TJPS

Tikrit Journal of Pure Science

ISSN: 1813 – 1662 (Print) --- E-ISSN: 2415 – 1726 (Online)

Journal Homepage: http://tjps.tu.edu.iq/index.php/j

SOME RESULTS ON STRONGLY π -REGULAR RIN

Sinan O. Al-Salihi, Emad I. Jassim

Department of Mathematics, College of Education for pure science, Tikrit University, Tikrit, Iraq https://doi.org/10.25130/tjps.v28i2.1346

ABSTRACT

ARTICLE INFO.

Article history: -Received: 14 / 6 / 2022

-Accepted: 16 / 7 / 2022 -Available online: 26 / 4 / 2023

Keywords: regular ring , π -regular ring , strongly π regular ring

Corresponding Author:

Name: Emad I. Jassim

E-mail: <u>emad.l.jassim@st.tu.edu.iq</u>

drsinan2001@gmail.com

Tel:

©2022 COLLEGE OF SCIENCE, TIKRIT UNIVERSITY. THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE http://creativecommons.org/licenses/by/4.0/

1. Introduction

Let R be a ring we study concept of st. π -reg. ring., which introduced 1954 by Azumaya [2], and we give background theorems and corollary which we need in this paper also give some new results of st. π -reg. rg. and its connection with other rg.s. An element $a \in \mathcal{R}$ is called regular element if there exists some $b \in \mathcal{R}$ such that aba = a. A ring is called regular ring if every element is regular.

2. Strongly π -reg. ring. Definition 2.1 [2]:

we call a st. π – regular if it is both right π – regular and left π – regular.

Now it can readily be seen that a power a^n of a is right (or left) reg. iff here exists an element b of s.t. $a^{n+1}b = a^n$ (or $ba^{n+1} = a^n$), where

$a,b\in\!R.$

Theorem 2.2 [2]:

Under the assumption that \mathcal{R} is of bounded index, the following four conditions are equivalent to \forall other:

(1) $\mathcal{R} \pi$ -reg.,

(2) \mathcal{R} is right . π -reg.,

(3) \mathcal{R} is left π -reg.,

(4) \mathcal{R} is st. π -reg..

Lemma 2.3 :

Let b, c satisfy $a^{n+1}b = a^n$, $ca^{m+1} = a^m$ for some $n, m \in Z$. Then they satisfy $a^{m+1}b = a^m$, $ca^{n+1} = a^n$ too.

In this paper we study the strongly π - regular ring (for short

st. π -reg. rg.) and some properties also give some new results

of st. π -reg. rg. and its connection with other rings.

Proof: When $m \ge n$ $a^{m+1} = a^m$ follows immediately from $a^{n+1}b = a^n$. Suppose now m < n. Then $a^m = ca^{m+1}$ implies

 $a^{m}(=c^{2}a^{m+2}=\cdots)=c^{n-m}a^{n}$, and so we obtain $a^{m+1}b=c^{n-m}a^{n+1}b=c^{n-m}a^{n}=a^{m}$.

Similarly, we can verify the validity of $ca^{n+1} = a^n$.

Proposition 2.4[2] :

Every St. π -reg. element is π -reg.

Proposition 2.5 [5]:

Let \mathcal{R} be a st. π -reg. ring. Then for all $a \in \mathcal{R}$, there exists a positive integer n s.t. $a^n = eu = ue$ for some $e \in Id(\mathcal{R})$ and some $u \in U(\mathcal{R})$, where $Id(\mathcal{R})$ and $U(\mathcal{R})$ denote the set of idempotent of \mathcal{R} and the set of units of \mathcal{R} , respectively.

Definition 2.6 [8]:

A central idempotent in A is an idempotent in the central of A.

TJPS

Theorem 2.7 [5]:

Let \mathcal{R} be a rg. with central idempotent. Then \mathcal{R} is st. π -reg. iff $N(\mathcal{R}) = J(\mathcal{R})$ and $\mathcal{R}/N(\mathcal{R})$ is reg., where $N(\mathcal{R}), J(\mathbb{R})$ denoted the set of all nilpotent and the Jacobson of \mathcal{R} respectively.

Definition 2.8 [1]:

A ring \mathcal{R} is called an exchange ring if for every $a \in \mathcal{R}$, there exists $e \in Id(\mathcal{R})$ such that $e \in a\mathcal{R}$ and $1 - e \in (1 - a)\mathcal{R}$. $(Id(\mathcal{R})$ meanls the set of all idempotent in \mathcal{R}).

Remark 2.9 [1]:

Every st. π -reg. rg. is an exchange rg..

Theorem 2. 10[1]:

Let \mathcal{R} be an exchange ring and let a be a reg. element of is st. π -reg., then a is unit-reg element of A.

