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ABSTRACT 
This study focuses on the stability and catastrophic behavior of 

finite periodic solutions in non-linear differential equations. The 

occurrence of folding surfaces and their relationship with 

saddle-node bifurcations are explored, being classified as fold 

and butterfly types of catastrophes. Additionally, the application 

of catastrophe theory is discussed to analyze the qualitative 

changes in solutions with the change in system parameters. 
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 الاستقرار والسلوك الكارثي للحلول الدورية المحدودة في المعادلات التفاضلية الغير خطية 
 شوان عمر عبد الرحمن  2، عصام رفيق فائق 1

 سم تقنيات هندسة الحاسوب، الكلية التقنية الهندسية / كركوك، الجامعة التقنية الشمالية، كركوك، العراق.ق  1

 الكلية التقنية للإدارة / السليمانية، جامعة البوليتكنيك، السليمانية، العراق.قسم الإدارة التقنية،  2

 الملخص 

. نسةررفةح ودلل اطسةطل الوطاا    غ ر الخط تركز هذه الدراسة  لى  اسةرارار لسةىال الراارل لىلىال الدلرا  الولدلفي ال الولاتفال الرلتةةى    

ع من الراارل الطل لاللراشة . بتضةةتا  ىل  كل   نهتقت تطا ن نيرا  الراارل لرلى ا الرر رال  لللاقرهت برفةلااتل ناط  اللاررا   لننةهلهت كوناا

   .تمالهال   ال اللىال مع تر ر ملاىوتل الهي

 .خط  ؛ اللىال الدلرا غ ر النواكج كترث  الطل؛ كترث  من نوط اللراش ؛ الولاتفال الرلتةى      :مفتاحيةالكلمات ال

 

1. Introduction 

The limit cycle is an isolated closed orbit in a dynamical system, which is stable (or attractive) if all nearby 

paths get close to it. If not, it is considered to be unstable. Equations have a difficulty in describing several aspects 

of the discontinuous jumping phenomena. The catastrophe theory (CT) can explain these aspects. In the book 

under review (abbreviated as ZCT), Just What is Catastrophe Theory? Zeeman compares Newton and Thom. 

According to Thom, CT "needs to be viewed as a broad morphological theory. A novel mathematical technique 

called 633 ZCT and Zeeman CT are used to explain how forms evolve in nature". Thorn and Zeeman introduced 

the elementary catastrophe theory (ECT).  In brief, ECT investigates a smooth real-valued map as a function of a 

state x and a parameter, commonly referred to as a "potential function." Three elementary catastrophic types, 

namely the Fold, Cusp, and Butterfly Catastrophes, as named by Thom are now existing after studying their theory 

in this study. The Fold Catastrophic Model was designed to assess stability through graphing the non-linear 

differential equations Fold Model and its bifurcation set. The projection of the folding part of the Fold Catastrophic 

Model onto the control parameter is always accompanied by a saddle-node bifurcation. The collapse mode of rock 

bursts is critical for both practical and theoretical analysis applications in catastrophe theory. The examination of 

catastrophic issues, such as equilibrium points, catastrophic manifold, capacitance, and phenomenon jump, has 

been of great interest for a long time because of its increasing applications in physical,  biological, and social 

sciences. Some writers, such as [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], and the 

authors made important contributions to the examination of various topics, such as points of balance, catastrophic 

models, recurring patterns, stability and instability, and phenomena linked to forced vibrations. This study aims to 

determine periodic solutions in a non-linear differential equation and assess their stability and semi-stability. The 

significance of the saddle-node bifurcation and its classification as a Fold, Cusp, and butterfly mutation in the 

context of Fold, Cusp, and butterfly surface folding lies in finding the number of stable, semi-stable, and unstable 

periodic solutions. Applying catastrophe theory can provide insights into the stability and catastrophic behavior of 

non-linear differential equations by analyzing the qualitative changes that occur in the solutions as the system 

parameters vary. Catastrophe theory, developed by mathematician René Thom, is a branch of mathematics that 

studies sudden and dramatic changes in the behavior of systems as a result of small changes in their parameters. 

