Tikrit Journal of Dure Science
ISSN: 1813 - 1662 (Print) --- E-ISSN: 2415-1726 (Online)
Journal Homepage: http://tips.tu.edu.iq/index.php/j

Class AK-manifold of Concircular curvature tensor (V)
Yaseen K. Abass, A. A. Shihab
Mathematics Department, College of Education for Pure Science, University of Tikrit, Tikrit, Iraq
https://doi.org/10.25130/tips.v28i1.1272

ARTICLEINFO.

Article history:

-Received: 8/8/2022
-Accepted: 26 / 10 / 2022
-Available online: 20 / 2 / 2023
Keywords: Classes AK-manifold,
Concircular curvature tensor (V)

Corresponding Author:

Name: Yaseen K. Abass
E-mail:
Yaseen.k.abbas@st.tu.edu.iq draliabd@tu.edu.iq

Tel:

©2022 COLLEGE OF SCIENCE, TIKRIT UNIVERSITY. THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE
http://creativecommons.org/licenses/by/4.0/

ABSTRACT

The current deals with new Three classes of almost Kahler manifold W2 of Concircular curvature tensor are Calculating differential geometrical but also topological parameters appropriate for new classes $\overline{\mathrm{V}} 1, \overline{\mathrm{~V}} 2$, and $\overline{\mathrm{V}} 3$, are the focus of the paper. Through it, an equivalence relationship was obtained between these classes and one of or more the Tensor compound in the adjoint G -structure space and then construct a relation between this new classes.

Introduction

Three different kinds of almost Hermitian manifolds, each of which is defined in terms of the Riemannian curvature tensor, were established by A.Gray [1].These classes are designated as R_{1}, R_{2}, and R_{3}. The class R_{1} stipulates what a parakahler manifold [2]. The R_{3} class includes RK-manifolds [3].The identities of R_{1}, R_{2}, and R_{3} were demonstrated by A. Gray [1],[4] and [5] to the fundamental concept for comprehending the differential-geometrical properties of Kahler manifolds. Following are the components that make up the Riemannian curvature tensor:
$\mathrm{R}_{1}:<\mathrm{R}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}, \kappa_{4}>=<\mathrm{R}\left(\mathrm{J}_{1}, \mathrm{~J} \kappa_{2}\right) \kappa_{3}, \kappa_{4}>$;
$\mathrm{R}_{2}:<\mathrm{R}\left(\kappa_{1}, \kappa_{2}\right) \quad \kappa_{3}, \kappa_{4}>=<\mathrm{R}\left(\mathrm{J}_{1}, \mathrm{~J} \kappa_{2}\right) \quad \kappa_{3}, \kappa_{4}>+<$ $\mathrm{R}\left(\mathrm{J}_{1}, \kappa_{2}\right) \mathrm{J}_{3}, \kappa_{4}>+<\mathrm{R}\left(\mathrm{J}_{1}, \kappa_{2}\right) \kappa_{3}, \mathrm{~J}_{4}>$
$\left.\mathrm{R}_{3}:<\mathrm{R}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}, \kappa_{4}>=<\mathrm{R}\left(\mathrm{J}_{1}, \mathrm{~J} \kappa_{2}\right) \mathrm{J} \kappa_{3}, \mathrm{~J} \kappa_{4}\right\rangle$
The AH-structures belonging to the class R_{i} have a tensor R that fulfills the identity R_{i}. If AH -any subclass of H -structures is named $\cap \mathrm{R}_{\mathrm{i}}=0$, where i is 1,2 , or 3 , then it exists. [5]. It is common knowledge that V, R_{1}, R_{2}, R_{3} [6]. As a result, it makes sense to expect that the manifold class, R_{1} manifold class, and lastly the manifold of class R_{3} are among the AH-
manifolds that are closest to the Kahler manifold class for differential - geometrical and topological properties. AH -structures, Concircular tensor (V) which satisfies to identity V_{i}, are referred to as the structures. of class V_{i}. If $\theta \subset A H-$ any sub class of AHstructures designations $\cap R_{i}=s$ where $i=1,2,3$ well - known that $V \subset V_{1} \subset V_{2} \subset V_{3}$ [4]. In light of this, it makes sense to anticipate that the H -manifolds with the closest geometrical and topological features will be the ones to the Vaishman - Gray manifold class, manifold class V_{1}, manifold class V_{2}, but rather finally, manifold of class V_{3}. In this paper, we will generalize these relationships, definitions and theories related to them for almost Kahler manifold W_{2} of Concircular curvature tensor

