SOME RESULTS ON STRONGLY π-REGULAR RIN

Sinan O. Al-Salihi, Emad I. Jassim

Department of Mathematics, College of Education for pure science, Tikrit University, Tikrit, Iraq
https://doi.org/10.25130/tjps.v28i2.1346

ARTICLEINFO.

Article history:

-Received: 14/6/2022
-Accepted: 16/7/2022
-Available online: 26/4/2023
Keywords: regular ring, π _regular ring , strongly π _regular ring
Corresponding Author:
Name: Emad I. Jassim
E-mail: emad.l.jassim@st.tu.edu.iq
drsinan2001@gmail.com
Tel:

1. Introduction

Let R be a ring we study concept of st. $\boldsymbol{\pi}$-reg. ring., which introduced 1954 by Azumaya [2], and we give background theorems and corollary which we need in this paper also give some new results of st. π-reg. rg. and its connection with other rg.s. An element $a \in \mathcal{R}$ is called regular element if there exists some $b \in \mathcal{R}$ such that $a b a=a$. A ring is called regular ring if every element is regular.
2. Strongly π-reg. ring.

Definition 2.1 [2]:

we call a st. π-regular if it is both right $\pi-$ regular and left π-regular.
Now it can readily be seen that a power a^{n} of a is right (or left) reg. iff here exists an element b of s.t. $a^{n+1} b=a^{n}\left(\right.$ or $\left.b a^{n+1}=a^{n}\right)$, where
$\mathrm{a}, \mathrm{b} \in \mathrm{R}$.
Theorem 2.2 [2]:
Under the assumption that \mathcal{R} is of bounded index, the following four conditions are equivalent to \forall other:
(1) $\mathcal{R} \pi$-reg.,
(2) \mathcal{R} is right.π-reg.,
(3) \mathcal{R} is left π-reg.,
(4) \mathcal{R} is st. π-reg..

ABSTRACT

IIn this paper we study the strongly $\boldsymbol{\pi}$ - regular ring (for short st. π-reg. rg.) and some properties also give some new results of st. π-reg. rg. and its connection with other rings.

Lemma 2.3 :

Let b, c satisfy $a^{n+1} b=a^{n}, c a^{m+1}=a^{m}$ for some $n, m \in Z$. Then they satisfy $a^{m+1} b=a^{m}, c a^{n+1}=$ a^{n} too.
Proof: When $\quad m \geq n \quad a^{m+1}=a^{m} \quad$ follows immediately from $a^{n+1} b=a^{n}$. Suppose now $m<n$. Then $a^{m}=c a^{m+1}$ implies
$a^{m}\left(=c^{2} a^{m+2}=\cdots\right)=c^{n-m} a^{n}$, and so we obtain $a^{m+1} b=c^{n-m} a^{n+1} b=c^{n-m} a^{n}=a^{m}$.
Similarly, we can verify the validity of $c a^{n+1}=a^{n}$.

Proposition 2.4[2]:

Every St. π-reg. element is π-reg..

Proposition 2.5 [5]:

Let \mathcal{R} be a st. π-reg. ring. Then for all $a \in \mathcal{R}$, there exists a positive integer n s.t. $a^{n}=e u=u e$ for some $e \in \operatorname{Id}(\mathcal{R})$ and some $u \in U(\mathcal{R})$, where $\operatorname{Id}(\mathcal{R})$ and $U(\mathcal{R})$ denote the set of idempotent of \mathcal{R} and the set of units of \mathcal{R}, respectively.

Definition 2.6 [8]:

A central idempotent in A is an idempotent in the central of A.

Theorem 2.7 [5]:

Let \mathcal{R} be a rg. with central idempotent. Then \mathcal{R} is st. π-reg. iff $N(\mathcal{R})=J(\mathcal{R})$ and $\mathcal{R} / N(\mathcal{R})$ is reg., where $N(\mathcal{R}), J(\mathrm{R})$ denoted the set of all nilpotent and the Jacobson of \mathcal{R} respectively.

