Impact of vaccination and treatment on SIRS model with Non-linear incidence rate

Arkan N. Mustafa, Hanaa J. Ahmed
Department of mathematics, College of education, University of Sulaimani, Sulaimani, Iraq

ABSTRACT

In this paper, an epidemic model consisting of susceptible, vaccination, infected and removal is formulated mathematically. The proposed model deals with incorporating the vaccination factor, treatment factor and non-linear incidence rate. Non negative for the model solutions are proved, a simplex attractor invariant set is found, the basic reproduction number of the model is calculated using the method of the next-generation matrix, and the model equilibrium points performed a local stability analysis, we have collected the infected cases COVID-19 real data in Kurdistan region from Iraq to estimate the model parameters and sensitivity of the basic reproduction number and the model variable to the parameters of the model was studied.

تأثير التطعيم والعلاج على نموذج SIRS مع معدل الحدوث غير الخطي

أركان نوزاد مصطفى، هناء جمال أحمد
قسم الرياضيات، كلية التربية، جامعة السليمانية، السليمانية، العراق

الملخص

في هذا البحث، تم تصنيف نموذج ويباني يتكون من القابلين للإصابة والتطعيم والمصابين والإرئية ورياضياً. يتعامل النموذج المترجح مع دمج عامل التطعيم وعامل العلاج وعامل الوقوع غير الخطي. تم إثبات حلول غير السالبة للنموذج، وتم التعبر على مجموعة ثابتة للاسقاط البيضي، وتم حساب رقم التكاثر الأساسي للنموذج باستخدام طريقة مصفوفة الجيل التالي، وأدرجت نقاط توزيع النموذج تحتل الاستقرار المحيط وقمنا بجمعها تم دراسة البيانات الحقيقية للحالات المصابية 19-COVID في إقليم كردستان من العراق لتقدير معلمات النموذج وحساسية رقم التكاثر الأساسي ومتغير النموذج لمعاملات النموذج.
1- Introduction

There are various methods to control epidemic disease like, medicine, vaccination, vector population, reductions, or behavioral, modifications and finding the correct strategy using mathematics. Compartamental models have become essential methods for investigating the transmission and treatment of infectious diseases [1,2].

Usually, compartmental model SIRS can be used to mathematically describe the transmission of infectious diseases. (where S(t) is the overall number of susceptible individuals, I(t) is the overall number of individuals they infected, and R(t) is the overall number of removed individuals who have temporary immunity against the disease; A variety of compartmental models, including COVID-19 applied to infectious diseases, have been emerged in recent years. [3,4,5,6,7] Vaccination is the process of administering weakened to help the immune system develop the immunity from disease. Thus, several simple compartmental mathematical models with vaccinated populations have been used in the literature to assess the effect of vaccination in the last few years or potential impact of imperfect vaccines for combating the transmission, of diseases [8,9,10,11] The incidence rate which in epidemiology show the number of individuals who acquire an infection per unit of time. Play an important role on the dynamics of the transmission of diseases. There are various types of incidence rates, the simple linear form of incidence rate which are defined by the form \(\alpha SI \) where \(\alpha \) stands for infection rate [12]. The non-linear incidence rate defined as \(\frac{\alpha SI}{1 + \beta I} \). Where \(\alpha_1 \) is the transmission rate I and \(\beta \) is stand for Saturation factor or "inhibitory impact."; this type of incidence rate due to the crowding of infected individuals or due to the protective measures taken by the susceptible individuals [12].

It is well known that treatment is an important method to control the spread of diseases. In classical epidemic models, the treatment due to impact vaccination the above verifies, as well as for controlling the disease to founded Basic reproduction number authors have demonstrated that the disease's basic reproduction number \(R_0 \) determines the model’s dynamics, Which is the boundary between forwarding invariant and the attraction for stable equilibrium point.

In this paper, the impact of both vaccination and treatment on the dynamics of the spreading of infectious disease is modeled and the proposed model considered the non-linear transmission rate. This work is arranged as follows: The details of the mathematical model formulation and description of the parameters and variable given in Section 2. The non-negative and boundedness properties of the solution of the model are proved in Section 3. The basic reproduction number for the model parameters is also discussed Numerical simulations of the model in Section 4, its stability analysis is studied in section 5, and then estimating the parameters are given the SIRS model with data of coronavirus (coved -19) in Kurdistan region in section 6. The sensitivity of the basic reproduction number for the parameters of the model is also discussed in Section 7. Conclusions of the study are given in Section 8.