Preliminaries

Assuming M is a smooth manifold of size $2 n, C^{\wedge \infty}(M)$ is represents an algebra of smooth functions on M, and $\mathrm{X}(\mathrm{M})$ is really a module of smooth vector fields on M. The following assumes that all objects are of class $\mathrm{C}^{\wedge \infty}(\mathrm{M})$ and include manifold, tensor fields, Therefore, J -almost complex structure ($\mathrm{J}^{\wedge 2}=\mathrm{id}$) on M , $\mathrm{g}=<.$, . $>$ and Almost Hermition (is short, AH)
structure on a manifold M the couple（ J, g ）．pseudo metric Riemannian on M ．In this instance＜J丹，J $\alpha>$ $=\langle\vartheta, \alpha\rangle ; \vartheta, \alpha \in \mathrm{X}(\mathrm{M})$ ．

Definition 1 ［4］

If the basic form $\Omega(\tau, \mu)=<\tau$ ，J $\mu>$ closed i．e $d \Omega$ $=0$ ，the Hermition manifold is said to be approximately＜M，J，g＝．，．＞has an almost Kahler structure（AK structure）．A manifold that is smooth M with an AK－chassis is referred to as a roughly Kahler manifold（AK－manifold）．

Definition 2 ［3］

A class manifold is denoted by the letters（ $\mathrm{M}, \mathrm{J}, \mathrm{g}$ ） such that：
1） \bar{V}_{1} if $\left\langle\mathrm{V}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}, \kappa_{4}\right\rangle=\left\langle\mathrm{V}\left(\kappa_{1}, \kappa_{2}\right) \mathrm{J} \kappa_{3}, \mathrm{~J} \kappa_{4}\right\rangle$ ； 2）$\overline{\mathrm{V}}_{2}$ if $\left\langle\mathrm{V}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}, \kappa_{4}\right\rangle=\left\langle\mathrm{V}\left(\mathrm{J}_{1}, \mathrm{~J} \kappa_{2}\right) \kappa_{3}, \kappa_{4}\right\rangle+$ $\left.\left\langle\mathrm{V}\left(\mathrm{J}_{1}, \kappa_{2}\right) \mathrm{J} \kappa_{3}, \kappa_{4}\right\rangle+\left\langle\mathrm{V}\left(\mathbf{J} \kappa_{1}, \kappa_{2}\right) \kappa_{3}, \mathrm{~J}_{4}\right\rangle ; 3\right) \bar{V}_{3}$ if $\left\langle\mathrm{V}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}, \kappa_{4}\right\rangle=\left\langle\mathrm{V}\left(\mathrm{J}_{1}, \mathrm{~J} \kappa_{2}\right) \mathrm{J} \kappa_{3}, \mathrm{~J} \kappa_{4}\right\rangle ;$

Note3：

From history theorem which states（（The following are our inclusion relationships：i）$V_{0}=V_{3}$ ，ii）$V_{1}=V_{2}$ ，iii） $\mathrm{V}_{4}=\mathrm{V}_{7}$ ，iv） $\mathrm{V}_{5}=\mathrm{V}_{6}$ ））．
We follows that AK－manifold of class $\mathrm{V}_{0}=\mathrm{V}_{3}=\mathrm{V}_{5}$ $=\mathrm{V}_{6}$ are also class \bar{V}_{3} manifolds．The meaning of the specified curvature identities of is most obvious when expressed in terms of an a spectrum Concircular curvature tensor．

Theorem 4

Consider $\mathrm{W}=(\mathrm{J}, \mathrm{g}=\langle., .>)$ represents almost Kahler manifold ．Then the following statements are identical in this case ：
1）W denote a class＇s structure of \bar{V}_{3} ；
2）$V_{(0)}=0$ and
（3）The identities $V_{b c d}^{a}=0$ are reasonable in space of adjont G－structure space．