Definition 2.8 [1]:

A ring \mathcal{R} is called an exchange ring if for every $a \in \mathcal{R}$, there exists $e \in \operatorname{Id}(\mathcal{R})$ such that $e \in a \mathcal{R}$ and $1-e \in(1-a) \mathcal{R} .(\operatorname{Id}(\mathcal{R})$ meanls the set of all idempotent in \mathcal{R}).

Remark 2.9 [1]:

Every st. π-reg. rg. is an exchange rg..
Theorem 2. 10[1]:
Let \mathcal{R} be an exchange ring and let a be a reg. element of is st. π-reg., then a is unit-reg element of A..

Definition 2.11 [4]:

Let I be an ideal of a $\operatorname{ring} \mathcal{R}$. We say that I is a st. π-reg. ideal of \mathcal{R} in case for any $a \in I$ if there exist $n \in N$ and $b \in I$ s.t.
$a^{n}=a^{n+1} b$.

Theorem 2.12 [4]:

Let I be an ideal of a $\operatorname{rg} . \mathcal{R}$. Then the following are equivalent:
(1) I is st. π-reg..
(2) Every element in I is st. π-reg. element.

Proposition 2.13 [6]:
Every right (or left) π-reg. rg. \mathcal{R} is st. π-reg..

Remark 2.14:

The factor ring of the integers with respect to the ideal generated by the integer 4 is a st. π-reg. rg. which is not a reg. rg..

Theorem 2.15 [7]:

Let \mathcal{R} be a rg. and I an ideal of \mathcal{R}.
(1)If \mathcal{R} is a st. π-reg. rg. then so is \mathcal{R} / I is st. $\pi-$ regular ring.
(2)Assume that I is a reg. ideal of \mathcal{R}. Then, \mathcal{R} is a st. π-reg. rg. Iffso is \mathcal{R} / I.

Proposition 2.16 [7]:

Let \mathcal{R} be a rg. and P be a prime ideal of \mathcal{R}. If R / p is st. π-reg., then so is \mathcal{R}_{P}.

Definition 2.17:

Let \mathcal{R} be a rg. and let $a \in \mathcal{R}$, the element a is called w-idempotent if for some positive integer n, a^{n} is an idempotent, i.e. $\left(a^{n}\right)^{2}=a^{n}$.
Remark: The property that a is an w-idempotent is equivalent to the property that \exists distinct positive integer n, m s.t. $a^{n}=a^{m}$.
On the other hand if there exists positive integer n, m with $n>m$ with $a^{n}=a^{m}$. Then there is some $t>0$ s.t. $t(n-m)>m$.

Let $k=t(n-m)=m$ and let $f=a^{m+k}=a^{t(n-m)}$ then
$a^{m}=a^{n}=a^{m} \cdot a^{n} a^{-m}=a^{m} a^{t(n-m)}$
Thus
$f=a^{t(n-m)}=\mathrm{a}^{m+\boldsymbol{k}}=a^{k} \cdot a^{m}=a^{k} a^{m} a^{t(n-m)}=$
$a^{k} a^{m} a^{k+m}=f^{2}$
$\therefore a$ is w-idempotent.
Theorem 2.18:

Let a be a st. reg. element of a ring R. There exists one and only one element c s.t. $a c=c a, a^{2} c=$ $\left(c a^{2}\right)=a$ and $a c^{2}\left(=c^{2} a\right)=c$, and in particular a is reg. element. For any element b s.t. $a^{2} b=a, c$ coincides with $a b^{2}$. Moreover, c commutes with every element which is commutative with a.
Proof: Let b, d be two elements s.t. $a^{2} b=a, d a^{2}=$ a. Then
(1) $a b=b a^{2} b=d a$,

So that
(2) $a b^{2}=d a b=d^{2} a$.

From (1) we have also
(3) $a b a=d a^{2}=a=a^{2} b=a d a$.