2- Model formulation

In this section, we propose an epidemic model which based on SIRS model for the disease transmission dynamics on infectious model, the model population divided into four classes: (Susceptible, vaccination, Infected, Recovered) the numbers of Susceptible, vaccination, Infected, Recovery at any time are denoted by \(S(t) \), \(V(t) \), \(I(t) \), \(R(t) \) respectively, and the model based on the following, assumption have been considered:

1. There is a fixed number of the susceptible populations added to the system with recruitment rate \(\Lambda > 0 \).
2. The diseases is transmitted from the infected people to the Susceptible people and vaccinated people by contact according to the nonlinear incidence rate of the from \(\frac{\alpha_1 SI}{1 + \beta I} \) respectively [9]. where \(\alpha_1 \), \(\alpha_2 \) respectively measures the infection force of the disease and \(\frac{1}{1 + \beta I} \) measures the inhibition effect from the crowding effect of the infected individuals.
3. The infected people are facing death due to the disease (virus) with infection death rate \(d > 0 \) and they get temporary immunity with a recovery rate \(p > 0 \).
4. The people in the \(R \) and \(V \) compartments are losing the immunity against the virus and return back to be susceptible again with losing immunity rate \(0 \leq r < 1 \) and \(0 \leq \theta < 1 \) respectively.
5. There is a natural death rate \(\mu > 0 \) for the individuals in the susceptible population.
6. The Susceptible individuals Vaccinated with the rate \(kS \).
7. the infected population treated with the nonlinear treatment rate \(\frac{\alpha I}{1 + \beta I} \) where \(\alpha \) represent the maximum treatment rate and \(b \) the measure of inhibition recovered rate due to the long time responded of infected individual to the treatment. [12] According to the above assumption the mathematical model can be described by the diagram given in Fig. (1).
null $\Lambda \rightarrow S$, $S \rightarrow \mu S$, $S \rightarrow V$, $V \rightarrow S$, $S \rightarrow I$, $V \rightarrow I$.

νV,

In addition all constants and initial conditions can be found by using the concept of standard chemical kinetics and mass action law to formulate the model; we can be modeled mathematically by the following set of first-order non-linear ordinary differential equations.

$$
\begin{align*}
\frac{dS}{dt} &= \Lambda + rR - \frac{a_S}{1+b}S - kS - \mu S + \nu V \\
\frac{dV}{dt} &= kS - \mu V - \frac{a_V}{1+b}V \\
\frac{dI}{dt} &= \frac{a_S}{1+b}S + \frac{a_V}{1+b}V - \frac{a_I}{1+b}I - \mu I - dI - pI \quad \ldots (1)
\end{align*}
$$

In addition, since the number of the population cannot be negative then the model variable of the system (1) is initial in $R^+_0 \cup \{0\}$.

In the following theorem, forward invariant and attractor set is found.

Theorem 1: The simplex set $\Omega = \{(S,V,I,R) \in R^4; S + V + I + R \leq \frac{\Lambda}{\mu}\}$ is forward invariant and attractor.

Proof: Assume $N(t) = S(t) + V(t) + I(t) + R(t)$, holds for $t \geq 0$ then we obtain

$$
\frac{dN}{dt} = \Lambda - \mu N - dI \leq \Lambda - \mu N
$$

Applying the comparison theorem for solving first-order differential inequality, we get

$$
N(t) \leq \frac{A}{\mu}N(0)e^{-\mu t}; \forall t \geq 0
$$

If the solution of system (1) initiate in Ω, then $N(0) \leq \frac{A}{\mu}$, and hence the following inequality is get

$$
N(t) \leq \frac{A}{\mu}; \forall t \geq 0
$$

Thus Ω is forward invariant.

If the trajectory of system initiate at the exterior of Ω, then

$$
\lim_{t \to \infty} N(t) \leq \frac{A}{\mu}
$$

Which is means Ω is attractor set.

3- Basic reproduction number

Basic reproduction number is the most important thresholds in the studying infectious disease models because is the expected number of newly infected peoples produced by an infected individual and usually it denote by R_0 [13,14,16].

This threshold characteristic of R_0 helps epidemiologists to make the following assumptions:

(a) If R_0, less than one it means that disease will die out with time

(b) If R_0 greater than one it means that disease will be endemic

We used Next Generation Matrix [11] find, R_0 of the system (1). The suggested model here includes one infected state I and three uninfected states S, V and R.

Suppose that A be a vector infected class and B be a vector uninfected class. They can be shown below:

$$
A = [I], B = [S, V, R]
$$

Suppose $H = \frac{d\gamma_i}{dx_j} \big|_{p_0}$ and $W = \frac{d\gamma_j}{dx_i} \big|_{p_0}$ for $i = 1, 2, 3, m$ and $j = 1, 2, 3, m$

We have:

P_0 is the disease equilibrium point.

m is the number of infectious compartment.