Catastrophe theory enhances the comprehension of stability and catastrophic phenomena in the studied equations 

by providing a geometric and qualitative framework to analyze and understand the behavior of non-linear systems. 

It focuses on the study of critical points, bifurcations, and the changes in system dynamics as parameters vary. 

Furthermore, as indicated in the study of [7], the occurrence of catastrophic phenomena, such as folds, cusps, 

butterflies, and other similar types is contingent upon the level of the non-linearity present in the differential 

equation. 

2. Types of Catastrophe (CT)  

CT searches for degenerating the stationary points of a potential function (PF) that are zero in the first derivative 

as well as one or higher derivatives. When the parameters are perturbed somewhat, PF can be expanded as a Taylor 

series to reveal the degeneracy of stationary points. The stability analysis of periodic solutions provides insights 

into the long-term behavior of nonlinear differential equations (for some applications of CT on nonlinear 

differential equations see [6]). 

https://doi.org/10.25130/tjps.v28i6.1382
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Understanding the stability properties helps assess the susceptibility of periodic solutions to small perturbations 

and provides indications of the potential for catastrophic behavior.  

The following different local forms of elementary catastrophe [13] occur for four or fewer variables: 

1. Fold-type catastrophes, 

2. Cusp-type catastrophes, 

3. Swallowtail-type catastrophes, 

4. Butterfly-type catastrophes. 

The following types of catastrophe for the single variable potential functions are studied: 

a. Fold catastrophe  

A catastrophe which can occur for one control factor u1 and one behavior axis ζ. It is the universal unfolding of 

the singularity 𝐹(ζ) = ζ3 and has the following equation: 

 𝐹(𝜁, 𝑢1) = 𝜁3 + 𝑢1𝜁           

Where 𝑢1 is the first parameter and 𝜁 is the independent variable. When 𝑢1 < 0,  the stable and unstable extrema 

exist for the function 𝐹. The system can follow the stable lowest point if parameter 𝑢1 is gradually increased. Yet, 

the stable and unstable extrema collide and destroy each other at 𝑢1 = 0 . The bifurcation point is where this 

occurs. There is no longer a reliable solution at 𝑢1 > 0 . 

b. Cusp catastrophe  

A cusp catastrophe can occur for two control factors 𝑢1, 𝑢2 , and one behavior axis 𝜁. The cusp catastrophe is the 

universal unfolding of the singularity 𝑓(ζ) =  𝜁 4 and has the following equation 

𝐹(𝜁, 𝑢1, 𝑢2) = 𝜁4 + 𝑢1𝜁2 + 𝑢2𝜁 

When investigating the effect of adding the second parameter (𝑢2) to the control plane on a fold bifurcation, the 

geometry of cusp type catastrophe is highly prevalent. When the values of 𝑢1 and 𝑢2 are changed, a set of points 

known as a bifurcation is established in the (𝑢1, 𝑢2 ) space, where semi-stability appears and stability disappears. 

This in turn causes a stable periodic solution to abruptly change to a different result (For more details see [13], and 

for some applications see [6]). 

c. Butterfly catastrophe (for more information about Butterfly bifurcation see [3])  

 𝐹(𝜁, 𝑢1, 𝑢2, 𝑢3 , 𝑢4) =
1

6
𝜁6 +

1

4
𝑢1𝜁4 +

1

3
𝑢2𝜁3 +

1

2
𝑢3𝜁2 + 𝑢4𝜁  .  

Where  𝑢1, 𝑢2, 𝑢3 𝑎𝑛𝑑 𝑢4  are parameters (real numbers).       