Now put $c=a b^{2}$. It follows then from (1), (2), (3), that
$a c=a d a b=a b=d a d a b a=c a, a^{2} c=a c a=$
$a b a=a$,
$a c^{2}=d a c=d a b=c$, as desired.
Suppose next c^{\prime} be any element which satisfies the same equalities as c : $a c^{\prime}=c^{\prime} a, a^{2} c^{\prime}=a, a^{2} c^{\prime}=c^{\prime}$. Then, be replacing b, d in (2) by c, c^{\prime} respectively, we get $c=a c^{2}=c^{\prime 2} a=c^{\prime}$, showing the uniqueness of c .
For the proof of the last assertion, let z be any element s.t. $a z=z a$. Then we have first $c a z=$ $c z a=c z a^{2} c=c a^{2} z c=a z c=z a c, \quad$ i.e., $\quad z$ commutes with $c a=a c$. It follows from this now $c z=c^{2} a z=c z c a=c a z c=z c a c=z c$, and this completes the proof.
corollary 2.19[2]:
Let a be a st. π-reg. element of A. Suppose that a^{n} is right reg.. Then a^{n} is in fact st. reg., and moreover there exists an element c s.t. $a c=c a$ and $a^{n+1} c=$ a^{n}.

Corollary 2.20 [3]:

Let \mathcal{R} be a st. π-reg. rg. and $s \in \mathcal{R}$. Then $\exists n \geq 1$ and $a \in \mathcal{R}$ s.t. $s^{n}=s^{2 n} a, s a=a s$ and $a^{2} s^{n}=a$.

Theorem 2.21:

Let \mathcal{R} be a rg. and $\left\{\mathrm{S}_{\mathrm{i}}\right\}_{i \in I}$ a collection of st. π-reg. subrg.s. Then ${ }_{\mathrm{i} \in \mathrm{I}}^{S_{i}} S_{i}$ is st. π-reg..
Proof: Let $\in S . U$ sing one of the S_{i} we can find $n \geq 1 \quad$ and $\quad a \in S_{j} \quad$ s.t. $s^{n}=s^{2 n} a, s a=$ as and $a^{2} s^{n}=a$. Now consider S_{i} For some $m \geq 1$ and $b \in S_{j}$ there is a solution for $\mathrm{s}^{\mathrm{nm}}=s^{2 m n} b, s^{n m} b=b s^{n m}, b^{2} s^{n m}=b$. Further $s^{n m}=s^{2 n m} a^{m}, s^{n m} a=a s^{n m}$ and $a^{2 m} s^{n m}=a^{m}$.
By corollary 2.26, $b=a^{m} \in S_{j}$. From $a=a^{2} s^{n}$ it follows that $a=a^{m} s^{(m-1) n} \in S_{j}$ if $m \geq 1$. If $m=1$, $b=-a$ already. In any case $a \in S_{j}$.

Lemma 2.22 [2]:

Let a be a st. π-reg. element of index n , and c an element s.t. $a c=c a$ and $a^{n+1} c=a^{n}$ (as in corollary 2.19. Then $a-a^{2} c$ is a nilpotent element of index n. We now obtain from corollary (2.19) and lemma (2.22), immediately the following.

Theorem 2.23:

Let \mathcal{R} be a ring and let $a \in \mathcal{R}$ be a st. π-reg. element. Then there exists elements $u \in \mathcal{R}$ and $h \in \mathcal{R}$ s.t.

1. u is invertible.
2. $u h=h u=a$
3. h is w-idempotent.
Proof: \leftarrow By corollary (2.19), $\exists c \in \mathcal{R}$ and $n \in \mathcal{R}$ s.t. $a^{n+1} c=a^{n}$ and $c a=a c$. Then we have
$a^{n}=a^{n+1} c=a^{n+2} a^{2}=\cdots=a^{2 n} c^{n}=a^{n} c^{n} a^{n}$.
Let $w=a^{n} c^{n}$.
Then $w^{2}=w$ and the elements a, c and w commute with \forall other.
We also have $\operatorname{acw}=\operatorname{ac}\left(a^{n} c^{n}\right)=\left(a^{n+1} c\right) c^{n}=$ $a^{n} c^{n}=w$
and $a^{n} w=a^{n} c^{n} a^{n}=a^{n}$.
Let $u=a w+(1-w)$
and $h=w+a(1-w)$ then $u h=h u$.
And $u h=[a w+(1-w)][w+a(1-w)]=a w^{2}+$ $a(1-w)^{2}=a w+a-a w=a$.
Also $h^{n}=[w+a(1-w)]^{n}=w^{n}+a^{n}(1-w)^{n}$
$=w+a^{n}(1-w)=w+a^{n}-a^{n} w=w$.
Thus g is an w-idempotent.
Finally; let $z=[c w+(1-w)]$ then $z u=u z$ and
$u z=[a w+(1-w)][c w+(1-w)]=a c w^{2}+$
$(1-w)^{2}=w+(1-w)=1$.
Therefore u is invertible.