X_i is number of infected individuals in the ith infected in the ith Infected compartment.

F_i represent the rate of appearance of new infectious.

V_i rate of transfer of individuals out of the compartment.

The next generating matrix is HW^{-1} and the basic reproduction number is the spectral radius of HW^{-1}

In our model, we have one infection compartment with our infected individuals. Which can be written as:

$$
\text{So } F_1 = \frac{\alpha_S S + \alpha_V V}{1+b} + \frac{\alpha_I I}{1+b}
$$

$$
V_i = -\frac{d\gamma_i}{dx_j} \big|_{p_0} = -\mu \left(\frac{\alpha_S S + \alpha_V V}{1+b} + \frac{\alpha_I I}{1+b} \right)
$$

$\Lambda(t) = F(S,V,I,R) - V(S,V,I,R)$

Therefore the Jacobian of matrices (F_1) and (V_1) at the disease free equilibrium can be written as:

$$
D F_1(E_1) = \begin{bmatrix}
0 & \frac{\alpha_S}{\mu} & 0 & 0 \\
0 & 0 & \frac{\alpha_V}{\mu} & 0 \\
0 & 0 & 0 & \frac{\alpha_I}{\mu} \\
0 & 0 & 0 & 0
\end{bmatrix}
$$

$$
DV(E_1) = \begin{bmatrix}
\mu & 0 & 0 & 0 \\
0 & \mu & 0 & 0 \\
0 & 0 & \mu & 0 \\
0 & 0 & 0 & \mu
\end{bmatrix}
$$

It is easy to find the inverse of W and given by

$$
W^{-1} = \left[\begin{array}{c}
\frac{1}{\alpha + \mu + d + p}
\end{array} \right]
$$

According to the next generation matrix method, the basic reproduction number is the maximum eigenvalues of the matrix. Thus

$$
R_0 = \text{spec}(HW^{-1}) = \frac{\text{det}(\alpha_S S + \alpha_V V, \mu)}{\text{det}(\alpha_I I, \mu)}
$$

Theorem 1: The disease-free equilibrium E_1 is locally asymptotically stable if $R_0 < 1$

And it is Unstable if $R_0 > 1$.

Proof: The Jacobian system (1) at the free disease equilibrium point

$$
\begin{bmatrix}
\alpha_S S + \alpha_V V \\
\mu \mu + k + \delta
\end{bmatrix}
$$

$J(E_1) =$

$$
= \left[\begin{array}{c}
\frac{k\alpha}{\mu(\mu + k)} \\
0\\n0\\n0
\end{array} \right], (0,0)
$$
\[\begin{pmatrix} -\mu & \Delta \mu + \beta & 0 \\ \mu & -\mu & 0 \\ 0 & 0 & -\mu + \gamma \end{pmatrix} \]

Thus the Eigen values in 1-direction is \(\lambda_1 = (\mu + \gamma + d + p)(R_0 - 1) \) which is negative. Now we can evaluate the Eigen values in 1-direction is \(\lambda_2 = -\mu \) and \(\lambda_3 = -\mu + \gamma \) which is negative. Finally, evaluate the Eigen values in 1-direction is \(\lambda_2 = -\mu \) and \(\lambda_3 = -\mu + \gamma \) which is negative. Therefore, evaluate the Eigen values in 1-direction is \(\lambda_2 = -\mu \) and \(\lambda_3 = -\mu + \gamma \) which is negative.

5-Applying the model in Kurdistan region

In this section we applied the opposed model at Kurdistan region in Iraq, therefore we must estimate the model parameters firstly we assume \(\Lambda = 300 \), represent number of new daily, \(\mu = \frac{1}{35 + 360} = 0.0008 \), Gobal median age of population half average of individuals life span \(\alpha = \frac{1}{36} = 0.005 \); average time of recovery periods, \(\beta = 0.0015 \); efficacy of the vaccine = 0.02; Death rate due to the virus, \(\rho = 0.08 \); rate of recovery, \(k = \frac{\gamma}{\delta} = \frac{1000}{600000} = 0.00016 \).

In order to estimate the other parameters, the COVID-19 confirmed cases[Table 3, 4] were used. We want to find the vector of least-square estimators \(\theta \) that minimizes \(\sum_{i=1}^{n} E_i^2 = \sum_{i=1}^{n} (y_i - w_i)^2 \) \(\ldots (2) \)

Here \(E_i \) represent the difference between the observed value \(y_i \) and the corresponding fitted value \(w_i \).

