $X-\{x\}$ contains a $nbhd_{\zeta} \forall \bar{y} \in X-\{x\}$ Let $y \in X - \{x\} \Rightarrow x \neq \bar{y}$ $\therefore X$ is ζ -T₁ - Space $\Rightarrow \exists U, V_y \in \zeta$ - τ_{ζ} ; $(x \in U \land \bar{y} \notin U) \land (x \notin V_{\bar{y}} \land \bar{y} \in V_{\bar{y}})$ $\Rightarrow \bar{y} \in V_{\bar{y}} \land x \notin V_{\bar{y}}$ $\Rightarrow \{x\} \cap V_{\bar{y}} = \phi$ $\Rightarrow V_{\bar{y}} \subseteq X - \{x\} \land \bar{y} \in V_{\bar{y}}$ $\Rightarrow V_{\bar{y}} \subseteq X - \{x\} \lor \bar{y} \in X - \{x\}$ $\therefore X - \{x\}$ contains a $nbhd_{\zeta} \forall \bar{y} \in X - \{x\}$. $\therefore X - \{x\}$ contains a $nbhd_{\zeta} \forall \bar{y} \in X - \{x\}$. $\therefore X - \{x\} \zeta$ - open set $\Rightarrow \{x\} \zeta$ - closed $\forall x \in X$. (\Leftarrow) suppose that $\{x\} \zeta$ - closed $\forall x \in X$, to prove X is ζ -T₁ - Space Let $x, \bar{y} \in X$; $x \neq \bar{y} \Rightarrow \{x\}, \{\bar{y}\}$ are ζ - closed sets $\Rightarrow X - \{x\}, X - \{\bar{y}\}$ are ζ - open sets

 $\begin{array}{l} Say \ U = X - \{ \ \bar{y} \ \}, \ V = X - \{ \ x_{j} \ \} \Longrightarrow (x_{j} \in U \land \bar{y} \notin U) \\ \land (x_{j} \notin V \land \bar{y} \in V) \end{array}$

 \therefore (X, τ_7) is ζ -T₁ – Space.

Definition 3.12 :

Let (X, τ_{ζ}) be a topological space. Then is the space

(X, τ_{ζ}) is called a ζ -**T**₂ – **space or Hausdorff space.**let $x, \bar{y} \in X$, for each pair of distinct points, there exist ζ -open sets U and V such that $x \in U, \bar{y} \in$ *V*, and $U \cap V = \emptyset$ i.e., X is ζ -T2 – space $\Leftrightarrow \forall x, \bar{y} \in$ X; $x \neq \bar{y} \exists U, V \in \tau_{\zeta}$; $(x \in U \land \bar{y} \in V), U \cap V = \emptyset$

Example 3.13 :

Let X={ \dot{a} , \dot{b} , \dot{c} }, $\tau_x = \{X, \emptyset, \{\dot{a}, b\}, \{\dot{b}, c\}, \{\dot{b}\}\}$ and $\tau_x^c = \{X, \emptyset, \{c\}, \{\dot{a}\}, \{\dot{a}, b\}\}$

so $\tau_{\zeta} = \{X, \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}\}$. Then

$(\mathbf{X},\!\boldsymbol{\tau}_{\zeta}\,)$ is $\zeta\textbf{-}$ $\mathbf{T}_{2}-\mathbf{space}$

Example 3.14 :

Let $X=\{a,b, c \}$, $\tau_x=\{X, \emptyset, \{a, b \}\}$ and $\tau_x^c=\{X, \emptyset, \{c\}\}$ So, $\tau_{\zeta}=\{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$ is

 ζ - T₂ – space. But (X, τ_{ζ}) is not ζ - T₂ – space

Remark 3.15 :

every ζ - T₂ – space is ζ -T₁-spese (i.e. ζ - T₂ $\Rightarrow \zeta$ -T₁). But the reverse implications don't hold (i.e. ζ - T₁ $\Rightarrow \zeta$ -T₂). As in the example below

Example 3.16 :

Is $(N, \tau_{\zeta(cof)})$ ζ -T1 – space.