Proof：

Consider W denote a class＇s structure of \bar{V}_{3} ．W without doubt，the same as identity $\mathrm{V}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}+\mathrm{J}$ $\mathrm{V}\left(\mathrm{J} \kappa_{1}, \mathrm{~J} \kappa_{2}\right) \mathrm{J} \kappa_{3}=0 ; \kappa_{1}, \kappa_{2}, \kappa_{3} \in \mathrm{X}(\mathrm{M})$
Spectral tensors are defined as follows：
$\mathrm{V}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}=\mathrm{V}_{(0)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}+\mathrm{V}_{(1)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}+\mathrm{V}_{(2)}\left(\kappa_{1}\right.$ ， $\left.\kappa_{2}\right) \quad \kappa_{3}+V_{(3)}\left(\kappa_{1}, \quad \kappa_{2}\right) \quad \kappa_{3}+V_{(4)}\left(\kappa_{1}, \quad \kappa_{2}\right) \quad \kappa_{3}$ $+\mathrm{V}_{(5)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}+\mathrm{V}_{(6)}\left(\kappa_{1}, \quad \kappa_{2}\right) \quad \kappa_{3}$ $+\mathrm{V}_{(7)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3} ; \kappa_{1}, \kappa_{2}, \kappa_{3} \in \mathrm{X}(\mathrm{M})$
$\mathrm{J} \circ \mathrm{V}\left(\mathrm{J} \kappa_{1}, \mathrm{~J} \kappa_{2}\right) \mathrm{J} \kappa_{3}=\mathrm{J} 。 \mathrm{~V}_{(0)}\left(\mathrm{J} \kappa_{1}, \mathrm{~J} \kappa_{2}\right) \mathrm{J} \kappa_{3}+\mathrm{J}_{\circ} \mathrm{V}_{(1)}\left(\mathrm{J} \kappa_{1}\right.$, $\left.\mathbf{J} \kappa_{2}\right) \mathrm{J}_{\kappa_{3}}+\mathbf{J} 。 \mathrm{~V}_{(2)}\left(\mathrm{J}_{1}, \mathrm{~J} \kappa_{2}\right) \mathrm{J} \kappa_{3}+\mathrm{J} 。 \mathrm{~V}_{(3)}\left(\mathrm{J}_{1}, \mathrm{~J} \kappa_{2}\right) \mathbf{J} \kappa_{3}+$ $\mathrm{J}_{\circ} \mathrm{V}_{(4)}\left(\mathrm{J} \kappa_{1}, \mathrm{~J} \kappa_{2}\right) \mathrm{J} \kappa_{3}+\mathrm{J}_{\circ} \mathrm{V}_{(5)}\left(\mathrm{J} \kappa_{1}, \mathrm{~J} \kappa_{2}\right) \mathrm{J} \kappa_{3}+\mathrm{J} 。 \mathrm{~V}_{(6)}\left(\mathrm{J} \kappa_{1}\right.$, $\left.\mathrm{J}_{2}\right) \mathrm{J}_{3}+\mathrm{J}_{\circ} \mathrm{V}_{(7)}\left(\mathrm{J}_{1}, \mathrm{~J} \kappa_{2}\right) \mathrm{J} \kappa_{3}$
$=\mathrm{V}_{(0)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}-\mathrm{V}_{(1)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}-\mathrm{V}_{(2)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}+$ $\mathrm{V}_{(3)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}-\mathrm{V}_{(4)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}+\mathrm{V}_{(5)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}+$ $\mathrm{V}_{(6)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}-\mathrm{V}_{(7)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3} ; \kappa_{1}, \kappa_{2}, \kappa_{3} \in \mathrm{X}(\mathrm{M})$
These identities will be defined as follows：
$\mathrm{V}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}+\mathrm{JV}\left(\mathrm{J} \kappa_{1}, \mathrm{~J} \kappa_{2}\right) \mathrm{J} \kappa_{3}=\left\{\mathrm{V}_{(0)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}\right.$ $\left.+\mathrm{V}_{(3)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}+\mathrm{V}_{(5)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}+\mathrm{V}_{(6)}\left(\kappa_{1}, \kappa_{2}\right)\right\}$
The identity is shaped by resources $\mathrm{V}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}+\mathrm{J}$ $\mathrm{V}\left(\mathrm{J} \kappa_{1}, \mathrm{~J} \kappa_{2}\right) \mathrm{J} \kappa_{3}=0$ is equal $\mathrm{V}_{(0)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}+\mathrm{V}_{(3)}\left(\kappa_{1}\right.$ ， $\left.\kappa_{2}\right) \kappa_{3}+\mathrm{V}_{(5)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}+\mathrm{V}_{(6)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}$ and this identity is the same as other identities $V_{(0)}=V_{(3)}=$ $V_{(5)}=V_{(6)}=0$ ．