To estimate the model parameters we must find an optimization algorithm to update the parameters based on equation (2).

The process of updating the parameters continues until no significant improvement (convergence) in the objective function is observed. We use estimation procedure in the Metropolis–Hastings (MH) [15] algorithm is replaced by comparing the minimum of the sum squared errors between the proposed parameter and the previously assigned parameter. \(\theta = [\theta_1, \theta_2] \), where, \(p \) is the number of parameters to be estimated. In our case, the number of parameters is \(p = 12 \), we take one parameter at a time and consider the other parameters held constant in the objective function.

\[\text{i.e.} \sum_{i=1}^{n} E_i^2 \left(\theta_j, \theta_1, \ldots, \theta_{j-1}, \ldots, \theta_p \right) = \sum_{i=1}^{n} (y_i - w_i)^2 \] \(\ldots (3) \)

First, we have to initialize the model parameters and propose the next parameter value by sampling from \(\theta_{prop} = \theta_i \pm \epsilon \) [\(\theta_i \pm \epsilon \) is a small quantity to move the parameter \(\theta_i \) up and down process of estimation the model parameter.]

A rough outline of the algorithm is given in Algorithm[15]

Algorithm 1: MH algorithm with Least square

Input: \(P \) (iteration numb), \(\theta_0 \) (initial value of mdl parameters), \(Y \) (Observed data)

Step 1. For \(i = 0, 1, \ldots, P \)

Step 2. Solve ode’s for Equation (1) at \(\theta_i \) and compute the sum of squared errors for Equation (3)

Step 3. Select new parameter \(\theta_{prop} \), and Compute Equation (9)

Step 4. Solve Ode’s at \(\theta_{prop} \) and Compute Equation (9)

Step 5. If the sum of squared errors in Step 4 is less than in Step 2

Step 6. \(n = n + 1 \).

The best fitting parameters based on the real data in Kurdistan are Table 1 as follows:

<table>
<thead>
<tr>
<th>Table 1: Results of model fitting</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha_1)</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>0.0002</td>
</tr>
</tbody>
</table>

More interestingly, the parameter of basic reproduction number for our data collection is about \(R_0 = 1.808 \). The result shows that \(R_0 \) more than one new infection, the disease (COVID-19) will be transmitted between among people and it requires more preventions and interventions.

7-Sensitivity indices of \(R_0 \) with respect to each parameters

With the development of the application of the biological system, the methods of sensitivity analysis mostly used in the study of biological systems can give worthy insights into the strangeness of the biological replays with the consideration of biological parameter changes that the main causes are model inputs which influenced the model outputs. However, sensitivity analysis is important to find data that have a high impact on \(R_0 \).

The studies of local sensitivity analysis interchanges in the model output variable input parameter differences all over the parameter area in the local point, which are consisted of sensitivity coefficients. Mathematically, the sensitivity coefficients are the first-order derivatives of the model.

Outputs with an agreement to the model parameters, as follows see [13], \(\frac{dR_0}{dp} = \frac{dR_0}{\theta_0} \frac{\theta_0}{p} \)

where \(p \) is the set of all parameters, we calculate the sensitivities index of \(R_0 \) for each model parameter. They are given below:

\[\frac{dR_0}{\theta_1} = \frac{dR_0}{\theta_2} \frac{\alpha_1(\mu + \beta)}{\alpha_1(\mu + \beta) + \alpha_2 k} \]
Recovery rate

Identify the key critical value to the set of parameters \(\{ \gamma, \alpha_2, \alpha, r, \beta \} \) \{ Vaccination efficacy, Recovery Rate due to the Vaccination, maximum treatment rate, Recovery Rate and Inhibitory impact \} respectively: see Figure 2b.

In this technique the set of parameters is very sensitive compared to the other parameters thus two Figures are computed, (Figure 3a) the sensitivity of all variables with respect to all parameters, the vaccination, infected and Recovered individuals are also very sensitive to the set of parameters \(\{ k, \alpha_1, b \} \) \{ Vaccination rate, Transmission Rate and the measure of inhibition recovered rate \} respectively.

(Figure 4) shows the sensitivity of all variables with respect to the set of parameters \(\{ \mu, \alpha_2, p \} \) \{ Natural death, Recovery Rate due to the Vaccination and rate of recovery \} respectively.

Figure 2, Figure 3 shows that parameters \(\{ A, p \} \) \{ Rate of recruitment, rate of recovery \} respectively, are the less critical model parameters whereas the remaining model parameters are the most sensitive to the model.

Using the estimated parameters in Kurdistan region, we can compute sensitivity indices of \(R_0 \) with respect to each parameter; see Table 2.

