DOMINATING SET ON CHAIN OF FUZZY GRAPHS
Russel H. Majeed, Nabeel E. Arif

Department of Mathematics, Collage of Computer Science and Mathematics, Tikrit University, Tikrit, Iraq

ARTICLE INFO.
Article history:
- Received: 15/9/2022
- Received in revised form: 18/9/2022
- Accepted: 13/10/2022
- Final Proofreading: 9/6/2023
- Available online: 25/6/2023

Keywords: chain fuzzy graphs, vertex identification, dominating set.

Corresponding Author:
Name: Russel H. Majeed
E-mail: russel.h.majeed35426@st.tu.edu.iq

ABSTRACT
In this paper, we define fuzzy graph chains, which comprise vertex identification. These fuzzy graphs are isomorphic fuzzy graphs, provide that after applying various features to the chain of fuzzy graphs, which as special fuzzy graph chain of C_3.

1. Introduction
One application tool in the field of mathematics is the fuzzy graph, which enables users to simply explain the link between any two conceptions. The concept of the graph with fuzziness and many graph theory analogs in the fuzziness ideas such as paths, cycles, and connectedness were first described by Rosenfeld in 1975[1]. In 2021, Mahmood and Ahmed introduced the vertex identification chain graphs “Schultz and Modified Schultz Polynomials for Vertex Identification Chain and Ring for Hexagon Graphs”[2]. Somasundaram introduced the concept of domination in graph with fuzziness in1998[3].

Nagoorgani in 2007 introduced domination depending on the strong edges in fuzzy graphs[4]. In this paper we introduced the idea of a chain of fuzzy graphs and a new type of dominating set which is an equal dominating set.

2. Basic concepts
A fuzzy graph denoted by $G = (V, \sigma, \psi)$ on the crisp graph $G = (V, E)$ is a nonempty set V and two functions $\sigma: V \to [0, 1]$ and $\psi: V \times V \to [0, 1]$ s.t. $\forall x, y \in V$, the relation $\psi(x, y) \leq \sigma(x) \wedge \sigma(y)$ is satisfied[5].
path P in graph with fuzziness $𝔩$ is a collection of different vertices $x_0, ..., x_n$, where $x_0 \neq x_n$, and $n \geq 2$ such that $\psi(x_{i-1}, x_i) > 0, i = 0, ..., n$. We refer to the following pairs as the path's edges. Length of path is the number of edges[1]. A path P where $x_0 = x_n$ and $n \geq 3$ is a cycle. The weight of the weakest edge (the edge with least membership in path) is used to measure a path's strength. The strength of the connectedness between the vertices u and v is the maximum strength of all paths linking them, and it is denoted by $CON(\langle u, v \rangle)$. A path connecting two vertices shows that they are linked[6]. A fuzzy graph $𝔩 = (V, \sigma, \psi)$ is connected if $CON_{\langle x, y \rangle} > 0, \forall x, y \in V$. An edge (x, y) is strong in $\langle u \rangle$ if $\mu(x, y) > 0$, and $\psi(x, y) \geq CON_{\langle x, y \rangle}$. An edge (u, v) in $\langle u \rangle$ is called $\alpha - strong$ if $\psi(u, v) > CON_{\langle u, v \rangle}$. An edge (u, v) in $\langle u \rangle$ is called $\beta - strong$ if $\psi(u, v) = CON_{\langle u, v \rangle}$. If $(u, v) > 0$, then u and v are called neighbors. Also v is called a strong neighbor if edge (u, v) is strong [8].

Lemma 2.1[6] if $\psi(x, y) = \sigma(x) \land \sigma(y)$, then the edge (x, y) is strong.

3. Main Results

3.1. The Vertex- Identification Chain Fuzzy Graphs:

The following is a formal definition of a chain of fuzzy graphs.