The following relations can be derived from the obtained identities on the adjoint G－space：structure＇s， according to characteristics（3）：
$V_{b c d}^{a}=V_{b \hat{c} \hat{d}}^{a}=V_{\hat{b} c \hat{d}}^{a}=0$ ．
Because of materiality tensorCand its properties（3） received relations that are identical to $V_{b c d}^{a}=0$ ，this mean identity $\mathrm{V}_{(0)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}=0$ According to ［5］，the exact opposite is true．

Theorem 5

Consider $\mathrm{W}=(\mathrm{J}, \mathrm{g}=$＜．，．$>$ ）represents almost Kahler structure．Then the following statements are identical in this case：
（1）W denote a class＇s structure of \bar{V}_{2} ；
（2）$V_{(0)}=V_{(7)}=0$ ；and
（3）On the associated G－structure identities space $V_{b c d}^{a}=V_{\hat{b} \hat{c} \hat{d}}^{a}=0$ are they reasonable $V_{b c d}^{a}=V_{\hat{b} \hat{c} \hat{d}}^{a}=$ 0

Proof：

Consider W－structure of a class \bar{V}_{2} be the case identity \bar{V}_{2} will be copied in the following format．
The identity will compute based on the notion of a spectrum tensor once every one has been assembled：
1）$\quad \mathrm{V}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}=\mathrm{V}_{(0)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}+\mathrm{V}_{(1)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}+$ $\mathrm{V}_{(2)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}+\mathrm{V}_{(3)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}+\mathrm{V}_{(4)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}$ $+\mathrm{V}_{(5)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}+\mathrm{V}_{(6)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}+\mathrm{V}_{(7)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3} ; \kappa_{1}$ ， $\kappa_{2}, \kappa_{3} \in X(M)$
2）$\quad \mathrm{V}\left(\mathrm{J} \kappa_{1}, \mathrm{~J} \kappa_{2}\right) \kappa_{3}=\mathrm{V}_{(0)}\left(\mathrm{J} \kappa_{1}, \mathrm{~J} \kappa_{2}\right) \kappa_{3}+\mathrm{V}_{(1)}\left(\mathrm{J} \kappa_{1}, \mathrm{~J} \kappa_{2}\right)$ $\kappa_{3}+V_{(2)}\left(\mathrm{J}_{1}, \mathrm{~J} \kappa_{2}\right) \kappa_{3}+\mathrm{V}_{(3)}\left(\mathrm{J} \kappa_{1}, \mathrm{~J} \kappa_{2}\right) \kappa_{3}+\mathrm{V}_{(4)}\left(\mathrm{J} \kappa_{1}, \mathrm{~J} \kappa_{2}\right)$ $\kappa_{3} \quad+\mathrm{V}_{(5)}\left(\mathrm{J} \kappa_{1}, \quad \mathrm{~J} \kappa_{2}\right) \quad \kappa_{3}+\mathrm{V}_{(6)}\left(\mathrm{J}_{1}, \quad \mathrm{~J}_{2}\right) \quad \kappa_{3}$ $+\mathrm{V}_{(7)}\left(\mathrm{J}_{1}, \mathrm{~J} \kappa_{2}\right) \kappa=-\mathrm{V}_{(0)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}+\mathrm{V}_{(1)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}+$ $\mathrm{V}_{(2)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}-\mathrm{V}_{(3)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}-\mathrm{V}_{(4)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}+\mathrm{V}_{(5)}\left(\kappa_{1}\right.$ ， $\left.\kappa_{2}\right) \kappa_{3}+\mathrm{V}_{(6)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}-\mathrm{V}_{(7)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3} ; \kappa_{1}, \kappa_{2}$ ， $\kappa_{3} \in \mathrm{X}(\mathrm{M})$