Corollay 2.24:

Let \mathcal{R} be a st. π-reg. ring and let $a \in \mathcal{R}$, then \exists elements $u \in \mathcal{R}$ and $h \in \mathcal{R}$ s.t. 1. u is invertible.
2. $u h=h u=x$. 3. h is an w-idempotent.

Moreover, if A is a rg. s.t. for every element $a \in A$ ヨelements $\quad u \in A$ and $h \in A$ satisfying conditions (1),(2) and (3), then A is st. π-reg..

Proof: \leftarrow The first assertion directly from theorem (2.23).

The second assertion s.t. let $a \in A$ and there exists elements $u \in A$ and $h \in A$ satisfying condition (1),
(2) and (3) for integer $n>0$ s.t.
$h^{2 n}=h^{n}$. Then $a^{n}=u^{n} h^{n}=u^{2 n} u^{-n} h^{2 n}$
$=a^{2 n} u^{-n}=a^{n+1}\left(a^{n-1} u^{-n}\right)$
And thus S is st. $\pi-$ reg..

Remark 2.25:

We list have other useful relations of the elements use in the proof of theorem (2.23).
Let a is st. π-reg. elements and a rg. \mathcal{R}, and let $n \in N$ and a, c and w in \mathcal{R} be the same in the proof of Theorem 2.23.
Thus we have $a^{n+1} c=a^{n}, \quad a c=c a$
$w=a^{n} c^{n}$
$a c w=w$,
$a^{n} w=w$
and a, c and w commute with \forall other
set $u=a w+(1-w)$
$v=a w-(1-w)$
Then u and v and invertible with inverse
$u^{-1}=c w+(1-w)$
$v^{-1}=c w-(1-w)$
Finally, $a(1-w)$ is nilpotent with $(a(1-w))^{n}=0$ It is st. π-reg..
It is clearly consequence of corollary (2.24), is another proof of the result that $J(R)$, the Jacobson radical of R is nil when R is st. π-reg.. Since 0 is the only idempotent in $\mathrm{J}(\mathrm{R})$, nilpotent elements only
w-idempotent in $\mathrm{J}(\mathrm{R})$.
\leftarrow If $a \in J(\mathcal{R})$ and h is an w-idempotent in the decomposition of a, then h is also in $J(\mathcal{R})$. Hence h (and hence a) is nilpotent.
In the following we will present the very important theorem.
Theorem 2.26:
Let \mathcal{R} be a st. π-reg. rg. if 2 is a unit in \mathcal{R}, then for all element of \mathcal{R} can be expressed as a sum of two units.
Proof: Suppose $a \in \mathcal{R}$. Then as in the proof of Theorem 2.23, $\exists c \in \mathcal{R}$ and $n \in N$ s.t. $a c=c a$ and $a^{n+1} c=a^{n}$.
Let elements w, u, v, u^{-1} and v^{-1} in \mathcal{R} be define as in remarks following colloary 2.24 , Since v commutes with
$a(1-w)$, we have that $2^{-1} v+a(1-w)$ is a unit.
Thus $2^{-1} u+\left[2^{-1} v+a(1-w)\right]=$
$2^{-1}(a w+(1-w))+2^{-1}[a w-(1-w)]+$
$a(1-w)=a w+a(1-w)=a$.
Hence a is the sum of two units.
Now, Let \mathcal{R} be a rg., and let $U(\mathcal{R})$ denoted the subrg. of \mathcal{R} generated by the units of \mathcal{R}.
Thus, Theorem 2.24 , shows that if \mathcal{R} is st. π-reg.. And 2 is a unit of \mathcal{R}, then $U(\mathcal{R})=\mathcal{R}$.