3. Systems Arising from non-linear differential equation NLDE  

Suppose the following form of NLDE  

                                                       𝑦′′ = −𝜔0
2𝑦 + 𝛼𝑓(𝑥, 𝑦, 𝑦′)                                                                             (1) 

https://doi.org/10.25130/tjps.v28i6.1382
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Where 𝛼 is the  𝜀- parameter and 𝑓 is of period 
2𝜋

𝜔
  concerning 𝑥, the linear form of Eq. (1) is not interesting 

because the catastrophic behavior appears only in the foregoing non-linear differential equation, and then the 

process continues to get the approximate solution of (1) for this purpose: 

       Let 𝑦′ = 𝑣,                                                                                    (2) 

The next equation results from (1) and (2) 

𝑣′ = 𝑦′′ = −𝜔0
2𝑦 + 𝛼𝑓(𝑥, 𝑦, 𝑦′)                                                                   (3) 

Then, the solutions of equations (1) and (3) are: 

𝑦 = 𝑎(𝑥)𝑠𝑖𝑛 (𝜔𝑥) + 𝑏(𝑥)𝑐𝑜𝑠 (𝜔𝑥)   

                                                                                                           (4)                                                                                                                                         

𝑣 = 𝜔[𝑎(𝑥)𝑐𝑜𝑠 (𝜔𝑥) − 𝑏(𝑥)𝑠𝑖𝑛 (𝜔𝑥)] ,                          

Where 𝑎(𝑥) and 𝑏(𝑥) are very slowly varying functions, the following conditions (see [12]) must be 

satisfied (4): 

𝑎′𝑠𝑖𝑛 (𝜔𝑥) − 𝑏′𝑐𝑜𝑠 (𝜔𝑥) = 0                                                                            (5) 

                                                          𝑎′𝑐𝑜𝑠 (𝜔𝑥) − 𝑏′𝑠𝑖𝑛 (𝜔𝑥) =
𝛼

𝜔
[𝛽𝑦 + 𝑓(𝑥, 𝑦, 𝑦′)]                                        (6) 

                                                         𝛼𝛽 = 𝜔2 − 𝜔0
2                                                                                               (7) 

The depended system below yields from (5), (6) and (7): 

 

𝑎′ =
𝛼

𝜔
{𝛽𝑦 + 𝑓(𝑥, 𝑦, 𝑦′)}cos (ω𝑥) 

                                                                                                                       (8)       

𝑏′ = −
𝛼

𝜔
{𝛽𝑦 + 𝑓(𝑥, 𝑦, 𝑦′)sin (𝜔𝑥)} 

Integrating Eqs. (8) with respect to 𝑥, for 0 < 𝑥 < 2𝜋/𝜔 , there exists: 

𝑎′ = 𝛽𝑏 + 𝜇𝑎 − {𝑋2𝑎𝑟2 + 𝑋4𝑎𝑟4 + ⋯ + 𝑋2𝑛𝑎𝑟2𝑛} 

                                                                                                             (9)                                    

𝑏′ = −𝛽𝑎 + 𝜇𝑏 − {𝑋2𝑏𝑟2 + 𝑋4𝑏𝑟4 + ⋯ + 𝑋2𝑛𝑏𝑟2𝑛} − 𝐵 

Where 𝜇, 𝛽, 𝐵 and  𝑋2, 𝑋4, … , 𝑋2𝑛  are the real parameters and 𝑟 = √𝑎2 + 𝑏2 is the Amplitude. What we desired 

as the typical system, and what we obtained from the general form (1). 

4.  Catastrophic Manifold (CM) 

In this section, the stationary points of the system (9) have to be found. 