3）$\quad \mathrm{V}\left(\mathrm{J} \kappa_{1}, \kappa_{2}\right) \mathrm{J} \kappa_{3}=\mathrm{V}_{(0)}\left(\mathrm{J} \kappa_{1}, \kappa_{2}\right) \mathrm{J}_{3}+\mathrm{V}_{(1)}\left(\mathrm{J} \kappa_{1}, \kappa_{2}\right) \mathrm{J} \kappa_{3}+\mathrm{V}_{(}$ ${ }_{2)}\left(\mathrm{J}_{1}, \kappa_{2}\right) \mathrm{J}_{3}+\mathrm{V}_{(3)}\left(\mathrm{J}_{1}, \kappa_{2}\right) \mathrm{J}_{3}+\mathrm{V}_{(4)}\left(\mathrm{J}_{1}, \kappa_{2}\right) \mathrm{J}_{3}+\mathrm{V}_{(5)}\left(\mathrm{J}_{1}\right.$ ， $\left.\kappa_{2}\right) \mathrm{J} \kappa_{3}+\mathrm{V}_{(6)}\left(\mathrm{J}_{1}, \kappa_{2}\right) \mathrm{J} \kappa_{3}+\mathrm{V}_{(7)}\left(\mathrm{J} \kappa_{1}, \kappa_{2}\right) \mathrm{J} \kappa_{3}=-\mathrm{V}_{(0)}\left(\kappa_{1}, \kappa_{2}\right)$ $\kappa_{3}-\mathrm{V}_{(1)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}+\mathrm{V}_{(2)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}+\mathrm{V}_{(3)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}$ $+\mathrm{V}_{(4)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}+\mathrm{V}_{(5)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}-\mathrm{V}_{(6)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}-$ $\mathrm{V}_{(7)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3} ; \kappa_{1}, \kappa_{2}, \kappa_{3} \in \mathrm{X}(\mathrm{M})$
4） $\mathrm{JV}\left(\mathrm{J} \kappa_{1}, \kappa_{2}\right) \kappa_{3}=\mathrm{JV}_{(0)}\left(\mathrm{J} \kappa_{1}, \kappa_{2}\right) \kappa_{3}+\mathrm{JV} \mathrm{V}_{(1)}\left(\mathrm{J} \kappa_{1}, \kappa_{2}\right) \kappa_{3}$ $+\mathrm{JV}_{(2)}\left(\mathrm{J}_{1}, \kappa_{2}\right) \kappa_{3}+\mathrm{JV}_{(3)}\left(\mathrm{J}_{1}, \kappa_{2}\right) \kappa_{3}+\mathrm{JV}_{(4)}\left(\mathrm{J}_{1}, \kappa_{2}\right) \kappa_{3}$ $+\mathrm{V}_{(5)}\left(\mathrm{J} \kappa_{1}, \kappa_{2}\right) \kappa_{3}+\mathrm{JV}_{(6)}\left(\mathrm{J} \kappa_{1}, \kappa_{2}\right) \kappa_{3}+\mathrm{JV}_{(7)}\left(\mathrm{J}_{1}, \kappa_{2}\right)$ $\kappa_{3}=-\mathrm{V}_{(0)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}-\mathrm{V}_{(1)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}+\mathrm{V}_{(2)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}$ $+\mathrm{V}_{(3)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}-\mathrm{V}_{(4)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}-\mathrm{V}_{(5)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}+$ $\mathrm{V}_{(6)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}+\mathrm{V}_{(7)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3} ; \kappa_{1}, \kappa_{2}, \kappa_{3} \in \mathrm{X}(\mathrm{M})$
If we replace these decompositions in the previous equality，we get： $\mathrm{V}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}-\mathrm{V}\left(\mathrm{J} \kappa_{1}, \mathrm{~J} \kappa_{2}\right) \kappa_{3}$－ $\mathrm{V}\left(\mathrm{J} \kappa_{1}, \kappa_{2}\right) \mathrm{J} \kappa_{3}+\mathrm{JV}\left(\mathrm{J} \kappa_{1}, \kappa_{2}\right) \kappa_{3}=2\left\{\mathrm{~V}_{(0)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}\right.$ $+\mathrm{V}_{(3)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}-\mathrm{V}_{(5)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}+\mathrm{V}_{(6)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}$ $\left.+V_{(7)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}\right\}$
This identity is equivalent to that
$\mathrm{V}_{(0)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}=\mathrm{V}_{(3)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}=\mathrm{V}_{(5)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}=$ $\mathrm{V}_{(6)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}=\mathrm{V}_{(7)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}=0$
$V_{b c d}^{a}=V_{b \hat{c} \hat{d}}^{a}=V_{\hat{b} c \hat{d}}^{a}=V_{\hat{b} \hat{c} d}^{a}=V_{\hat{b} \hat{c} \hat{d}}^{a}=0$ ．
Additionally，these identities in the adjacent G－space structures are identical to those in the adjacent G－ space structures．