Definition 3.1.1: Assuming that $\langle \theta_1, \theta_2, ..., \theta_n \rangle$, be a set of pairwise disjoint fuzzy graphs with vertices $u_i, v_i \in V(\theta_i)$, then the vertex-identification chain fuzzy graph $C_{\psi}(\theta_1, \theta_2, ..., \theta_n) \equiv C_{\psi}(\theta_1, \theta_2, ..., \theta_n; v_1, u_2; v_2, u_3; ...; v_{n-1}, u_n)$ of $(\theta_i)_{i=1}^{n}$ with respect to the vertices $\langle v_i, u_{i+1} \rangle$ for all $i = 1, 2, ..., n$ such that the vertex identification's weight value is $\sigma(\langle u_i \rangle) = max(\sigma(v_i), \sigma(u_{i+1}))(denoted\ by\ C_{\psi}(\theta_n))$ (see Fig. 3.1)

![Fig. 3-1. Chain fuzzy graphs](https://doi.org/10.25130/tjps.v28i3.1430)

3.2. Dominating set on Chain Fuzzy Graphs:

Definition 3.2.1[3]: A vertex a dominates other vertices in a fuzzy graph $\theta = (V, \sigma, \psi)$. If $\psi(a, b) = \sigma(a) \land \sigma(b)$, for $a, b \in V$. A set $\Omega \subseteq V$ is defined as a dominant set in θ if for each $b \in V - \Omega$, there exists $a \in V$, so that, a dominates b. The dominance number of θ is a collection with the least possible cardinality, and is denoted by $\gamma(\theta)$. A dominant set Ω is called the minimal dominant set, if no proper subset of Ω is a dominating set.

Definition 3.2.2 [6]: A fuzzy graph vertex is considered to be an isolated vertex if $\psi(a, b) < \sigma(a) \land \sigma(b), a, b \in V - \Omega$.

Definition 3.2.3[9]: A subset Ω of V is called 2-dominant set of θ, if for any vertex $u \in V - \Omega$ two or more strong neighbors may be found in Ω. The 2-dominance number of a fuzzy graph θ signified by $\gamma_2(\theta)$ is the smallest 2-dominating set of θ's cardinality.

Remark 3.2.1: Every fuzzy graph in a chain of fuzzy graphs is a cycle, which means there is no edge between any dominating vertex.

Example 3.2.1: In this example, all the edges are strong, which means there is no isolated vertex since isolated vertex does not dominate another vertex.
Remark 3.2.2: In a chain of fuzzy graphs, every minimal dominating set (domination number) must contain the vertex identifications.

Theorem 3.2.1: In \(C_i\nu_f(C_n) \), if \(n \leq 6 \). Then \((C_i\nu_f(C_n)) = \sum_{i=1}^{n} \sigma(u_i) \).

Proof: Let \(C_i\nu_f(C_n) \) be a chain of fuzzy graphs with vertex identification \(\sigma_i \in \nu_f \). Let \(n \leq 6 \). Since \(n \leq 6 \), then every vertex in \(\nu_f - \nu \) adjacent to the vertex identifications, which means the vertex identifications \(u_i \in \nu_f \) dominate the vertices in \(\nu - \nu_f \). From the definition of domination number, we get the vertex identifications as the minimal dominating set of \(C_i\nu_f(C_n) \). Then \(\gamma(C_i\nu_f(C_n)) = 2.6 \). This is the summation of all vertex identifications’ fuzzy membership.

Remark 3.2.3: In \(C_i\nu_f(C_n) \), if \(n > 6 \). Then the domination number is the minimal dominating set contain the vertex identifications.

Theorem 3.2.2 [9]: Each 2-dominant set of a fuzzy graph \(\nu \) is the dominant set of \(\nu \).

Theorem 3.2.3: In \(C_i\nu_f(C_n) \), if \(n \leq 4 \). Then every 2-dominating number is domination number.