Let 𝑎′ = 𝑏′ = 0, with simple simplifications (see [11]), there is:   

https://doi.org/10.25130/tjps.v28i6.1382
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 [𝜇𝑟 − (𝑋2𝑟3 + 𝑋4𝑟5 + ⋯ + 𝑋2𝑛𝑟2𝑛+1)]2 + 𝛽2𝑟2 − 𝐵2 = 0                                    (10) 

When using polar coordinate transformations: 

𝑎 = 𝑟cos 𝜃, 𝑏 = 𝑟 sin 𝜃. Putting 𝜁 = 𝑟2 and if the appropriate change of coordinates is performed, Eq. (10) can 

be reduced to the standard form of some types of catastrophes. In addition, some standard forms of (10) may be 

found (see [12]) for CM: 

𝜁𝑚−1 + 𝑢1𝜁𝑚−3 + 𝑢2𝜁𝑚−4 + ⋯ + 𝑢𝑚 = 0 

This is the desired Eqn., where 𝑚 = 2𝑛 + 1 . A function 𝐹′ is defined so that the non-linear dynamic model can 

be found as follows after integration with respect to 𝜁: 

    𝐹′(𝜁) = −(𝜁𝑚−1 + 𝑢1𝜁𝑚−3 + 𝑢2𝜁𝑚−4 + ⋯ + 𝑢𝑚)                                  (11)                                                                                         

The following equation is the canonical form for the potential function: 

𝐹(𝜁, 𝑢1, 𝑢2, … ) =
1

𝑚
𝜁𝑚 +

𝑢1

𝑚−2
𝜁𝑚−2 + ⋯ + 𝑢𝑚𝜁                                      (12) 

The averaged system (8) produces the following equation, where 𝐹 is the potential function of the butterfly-type 

catastrophe, if the integer 𝑛 = 1 is put, then  𝑚 = 3, so the result is:  

  𝐹(𝜁, 𝑢1) =
1

3
𝜁3 + 𝑢1𝜁                                                                              (13) 

The stationary points of 𝐹 are provided by 

                                                                  
∂𝐹

∂𝜁
= 𝜁2 + 𝑢1 = 0                                                                              (14) 

Here, 𝐹 and 𝜁 are considered to be functions of the control variables, in this case, 𝑢1. The non-linear dynamic 

model is defined as follows:  

    𝐹(𝜁) = −(𝜁2 + 𝑢1)                                                                      (14a) 

Also, let us look into the Lipsanos function of this dynamic. Construct a function: (𝜁, 𝑢1) =
1

3
𝜁3 + 𝑢1𝜁   , via 

Fold catastrophe [15]. 

Someone saw that (14 a) is a Lyapunov function with    

                                                         
𝑑𝐹

𝑑𝑡
= −(𝜁2 + 𝑢1)2 < 0 ⇔ 𝜁2 + 𝑢1 ≠ 0                                                     (15) 

Therefore, in this section, the non-linear dynamical solution (14 a) is asymptotically stable.  

For the cusp catastrophe (see [12]), for which, if 𝑛 = 1, then  𝑚 = 3. 

The condition of three limit cycles is  

                                                                          △= 4𝑢1
3 + 27𝑢2

2 < 0                                                                  (16) 

For one or three limit cycles, the region's boundary is specified as: 

4𝑢1
3 + 27𝑢2

2 = 0                                                                   (17) 

 It is demonstrated that the saddle-node bifurcation is a fold type catastrophe.  

https://doi.org/10.25130/tjps.v28i6.1382
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Furthermore, the following propositions exist: 

Proposition 4.1: When Δ is less than zero in equation (16), there are two stable and one unstable periodic 

solution in the non-linear differential equation. 

Proposition 4.2: Every time the folding of the Fold type catastrophe occurs, the saddle-node bifurcation always 

follows.  

5. Conclusion 

This study demonstrated that the non-linear differential equation NLDE has two stable and one unstable periodic 

solution when the value of Δ in equation (16) is negative. Additionally, it revealed that whenever a Fold type 

Catastrophe occurs, it is always accompanied by a saddle-node bifurcation. Moreover, when a fold type catastrophe 

takes place, the aforementioned differential equation has one stable and one unstable solution. 
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