Definition 2.11 [4]:

Let *I* be an ideal of a ring \mathcal{R} . We say that *I* is a st. π -reg. ideal of \mathcal{R} in case for any $a \in I$ if there exist $n \in N$ and $b \in I$ s.t.

$a^n = a^{n+1}b.$

Theorem 2.12 [4]:

Let *I* be an ideal of a rg. \mathcal{R} . Then the following are equivalent:

(1) *I* is st. π -reg..

(2) Every element in *I* is st. π -reg. element.

Proposition 2.13 [6]:

Every right (or left) π -reg. rg. \mathcal{R} is st. π -reg..

Remark 2.14:

The factor ring of the integers with respect to the ideal generated by the integer 4 is a st. π -reg. rg. which is not a reg. rg..

Theorem 2.15 [7]:

Let \mathcal{R} be a rg. and I an ideal of \mathcal{R} .

(1) If \mathcal{R} is a st. π -reg. rg. then so is \mathcal{R}/I is st. π – regular ring.

(2)Assume that *I* is a reg. ideal of \mathcal{R} . Then , \mathcal{R} is a st. π -reg. rg. Iffso is $\mathcal{R}/_{I}$.

Proposition 2.16 [7]:

Let \mathcal{R} be a rg. and P be a prime ideal of \mathcal{R} . If R / p is st. π -reg., then so is \mathcal{R}_P .

Definition 2.17:

Let \mathcal{R} be a rg. and let $a \in \mathcal{R}$, the element a is called w-idempotent if for some positive integer n, a^n is an idempotent, i.e. $(a^n)^2 = a^n$.

Remark: The property that a is an w-idempotent is equivalent to the property that \exists distinct positive integer n, m s.t. $a^n = a^m$.

On the other hand if there exists positive integer n, m with n > m with $a^n = a^m$. Then there is some t > 0 s.t. t(n - m) > m.

Let k = t(n - m) = m and let $f = a^{m+k} = a^{t(n-m)}$ then

 $a^{m} = a^{n} = a^{m} \cdot a^{n} a^{-m} = a^{m} a^{t(n-m)}$ Thus $f = a^{t(n-m)} = a^{m+k} = a^{k} \cdot a^{m} = a^{k} a^{m} a^{t(n-m)} = a^{k} a^{m} a^{k+m} = f^{2}$ $\therefore a$ is w-idempotent.

Theorem 2.18:

Let a be a st. reg. element of a ring R. There exists one and only one element c s.t. ac = ca, $a^2c = (ca^2) = a$ and $ac^2(=c^2a) = c$, and in particular a is reg. element. For any element b s.t. $a^2b = a$, ccoincides with ab^2 . Moreover, c commutes with every element which is commutative with a.

Proof: Let b, d be two elements s.t. $a^2b = a, da^2 = a$. Then

 $(1) \qquad ab = ba^2b = da,$

So that

 $(2) \qquad ab^2 = dab = d^2a.$

From (1) we have also

 $(3) \qquad aba = da^2 = a = a^2b = ada.$

Now put $c = ab^2$. It follows then from (1), (2), (3), that

 $ac = adab = ab = da daba = ca, a^2c = aca = aba = a,$

 $ac^2 = dac = dab = c$, as desired.

Suppose next c' be any element which satisfies the same equalities as $c: ac' = c'a, a^2c' = a, a^2c' = c'$. Then, be replacing b, d in (2) by c, c' respectively, we get $c = ac^2 = c'^2a = c'$, showing the uniqueness of c.

For the proof of the last assertion, let z be any element s.t. az = za. Then we have first $caz = cza = cza^2c = ca^2zc = azc = zac$, i.e., z commutes with ca = ac. It follows from this now $cz = c^2az = czca = cazc = zcac = zc$, and this completes the proof.

corollary 2.19[2] :

Let *a* be a st. π -reg. element of A. Suppose that a^n is right reg.. Then a^n is in fact st. reg., and moreover there exists an element *c* s.t. ac = ca and $a^{n+1}c = a^n$.

Corollary 2.20 [3]:

L et \mathcal{R} be a st. π -reg. rg. and $s \in \mathcal{R}$. Then $\exists n \ge 1$ and $a \in \mathcal{R}$ s.t. $s^n = s^{2n}a$, sa = as and $a^2s^n = a$.

<u>Theorem 2.21 :</u>

Let \mathcal{R} be a rg. and $\{S_i\}_{i \in I}$ a collection of st. π -reg. subrg.s. Then $\bigcap_{i \in I} S_i$ is st. π -reg..

Proof: Let $\in S$. U sing one of the S_i we can find $n \ge 1$ and $a \in S_j$ s.t. $s^n = s^{2n}a, sa = as$ and $a^2s^n = a$. Now consider S_i For some $m \ge 1$ and $b \in S_j$ there is a solution for $s^{nm} = s^{2mn}b, s^{nm}b = bs^{nm}, b^2s^{nm} = b$. Further $s^{nm} = s^{2nm}a^m, s^{nm}a = as^{nm}$ and $a^{2m}s^{nm} = a^m$.