The received relations are equal to relations due to the materiality tensor V and by history characteristics we have $V_{b c d}^{a}=V_{\hat{b} \hat{d} \hat{d}}^{a}=0$ i．e．to identities $\mathrm{V}_{(0)}\left(\kappa_{1}, \kappa_{2}\right)$ $\kappa_{3}=\mathrm{V}_{(7)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}$ ．Allow for AK＇s several identities once more $\mathrm{V}_{(0)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}=\mathrm{V}_{(7)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}=0$ are executed．
Then by history from we have： $\mathrm{V}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}-\mathrm{V}\left(\kappa_{1}\right.$ ， $\left.\mathbf{J} \kappa_{2}\right) \mathbf{J} \kappa_{3}-\mathrm{V}\left(\mathbf{J} \kappa_{1}, \kappa_{2}\right) \mathbf{J} \kappa_{3}-\mathrm{V}\left(\mathbf{J} \kappa_{1}, \mathbf{J} \kappa_{2}\right) \kappa_{3}=0$ ；i．e．
$\mathrm{V}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}=\mathrm{V}\left(\kappa_{1}, \mathrm{~J} \kappa_{2}\right) \mathrm{J} \kappa_{3}+\mathrm{V}\left(\mathbf{J} \kappa_{1}, \kappa_{2}\right) \mathrm{J} \kappa_{3}+\mathrm{V}\left(\mathrm{J} \kappa_{1}\right.$, $\left.\mathrm{J}_{2}\right) \kappa_{3}$ ．
In the received identity instead of $\mathrm{V}\left(\kappa_{1}, \mathrm{~J} \kappa_{2}\right) \mathrm{J} \kappa_{3}$ we shall put the value received history from replacement
$\kappa_{2} \rightarrow \mathbf{J} \kappa_{2}$ and $_{3} \rightarrow \mathbf{J} \kappa_{3}$ ，i．e
$\mathrm{V}\left(\kappa_{1}, \mathrm{~J} \kappa_{2}\right) \mathrm{J} \kappa_{3}=-\mathrm{JV}\left(\mathrm{J} \kappa_{1}, \kappa_{2}\right) \kappa_{3}$
Then
$\mathrm{V}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}=\mathrm{V}\left(\mathbf{J} \kappa_{1}, \mathrm{~J} \kappa_{2}\right) \kappa_{3}+\mathrm{V}\left(\mathbf{J} \kappa_{1}, \kappa_{2}\right) \mathrm{J} \kappa_{3}-$ $\mathrm{JV}\left(\mathbf{J} \kappa_{1}, \mathbf{J} \kappa_{2}\right) \kappa_{3}$
i．e．
$\left\langle\mathrm{V}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}, \kappa_{4}\right\rangle=\left\langle\mathrm{V}\left(\mathrm{J}_{1}, \mathrm{~J}_{2}\right) \kappa_{3}, \kappa_{4}\right\rangle+\left\langle\mathrm{V}\left(\mathrm{J}_{1}\right.\right.$, $\left.\left.\kappa_{2}\right) \mathrm{J} \kappa_{3}, \kappa_{4}\right\rangle+\left\langle\mathrm{V}\left(\mathrm{J} \kappa_{1}, \kappa_{2}\right) \kappa_{3}, \mathrm{~J} \kappa_{4}\right\rangle$ The outcome is that the identical requirement is met by the manifold \bar{V}_{2} ．
In a similar manner，the next theorem is demonstrated．