Proposition 2.27:

Let \mathcal{R} be a st. π-reg. rg. and let A be a subrg. of \mathcal{R}.
If $U(\mathcal{R}) \leq A$, then A is st. π-reg..
Proof: \leftarrow Let $a \in A$. Thus $a=u h$, where $u \in \mathcal{R}$, $h \in \mathcal{R}, u$ is invertible, $u h=h u$, and h^{n} is idempotent for some integer $n>0$. Then $u \in A, u^{-1} \in A$ and so $h=u^{-1} a \in A$. Thus the factorization in \mathcal{R} is also a factorization in A, and so by corollary (2.24), A is st. π-reg..

Proposition 2.28:

Every element a in a st. π-reg. rg. \mathcal{R} is unit st. π-reg.; i.e. a has a generalized invers of st. π-reg. which is invertible.
Proof: Let $a \in \mathcal{R}$. Then as in the proof of theorem (2.23), $\exists c \in \mathcal{R}$ and $n \in N$ s.t. $a c=c a$ and $a^{n+1}=$ a^{n} let elements w and u in \mathcal{R} be defined an in the remarks following corollary (2.24).
Then $a^{n+1} u^{-1}=a^{n+1}[c w+(1-w)]$
$=a^{n} a c w+a^{n+1}-a a^{n} w$
$=a^{n} w+a^{n+1}-a^{n+1}$
$=a^{n}$.

Definition 2.29 [5]:

A ring R is said to be reduced if it has no nonzero nilpotent elements.

Proposition 2.30:

Let \mathcal{R} be a reduced st. π-reg. rg.. Then \mathcal{R} is a reg. rg.. Proof : Let $a \in \mathcal{R}$. Then as in the proof of Theorem 2.23, $\exists c \in \mathcal{R}$ and $n \in \mathcal{R}$ s.t. $a c=c a$ and $a^{n+1}=$ a^{n}.
Let $w=a^{n} c^{n}$, then as in the remark following corollary 2.24 ,
$a(1-w)$ is nilpotent.
Hence $\quad a=a^{n+1} c^{n}=a\left(a^{n-1} c^{n}\right) a$.

References

[1] Ara, P. "Strongly π-regular rings have stable range one." Proceedings of the American Mathematical Society, vol. 124, no. 11, 1996.
[2] Azumaya, G. Strongly π-regular rings Journal of the Faculty of Science Hokkaido University. Ser. 1 Mathematics, vol. 13, no. 1, 1954.
[3] Burgess, W. D., and Menal, P. "On Strongly π regular rings and homomorphisms into them." Communications in Algebra, vol. 16, no. 8, 1988.
[4] Chen, H., and Chen, M. "On Strongly π-regular ideals." Journal of Pure and Applied Algebra, vol. 195, no. 1, 2005.
[5] Chin, A. "A note on Strongly π-regular rings" Acta Mathematica Hungarica, vol. 102, no. 4, 2004.
[6] El Khalfaoui, R., and Mahdou, N. "On stable range one property and Strongly π-regular rings" Afrika Matematika, vol. 31, no. 5, 2020.
[7] Hirano, Y. "Some studies on Strongly π-regular rings" Mathematical Journal of Okayama University, vol. 20, no. 2, 1978.
[8] Pawloski, R. M. Computing the cohomology ring and Ext-algebra of group algebras. The University of Arizona, 2006.

$$
\begin{aligned}
& \text { بعض النتائـج حول الحلقات المنتظمة القوية من نمط - T } \\
& \text { عماد ابراهيم جاسم ، سنان عمر الصالحي } \\
& \text { قسم الرياضيات ، كلية الترببة للعلوم الصرفة ، جامعة تكريت ، تكريت ، العرق }
\end{aligned}
$$

في هذا البحث قمنا بدراسة الحلقة المنتظمة القوية من نمط - \quad وبعض الخصـائص التي تعطي ايضـا بعض النتائج الجديدة حول الحلقة المنتظمـة القوية من نمط -T وارتباطه بحلقات اخرى .