By corollary 2.26, $b = a^m \in S_j$. From $a = a^2 s^n$ it follows that $a = a^m s^{(m-1)n} \in S_j$ if $m \ge 1$. If m = 1, b = -a already. In any case $a \in S_j$.

Lemma 2.22 [2]:

Let a be a st. π -reg. element of index n, and c an element s.t. ac = ca and $a^{n+1}c = a^n$ (as in corollary 2.19. Then $a - a^2c$ is a nilpotent element of index n.

We now obtain from corollary (2.19) and lemma (2.22), immediately the following.

Theorem 2.23:

Let \mathcal{R} be a ring and let $a \in \mathcal{R}$ be a st. π -reg. element. Then there exists elements $u \in \mathcal{R}$ and $h \in \mathcal{R}$ s.t. 1. u is invertible. 2. uh = hu = a 3. h is w-idempotent.

Proof: \leftarrow By corollary (2.19), $\exists c \in \mathcal{R}$ and $n \in \mathcal{R}$ s.t. $a^{n+1}c = a^n$ and ca = ac. Then we have

 $a^{n} = a^{n+1}c = a^{n+2}a^{2} = \dots = a^{2n}c^{n} = a^{n}c^{n}a^{n}.$ Let $w = a^{n}c^{n}.$

Then $w^2 = w$ and the elements a, c and w commute with \forall other.

We also have $acw = ac(a^nc^n) = (a^{n+1}c)c^n = a^nc^n = w$

and $a^n w = a^n c^n a^n = a^n$.

Let u = aw + (1 - w)

and h = w + a(1 - w) then uh = hu.

And $uh = [aw + (1 - w)][w + a(1 - w)] = aw^2 + a(1 - w)^2 = aw + a - aw = a.$

Also $h^n = [w + a(1 - w)]^n = w^n + a^n(1 - w)^n$ = $w + a^n(1 - w) = w + a^n - a^n w = w$.

Thus g is an w-idempotent.

Finally; let z = [cw + (1 - w)] then zu = uz and $uz = [aw + (1 - w)][cw + (1 - w)] = acw^2 + (1 - w)^2 = w + (1 - w) = 1$. Therefore u is invertible.

Corollay 2.24 :

Let \mathcal{R} be a st. π -reg. ring and let $a \in \mathcal{R}$, then \exists elements $u \in \mathcal{R}$ and $h \in \mathcal{R}$ s.t. 1. u is invertible. 2. uh = hu = x. 3. h is an w-idempotent.

Moreover, if A is a rg. s.t. for every element $a \in A$ \exists elements $u \in A$ and $h \in A$ satisfying conditions (1),(2) and (3), then A is st. π -reg..

Proof: \leftarrow The first assertion directly from theorem (2.23).

The second assertion s.t. let $a \in A$ and there exists elements $u \in A$ and $h \in A$ satisfying condition (1), (2) and (3) for integer n > 0 s.t.

 $h^{2n} = h^n$. Then $a^n = u^n h^n = u^{2n} u^{-n} h^{2n}$ = $a^{2n} u^{-n} = a^{n+1} (a^{n-1} u^{-n})$ And thus S is st. π -reg..

Remark 2.25:

We list have other useful relations of the elements use in the proof of theorem (2.23).

Let *a* is st. π -reg. elements and a rg. \mathcal{R} , and let $n \in N$ and a, c and w in \mathcal{R} be the same in the proof of Theorem 2.23.

Thus we have $a^{n+1}c = a^n$, ac = ca $w = a^n c^n$ acw = w, $a^n w = w$ and a, c and w commute with \forall other set u = aw + (1 - w) v = aw - (1 - w)Then u and v and invertible with inverse $u^{-1} = cw + (1 - w)$ $v^{-1} = cw - (1 - w)$ Finally, a(1 - w) is nilpotent with $(a(1 - w))^n = 0$ It is st. π -reg..

It is clearly consequence of corollary (2.24), is another proof of the result that J(R), the Jacobson radical of R is nil when R is st. π -reg.. Since 0 is the only idempotent in J(R), nilpotent elements only w-idempotent in J(R).

 \leftarrow If $a \in J(\mathcal{R})$ and h is an w-idempotent in the decomposition of a, then h is also in $J(\mathcal{R})$. Hence h (and hence a) is nilpotent.

In the following we will present the very important theorem.

<u>Theorem 2.26 :</u>

Let \mathcal{R} be a st. π -reg. rg. if 2 is a unit in \mathcal{R} , then for all element of \mathcal{R} can be expressed as a sum of two units.