The values of the sensitivity indices for the parameters values of Table 1 are given in Table 2.

Table 2: sensitivity value of \(R_0 \) regarding to model parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>(\frac{\partial R_0}{\partial p})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Lambda)</td>
<td>1</td>
</tr>
<tr>
<td>(\alpha_1)</td>
<td>0.912</td>
</tr>
<tr>
<td>(k)</td>
<td>0.056</td>
</tr>
<tr>
<td>(\mu)</td>
<td>-899444</td>
</tr>
<tr>
<td>(\beta)</td>
<td>-0.055</td>
</tr>
<tr>
<td>(\alpha_2)</td>
<td>0.086</td>
</tr>
<tr>
<td>(A)</td>
<td>-0.772</td>
</tr>
<tr>
<td>(d)</td>
<td>-0.045</td>
</tr>
<tr>
<td>(p)</td>
<td>-0.182</td>
</tr>
</tbody>
</table>

Results given in Table 2 show the positive and negative signs for the model sensitivity. These give us the direct or indirect relation between \(R_0 \) and the model parameters. For example, this coefficient is positive for the set of parameters \(\{ \alpha_1, k, \alpha_2 \} \). This means that when \(\{ \alpha_1, k, \alpha_2 \} \) are increased, the value of \(R_0 \) is increased too and this virus spreads further. On the other hand, the sign of \(\{ \beta, \alpha, d, p, \mu \} \) are negative. It means that the value of basic reproduction number can be reduced by increasing such parameters.

8. **Sensitivity of the model variables to each parameter**

In this section, we study the Sensitivity of the model variables to each parameter [13]. Assume that there are \(n \) compartments \(c_i \) for \(i = 1, 2, \ldots, n \) and \(m \) parameters \(p_j \) for \(j = 1, 2, \ldots, m \) in an infectious disease model. The model balanced equations are represented by the following system of differential equations:

\[
\frac{dc_i}{dt} = g_i(C, p)
\]

Where \(C \in R^n, p \in R^m \), to find Sensitivity of the model variables to each parameter we used three different techniques: non normalizations, half normalizations and full normalizations;

The non-normalization sensitivities are defined as follows:

\[
S_{C_i} = \frac{\partial C_i(t)}{\partial p_j(t)}
\]

The half-normalization sensitivities are defined as follows:

\[
S_{C_i} = \frac{1}{C_i(t)} \frac{\partial C_i(t)}{\partial p_j(t)}
\]

The full-normalization sensitivities are given as follows:

\[
S_{C_i} = \frac{1}{C_i(t)} \frac{\partial C_i(t)}{\partial p_j(t)}
\]

where \(S_{C_i} \) are described as sensitivity for each variables \(C_i \) with respect to the parameters \(p_j \). We apply the idea of local sensitivity for our proposed COVID-19 model equations (System 1). The model initial populations \(S_0 = 6 \times 10^6, V_0 = 1000, I_0 = 18311, R_0 = 1500 \) and the model parameters from Table 2 are used in the computational cases. SimBiology Toolbox for MATLAB are used to compute the results, which includes three different methods: non-normalizations, half normalizations, and full normalizations[7].

According to the non-normalization technique, indicate that the most sensitive parameter for all model states \((\alpha_1) \) Transmission Rate. As well as the susceptible and Recovered individuals are also very sensitive to the set of parameters \(\{ r, \beta \} \) \{ Recovery Rate and Inhibitory impact \} respectively.
Fig. 2: Local sensitivity analysis with non-normalizations for the data given in Table 1.

Fig. 3: Local sensitivity analysis with half-normalizations for the data given in Table 1.
9- Conclusion
In this paper, we investigate a non-linear incidence rate SIRS epidemic model. Solutions' positives and boundedness, computation of the disease-free equilibrium point, and calculate the model's basic reproduction number, we carried out a local stability analysis of the disease-free equilibrium point, demonstrates that the disease-free equilibrium point is locally asymptotically stable if $R_0 < 1$, Unstable if $R_0 > 1$.

The parameters are estimated using the combination of least square and Mat lab codes for the combination of the MH algorithm with the least square, The estimation results of the model of the COVID-19 disease and we suggested the SIRS model with four spices and twelve parameters to predict the spreading of this disease in Kurdistan. The daily infections and deaths recorded from 22th August 2021 to 30th September 2021. In addition, R_0 was computed for real data in Kurdistan, it was about 1.808. This value is larger than unity, it means that the COVID 19 will be spread further and required some healthcare strategies to control this disease. Furthermore, we used the concept of local sensitivity to calculate the sensitivity of the model state with the model parameters.

References