Proof: Let \(C_i\nu_f(C_n) \) be a chain of fuzzy graphs with vertex identification \(\sigma_i \in \nu_f \). Let \(n \leq 4 \). Let \(\nu_f \) be a 2-dominating set. Then, \(\forall u_i \in \nu - \nu_f \), has at least two neighbors in \(\nu_f \). Since \(n \leq 4 \), every vertex is adjacent to two of the vertex identifications, which means the vertex identifications are the minimal 2-dominant set. Since every 2-dominant set is a dominant set, every 2-dominating number is a domination number.

Definition 3.2.4 [4]: Consider \(\nu_f = (\nu, \sigma, \psi) \) to be a fuzzy graph. If \(\psi(a, \delta) = \sigma(a) \wedge \sigma(\delta) \) and \(d_\psi(a, \delta) \geq d_\sigma(\delta) \), \(a \) strongly dominates \(\delta \) in \(\nu_f \). For any two vertices \(a, b \in \nu_f \). Similarly, in \(\nu_f \), \(a \) weakly dominates \(\delta \) if \(\psi(a, \delta) = \sigma(a) \wedge \sigma(\delta) \) and \(d_\psi(a, \delta) \leq d_\sigma(\delta) \). If any vertex in a subset \(\nu_f - \nu_f \) has at least one vertex in the subset \(\nu_f \) that is strongly dominant, the subset is considered to be a strong dominant set. Similarly, if any vertex in a subset \(\nu_f - \nu_f \) at least one vertex in the collection \(\nu_f \) weakly dominates, then the subset \(\nu_f \) is a weakly dominating set of \(\nu_f \). The strong dominance number (denoted by \(\gamma_s(\nu_f) \)) is a strong set’s minimal fuzzy number of vertices. Similarly, the weak dominance number (denoted by \(\gamma_w(\nu_f) \)) is the minimal fuzzy number of vertices of a weak dominant set.

Example 3.2.2: In Fig3-2. \(\nu = \{a_1, a_2, a_3, a_4\} \), all the vertices in \(\nu - \nu_f \) which is strongly dominated by a vertex in \(\nu_f \). \(\nu_f \) is a strong dominating set and the strong domination number is \(\gamma_s(C_i\nu_f(C_3)) = 2.6 \).

\(\nu_f = \{\sigma_1, \sigma_2, \sigma_3, \sigma_4, \sigma_5, \sigma_6, \sigma_7, \sigma_8\} \), all the vertices in \(\nu_f - \nu_f \) weakly dominated by a vertex in \(\nu_f \). \(\nu_f \) is a weak dominant set and the weak domination number is \(\gamma_w(C_i\nu_f(C_3)) = 3.3 \).

Theorem 3.2.4: In a chain of fuzzy graphs if \(n \leq 6 \). Then the set of the vertex identifications is a strong dominating number.

Proof: Let \(C_i\nu_f(C_n) \) be a chain of fuzzy graphs with vertex identifications \(\sigma_i \in \nu_f \). Let \(n \leq 6 \). Let \(\nu_f \) be the strongly dominant set. The degree of the vertex identification is greater than other vertices. Hence \(n \leq 6 \) then the vertex identification \(\sigma_i \in \nu_f \), is dominating other vertices strongly in \(\nu - \nu_f \). The vertex identification is the minimal cardinality of a strong dominating set.

Then the set of the vertex identifications is a strong dominating number.

Theorem 3.2.5: In a chain of fuzzy graphs if \(4 \leq n \leq 6 \). Then \(\gamma_w(C_i\nu_f(C_n)) \leq \gamma_w(C_i\nu_f(C_3)) \).

Proof: Let \(C_i\nu_f(C_3) \) be a chain of fuzzy graphs with vertex identification \(u_3 \). Let \(4 \leq n \leq 6 \). The vertex identification is a strong dominance number, and it is the minimal number of vertices of a strong dominating set.

In every fuzzy graph in the chain, there exist at least two weakly dominating vertex, which means the cardinality of a weak dominating set is greater than the cardinality of a strong dominating set.

Then \(\gamma_w(C_i\nu_f(C_n)) \leq \gamma_w(C_i\nu_f(C_3)) \).