Proof: Suppose $a \in \mathcal{R}$. Then as in the proof of Theorem 2.23, $\exists c \in \mathcal{R}$ and $n \in N$ s.t. ac = ca and $a^{n+1}c = a^n$.

Let elements w, u, v, u^{-1} and v^{-1} in \mathcal{R} be define as in remarks following colloary 2.24, Since v commutes with

a(1-w), we have that $2^{-1}v + a(1-w)$ is a unit. Thus $2^{-1}u + [2^{-1}v + a(1-w)] =$

 $2^{-1}(aw + (1 - w)) + 2^{-1}[aw - (1 - w)] +$

a(1-w) = aw + a(1-w) = a.

Hence *a* is the sum of two units.

Now, Let \mathcal{R} be a rg., and let $U(\mathcal{R})$ denoted the subrg. of \mathcal{R} generated by the units of \mathcal{R} .

Thus, Theorem 2.24, shows that if \mathcal{R} is st. π -reg.. And 2 is a unit of \mathcal{R} , then $U(\mathcal{R}) = \mathcal{R}$.

Proposition 2.27:

Let \mathcal{R} be a st. π -reg. rg. and let A be a subrg. of \mathcal{R} .

If $U(\mathcal{R}) \leq A$, then A is st. π -reg..

Proof: \leftarrow Let $a \in A$. Thus a = uh, where $u \in \mathcal{R}$, $h \in \mathcal{R}$, u is invertible, uh = hu, and h^n is idempotent for some integer n > 0. Then $u \in A$, $u^{-1} \in A$ and so $h = u^{-1}a \in A$. Thus the factorization in \mathcal{R} is also a factorization in A, and so by corollary (2.24), A is st. π -reg..

Proposition 2.28:

Every element *a* in a st. π -reg. rg. \mathcal{R} is unit st. π -reg.; i.e. *a* has a generalized invers of st. π -reg. which is invertible.

Proof: Let $a \in \mathcal{R}$. Then as in the proof of theorem (2.23), $\exists c \in \mathcal{R}$ and $n \in N$ s.t. ac = ca and $a^{n+1} = a^n$ let elements w and u in \mathcal{R} be defined an in the remarks following corollary (2.24).

Then $a^{n+1}u^{-1} = a^{n+1}[cw + (1-w)]$ = $a^n acw + a^{n+1} - aa^n w$ = $a^n w + a^{n+1} - a^{n+1}$

$$=a^{n}$$
.

Definition 2.29 [5]:

A ring R is said to be reduced if it has no nonzero nilpotent elements.

Proposition 2.30:

Let \mathcal{R} be a reduced st. π -reg. rg.. Then \mathcal{R} is a reg. rg.. Proof : Let $a \in \mathcal{R}$. Then as in the proof of Theorem 2.23, $\exists c \in \mathcal{R}$ and $n \in \mathcal{R}$ s.t. ac = ca and $a^{n+1} = a^n$.

Let $w = a^n c^n$, then as in the remark following corollary 2.24,

a(1-w) is nilpotent.

Hence
$$a = a^{n+1}c^n = a(a^{n-1}c^n)a$$
.

References

[1] Ara, P. "Strongly π -regular rings have stable range one." Proceedings of the American Mathematical Society, vol. 124, no. 11, 1996.

[2] Azumaya, *G*. Strongly π -regular rings Journal of the Faculty of Science Hokkaido University. Ser. 1 Mathematics, vol. 13, no. 1, 1954.

[3] Burgess, W. D., and Menal, P. "On Strongly π -regular rings and homomorphisms into them." Communications in Algebra, vol. 16, no. 8, 1988.

[4] Chen, H., and Chen, M. "On Strongly π -regular ideals." Journal of Pure and Applied Algebra, vol. 195, no. 1, 2005.

[5] Chin, A. "A note on Strongly π -regular rings" Acta Mathematica Hungarica, vol. 102, no. 4, 2004.

[6] El Khalfaoui, R., and Mahdou, N. "On stable range one property and Strongly π -regular rings" Afrika Matematika, vol. 31, no. 5, 2020.

[7] Hirano, Y. "Some studies on Strongly π -regular rings" Mathematical Journal of Okayama University, vol. 20, no. 2, 1978.

[8] Pawloski, R. M. Computing the cohomology ring and Ext-algebra of group algebras. The University of Arizona, 2006.

بعض النتائج حول الحلقات المنتظمة القوية من نمط - π

عماد ابراهيم جاسم ، سنان عمر الصالحي

قسم الرياضيات ، كلية التربية للعلوم الصرفة ، جامعة تكريت ، تكريت ، العراق

الملخص

في هذا البحث قمنا بدراسة الحلقة المنتظمة القوية من نمط –π وبعض الخصائص التي تعطي ايضا بعض النتائج الجديدة حول الحلقة المنتظمة القوية من نمط –π وارتباطه بحلقات اخرى .