Theorem 6

Consider $\mathrm{W}=(\mathrm{J}, \mathrm{g}=<.,\rangle$.$) represents almost$ Kahler manifold ．Then the following statements are identical in this：
（1）W denote a class＇s structure of \bar{V}_{1}
（2）$V_{(0)}=V_{(4)}=V_{(7)}=0$ ；
（3）associated identities on the G－structure space $V_{b c d}^{a}=V_{\hat{b} c d}^{a}=V_{\hat{b} \hat{c} \hat{d}}^{a}$ are reasonable ．

proof ：

Take，for example，a class＇s W－structure \bar{V}_{1} ．It＇s obvious that it＇s the same as identity $<\mathrm{V}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}$ ，

References

［1］Gray A．＂Curvature Identilies for Hermitian and Almost Hermitian Manifold＂J ．diff．geom．， V．4，P．283－309，1970．
［2］Gray A．，＂Curvature identites for Hermitian and Almost Hermitian Manifold＂Tohoku Math ．J．28，NO－4，pp．601－601，1976．
［3］Gray A．，Vanhecke L．，＂Almost Hermitian Manifold with Constant Holomorphic Sectional curvature＂，Cast ．Pestov．Mat．Vol．，NO－12，PP．170－ 179，1979．
［4］Gray A．and Hervella L．M．＂Sixteen classes of almost Hermitian manifold and their linear invariants ＂Ann．Math ．Pure and Appl．，Vol．123，No．3，pp．35－ 58，1980．
$\left.\kappa_{4}\right\rangle=\left\langle\mathrm{V}\left(\kappa_{1}, \kappa_{2}\right) \mathrm{J} \kappa_{3}, \mathrm{~J} \kappa_{4}\right\rangle \quad$ as well as we have
$\mathrm{V}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}+\mathrm{J} V\left(\kappa_{1}, \kappa_{2}\right) \mathrm{J} \kappa_{3}=0 ; \kappa_{1}, \kappa_{2}, \kappa_{3} \in \mathrm{X}(\mathrm{M})$
Spectral tensors are through definition：
1） $\mathrm{V}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}=\mathrm{V}_{(0)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}+\mathrm{V}_{(1)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}+$ $\mathrm{V}_{(2)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}+\mathrm{V}_{(3)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}+\mathrm{V}_{(4)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}$ $+\mathrm{V}_{(5)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}+\mathrm{V}_{(6)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}+\mathrm{V}_{(7)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3} ; \kappa_{1}$ ， $\kappa_{2}, \kappa_{3} \in X(M)$
2） $\mathrm{J} \circ \mathrm{V}\left(\mathrm{J} \kappa_{1}, \mathrm{~J} \kappa_{2}\right) \mathrm{J} \kappa_{3}=\mathrm{J} 。 \mathrm{~V}_{(0)}\left(\mathrm{J}_{1}, \mathrm{~J} \kappa_{2}\right) \mathrm{J} \kappa_{3}+\mathrm{J} 。$ $\mathrm{V}_{(1)}\left(\mathrm{J}_{1}, \mathrm{~J}_{2}\right) \mathrm{J}_{3}+\mathrm{J} 。 \mathrm{~V}_{(2)}\left(\mathrm{J}_{1}, \mathrm{~J} \kappa_{2}\right) \mathrm{J}_{3}+\mathrm{J} 。 \mathrm{~V}_{(3)}\left(\mathrm{J} \kappa_{1}\right.$ ， $\left.\mathrm{J}_{2}\right) \mathrm{J} \kappa_{3}+\mathrm{J} \circ \mathrm{V}_{(4)}\left(\mathrm{J} \kappa_{1}, \mathrm{~J} \kappa_{2}\right) \mathrm{J} \kappa_{3}+\mathrm{J} 。 \mathrm{~V}_{(5)}\left(\mathrm{J} \kappa_{1}, \mathrm{~J} \kappa_{2}\right) \mathrm{J} \kappa_{3}+$ $\mathrm{J} \circ \mathrm{V}_{(6)}\left(\mathrm{J} \kappa_{1}, \mathrm{~J} \kappa_{2}\right) \mathrm{J} \kappa_{3}+\mathrm{J}_{\circ} \mathrm{V}_{(7)}\left(\mathrm{J}_{1}, \mathrm{~J} \kappa_{2}\right) \mathrm{J} \kappa_{3}$
$=-\mathrm{V}_{(0)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}-\mathrm{V}_{(1)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}-\mathrm{V}_{(2)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}-$ $\mathrm{V}_{(3)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}+\mathrm{V}_{(4)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}-\mathrm{V}_{(5)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}-$ $\mathrm{V}_{(6)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}+\mathrm{V}_{(7)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3} ; \kappa_{1}, \kappa_{2}, \kappa_{3} \in \mathrm{X}(\mathrm{M})$ ． Putting（1）and（2）in
$\mathrm{V}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}+\mathrm{JV}\left(\kappa_{1}, \kappa_{2}\right) \mathrm{J} \kappa_{3}$ means，this identity is equivalent to that $\mathrm{V}_{(0)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}+\mathrm{V}_{(4)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}+$ $\mathrm{V}_{(7)}\left(\kappa_{1}, \kappa_{2}\right) \kappa_{3}=0$
This identity is also equivalent to other identities $\mathrm{V}_{(0)}$ $=V_{(4)}=V_{(7)}=0$ ．So according their history properties the adjoint G－structure＇s received identities in space are identical to relation $V_{b c d}^{a}=V_{\hat{b} c d}^{a}=V_{\hat{b} \hat{c} \hat{d}}^{a}=0$ ．