Theorem 3.2.6: In a chain of fuzzy graphs,

\(\gamma_s(\nu_f(C_n)) \leq \gamma_w(\nu_f(C_3)) \).

Proof: Clearly, the sum of the strong domination number of a chain of fuzzy graphs and the weak domination number is less than or equal to the order of the chain.

Example 3.2.3: From the example

\(\gamma_s(C_i\nu_f(C_3)) = 2.6 \), \(\gamma_w(C_i\nu_f(C_3)) = 3.3 \), \(\gamma_w(C_i\nu_f(C_3)) = 9.2 \).

\(\gamma_s(C_i\nu_f(C_n)) + \gamma_w(C_i\nu_f(C_n)) = 2.6 + 3.3 = 5.9 < 9.2 \).

Definition 3.2.5: A set \(\nu_f \subseteq \nu_f \), in an equal dominating set if every vertex in \(\nu_f \) has the same number of neighbors in \(\nu_f \). The equal domination number is the minimum number of vertices of an equal dominating set of \(\nu_f \) (denoted by \(\gamma_e(\nu_f) \)).

Example 3.2.4: In Fig3-2. \(\nu_f = \{a_1, a_2, a_3, a_4, a_5\} \), in an equal dominating set. Also, \(\nu_f = \{\sigma_1, \sigma_2, \sigma_3, \sigma_4, \sigma_5, \sigma_6, \sigma_7, \sigma_8\} \), in an equal dominating set. \(\nu_f \) is the minimum an equal dominating set, \(\gamma_e(C_i\nu_f(C_3)) = 2.6 \).

Remark 3.2.4: In a chain of fuzzy graphs, every fuzzy graph is a cycle, so every vertex has the same number of neighbors.

Theorem 3.2.7: In a chain of fuzzy graphs, every equal-dominant set is a dominant set.
Proof: Let \(\mathfrak{D} \) be an equal-dominant set, every vertex in \(\mathfrak{D} \) has the same number of neighbors in \(\mathcal{V} - \mathfrak{D} \). Any vertex \(\nu \in \mathcal{V} - \mathfrak{D} \) there is a vertex \(\alpha \in \mathfrak{D} \), s.t., \(\alpha \) dominates \(\nu \). Then \(\mathfrak{D} \) is a dominant set.

Theorem 3.2.8: If \(n = 5 \), in a chain of fuzzy graphs, then strong dominating set is an equal dominating set.

Proof: Let \(\mathfrak{D} \), be a strong dominant set. Every vertex in \(\mathcal{V} - \mathfrak{D} \), is strongly dominant be a vertex in \(\mathfrak{D} \). For every vertex \(\nu \in \mathcal{V} - \mathfrak{D} \), there is a vertex \(\alpha \in \mathfrak{D} \), such that, \(\alpha \) strongly dominates \(\nu \). Since every vertex in the cycle has the same number of neighbors. then \(\mathfrak{D} \) is an equal dominating set.

Theorem 3.2.9: In \(C_{vrf}(C_5) \), the vertex identification is an equal domination number.

Proof: Let \(C_{vrf}(C_5) \), be a chain of fuzzy graph with vertex identification \(u_i \). Let \(\mathfrak{D} \), minimum an equal dominating set. \(n = 5 \), the vertex identification \(u_i \) dominates every vertex in \(\mathcal{V} - \mathfrak{D} \), and every vertex identification has the same number of neighbors. Then the vertex identification is an equal domination number.

Remark 3.2.5: In \(C_{vrf}(C_5) \), an equal domination number is

\[
y_e (C_{vrf}(C_5)) = \sum_{i=1}^{n} \alpha (u_i).
\]

4. **Conclusions**

In this paper, we discussed the relationship between a dominating set, a strong dominating set, and a weak dominating set on a chain of fuzzy graphs. We presented a new kind of dominating set called an equal dominating set. The vertex identification satisfies the conditions of dominating, strong dominating, and an equal dominating set.

References