Let $x, \bar{y} \in \mathbb{N}$; $x \neq \bar{y}, \exists U = \mathbb{N} - \{x\} \in \tau_{\zeta(cof)}$ $V = \mathbb{N} - \{\bar{y}\} \in \tau_{\zeta(cof)} \text{ (since } U^c = (\mathbb{N} - \{x\})^c = \{x\}$ $V^{c} = (N - {\bar{y}})^{c} = {\bar{y}}$ finite set by define of $\tau_{\zeta(cof)}$) $\Rightarrow (\bar{\mathbf{y}} \in U = \mathbb{N} - \{\mathbf{x}\} \land \mathbf{x} \notin U) \land (\bar{\mathbf{y}} \notin V = \mathbb{N} - \{\mathbf{x}\} \land$ $x \in V$ But $(N, \tau_{\zeta(cof)})$ is not ζ -T₂ – space if $x \neq \bar{y}$, $\exists U =$ $\mathbb{N} - {x} \in \tau_{\zeta(cof)}$ $V = \mathbb{N} - {\{\bar{y}\}} \in \tau_{\zeta(cof)}, \text{ but } U \cap V \neq \emptyset$ Theorem 3.17: Let (X, τ_7) be a ζ -T₂ – space if the diagonal $\Delta = \{(x, x) \in X \times X ; x \in X\}$ is a ζ -closed subset of the product $X \times X$. **Proof :** (\Rightarrow) Suppose that X is ζ -T₂ – space, to prove $\Delta \zeta$ -closed in X \times X i.e., $X \times X - \Delta \zeta$ -open set, we must prove $X \times X - \Delta$ contains a $nbhd_{\zeta} \forall (x, \bar{y}) \in X \times X - \Delta Let (x, \bar{y}) \in X \times$ $X - \Delta \Longrightarrow (x, \bar{y}) \in \Delta$ (def. of deference) (since Δ has equal coordinate) $\Rightarrow x \neq \bar{y}$ $:: X \text{ is a } \zeta \text{-} \mathbb{T}_2 \text{-} \text{space} \Longrightarrow \exists U, V \in \tau_{\zeta}, \cap V = \emptyset,$ $(x \in U \land \bar{y} \in V)$ $\Longrightarrow U \times V \in \beta_{X \times X} \subseteq \tau_{\zeta(X \times X)}$ (by def. product space) $\Rightarrow U \times V \zeta$ -open set in X \times X and $U \times V \subseteq X \times X - \Delta \land (x, \bar{y}) \in U \times V$ (since $\bigcap V = \emptyset$) Since, if $U \times V \not\subseteq X \times X - \Delta \Longrightarrow \exists (x, x) \in \Delta \Longrightarrow x \in$ $U \land x \in V \quad C!!$ $\therefore X \times X - \Delta \text{ contains a nbhd}_{\zeta} \forall x \in X \times X - \Delta$ \Rightarrow X × X – $\Delta \in \beta_{x \times x}$ $\Rightarrow \Delta \zeta$ -closed in X×X (\Leftarrow) Suppose that $\Delta \zeta$ -closed in X × X, to prove X is ζ -T2 – space Let $x, \bar{y} \in X ; x \neq \bar{y} \Longrightarrow (x, \bar{y}) \notin \Delta$ (by def. of Δ) $\Longrightarrow (\mathbf{x}, \, \bar{\mathbf{y}}) \in \Delta^c = \mathbf{X} \times \mathbf{X} - \Delta$ $\therefore \Delta \zeta$ -closed set $\Longrightarrow X \times X - \Delta \zeta$ -open set $\Rightarrow \exists U \times V; \ U, V \in \ \tau_{_{\mathcal{I}}} \land (\mathbf{x}, \bar{\mathbf{y}}) \in U \times V \ , \ U \times V \subseteq$ $\mathbf{X}\times\mathbf{X}-\boldsymbol{\Delta}$, $\mathbf{x}\in U, \bar{\mathbf{y}}\in V$ $\Rightarrow U \times V \cap \Delta = \emptyset$ (i.e., \nexists element in $U \times V$ has equal coordinate) $\Rightarrow U \times V = \emptyset$ \Rightarrow (X, τ_7) is ζ -T₂ – space.

https://doi.org10.25130//tjps.v28i3.1431

References

[1] S.-M. Jung and D. Nam, "Some Properties of Interior and Closure in General Topology," Mathematics, vol. 7, no. 624, 2019.

[2] N. Levine, "On the Community of the Closure and Interior Operators in Topological Spaces," The American Mathematical Monthly, vol. 68, no. 5, p. 474–477, 1961

[3] Cenap Ozel1 , M. A. Al Shumrani1 , Aynur Keskin Kaymakci2 , Choonkil Park3,* and Dong Yun Shin4,"On δb -open continuous functions," AIMS Mathematics, vol. 6, no. 3, pp. 2947-2955, 2021.

[4] M. Bharti, "To Study Separation Axioms in Topological Spaces.," International Journal for Research in Applied Science and Engineering Technology, vol. 7, pp. 332-334, 2019.

[5] J. Kelly, General Topology, Van Nostrand: Priceton New Jersy, 1955.

[6] Fang Jin-ming and Yue-li "Bases and Subbase in I-Fuzzy Topological spaces"Journal of Mathematical Research and Exposition., vo 26. 1, pp.89-95, 2006.

[7] A.Arkhangel'skii and V. Ponomar "ev, "Fundemantal of general topology -problems and exercises," in Hindustan Pub.Corporation, Delhi, 1966.

[8] R. Englking, Outline og general topology, Amsterdam, 1989.