Theorem 7

Consider $\mathrm{W}=(\mathrm{J}, \mathrm{g}=\langle., .>)$ is an AK－structure， then the next class insertion $\bar{V}_{1} \subset \bar{V}_{2} \subset$ \bar{V}_{3} are resonable．

Proof：

Let＇s say a class＇s W－structure is \bar{V}_{1} ．By history theory，it is identical to $\bar{V}_{0}=\bar{V}_{4}=\bar{V}_{7}=0$ ．
As a result of history theorem class $\bar{V}_{0}=\bar{V}_{7}=0$ ， is identical to class \bar{V}_{2} ．Then $\bar{V}_{1} \subset \bar{V}_{2}$ ．Furthermore， the class \bar{V}_{3} is the same as class \bar{V}_{0} ．As shown by history theorem so $\bar{V}_{1} \subset \bar{V}_{2} \subset \bar{V}_{3}$
［5］Kirichenko V．F．Rustanoy A．R ，Shihab A．A，＂ On Geometry of the tensor of Conharmonic Curvature of almost Hermitian manifold＂ Mathmetical notes ，Moscow，Vol ．90，No－1，pp，2011．
［6］Lichnerowicz A．，＂Theories Globale Des connexionset Des Group D＇holonomie＂，Roma Edizionicremonese， 1955.
［7］Mileva P＂Locally Conformally Kähler Manifolds of Constant type and J－invariant Curvature Tensor＂，Factauniversitatis Mechanics， Automatic control ．791．804，2003
［8］Rawah．A．Z＂Concircular Curvature Tensor of Nearly Kahler manifold＂University of Tikrit， Collage of Education， 2015.

صفوف تنزرالانحناء الهرمتي الدائري لمنطوي كوهلر التقريبي

ياسين خضير عباس , علي عبد المجيد شهاب

الملخص
تم تعريف ثلاث فئات جديدة من منطوي كوهلر التقريبي من تتزر الانحناء الهرمتي الدائري , ويهدف هذا البحث الى حساب الخصائص التفاضلية - الهندسية والتبلوجية الاقرب للفئات الجديدة مركبات تنزر الانحناء الهرمتي الدائري لمنطوي كوهلر التقريبي , واخيرا تم ايجاد علاقة بين V1, V2, V3 ومع بعضها البعض .

